Study of two-photon exchange with polarized electron beam at A4

Boxing Gou for the A4 Collaboration

The 11 ${ }^{\text {th }}$ Workshop on Hadron Physics in China and Opportunities Worldwide, Tianjin, August 26, 2019

Outline

- Proton form factor puzzle and two-photon exchange
- Two-photon exchange study at MAMI-A4
- Published data and latest results

Proton form factors

Generalized form factors

Elastic scattering of two spin- $1 / 2$ particles can be described by 6 amplitudes (form factors).
$\tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}, \tilde{F}_{4}, \tilde{F}_{5}, \tilde{F}_{6}$
$>$ Small coupling (1/137) -> small higher order contributions
$>$ One-photon exchange approximation are regareded as sufficient
Form factors in Born approximation

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{E}}\left(\mathrm{Q}^{2}\right)=\mathrm{F}_{1}\left(\mathrm{Q}^{2}\right)-\tau \mathrm{F}_{2}\left(\mathrm{Q}^{2}\right) \\
& \mathrm{G}_{\mathrm{M}}\left(\mathrm{Q}^{2}\right)=\mathrm{F}_{1}\left(\mathrm{Q}^{2}\right)+\mathrm{F}_{2}\left(\mathrm{Q}^{2}\right)
\end{aligned}
$$

Form factors

- Dirac (F1) and Pauli (F2) form factors represents the helicity conserving and flip processes respectively
- Sachs form factors $\left(\mathrm{G}_{\mathrm{E}}, \mathrm{G}_{\mathrm{M}}\right)$ describe the charge and magnetization distribution

Methods for form factor measurement

Rosenbluth separation

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left(\frac{\alpha \mathrm{E}^{\prime}}{4 \mathrm{MQ})^{2} \mathrm{E}}\right)^{2}\left|\mathcal{M}_{\gamma}\right|^{2}=\frac{\sigma_{\mathrm{Mott}}}{\epsilon(1+\tau)} \sigma_{\mathrm{R}} \\
& \sigma_{\mathrm{Mott}}=\frac{\alpha^{2} \mathrm{E}^{\prime} \cos ^{2} \frac{\theta_{\mathrm{e}}}{2}}{4 \mathrm{E}^{3} \sin ^{4} \frac{\theta_{\mathrm{e}}}{2}} \quad \text { (Point-like) } \\
& \tau=\frac{\mathrm{Q}^{2}}{4 \mathrm{M}^{2}} \quad \varepsilon=\left[1+2(1+\tau) \tan ^{2} \frac{\theta_{\mathrm{e}}}{2}\right]^{-1}
\end{aligned}
$$

- FFs extracted as intercept and slope
- The signs of the FFs can not be determined
- At large Q^{2}, uncertainty of G_{E} gets larger

Spin-transfer method

Phys. Rev. C 23, 363 (1981)

$$
\begin{aligned}
I_{0} P_{x} & =-2 \sqrt{\tau(1+\tau)} G_{E} G_{M} \tan \frac{\theta_{e}}{2} \\
P_{y} & =0 \\
I_{0} P_{z} & =\frac{E_{0}+E^{\prime}}{M} \sqrt{\tau(1+\tau)} G_{M}^{2} \tan \frac{\theta_{e}}{2} \\
I_{0} & =G_{E}^{2}\left(Q^{2}\right)+\frac{\tau}{\varepsilon} G_{M}^{2}\left(Q^{2}\right) \\
\frac{G_{E}}{G_{M}} & =-\frac{P_{t}}{P_{l}} \frac{E_{0}+E^{\prime}}{M} \tan \frac{\theta_{e}}{2}
\end{aligned}
$$

Proton form factor puzzle

- Discrepancy between Rosenbluth separation and spin transfer experiments.
- Failure of the Born approximation in electron scattering .

- A two-photon exchange (TPE) correction could explain the discrepancy.
- Two-photon exchange mechanism needs to be understood systematicly.
- Both theoretical and experimental investigations are needed.

TPE accessible via transverse spin asymmetry

Azimuthal asymmetry

$$
\begin{gathered}
A_{\text {exp }}=\frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}}=A_{\perp} \frac{\vec{s} \cdot \vec{p}}{|\vec{s}| \vec{p} \mid}=-A_{\perp} \cos \varphi \\
A_{\perp} \propto \frac{\operatorname{Im}\left(\mathcal{M}_{\gamma}^{*} \mathcal{M}_{2 \gamma}\right)}{\left|\mathcal{M}_{\gamma}\right|^{2}}
\end{gathered}
$$

Target Spin Asymmetry in e $\vec{p} \rightarrow$ ep

- Imaginary parts of $\tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}$
- $A_{\perp} \sim \alpha \sim 10^{-2}$
- No experiments

Beam Spin Asymmetry in $\vec{e} p \rightarrow e p$

- Imaginary parts of $\tilde{F}_{3}, \tilde{F}_{4}, \tilde{F}_{5}$
- $A_{\perp} \sim \alpha \cdot \frac{m_{e}}{E} \sim 10^{-5}-10^{-6}$
- SAMPLE@MIT-Bates
- HAPPEX, GO, $Q_{\text {weak }}$ @JLab
- A4@MAMI

MAMI

Mainz Microtron (MAMI)

- Electron beam: 0.2-1.5 GeV, current ~ $20 \mu \mathrm{~A}$
- Energy, current, position and angle are stabilized and monitored

A4 experiment

Electromagnetic calorimeter

- PbF_{2} crystals, pure Cherenkov \rightarrow fast response (20 ns)
- 1022 crystals: 7 rings x 146 frames $\rightarrow \varphi:(0,2 \pi)$
- Read out: sum of 3×3 crystals. $\Delta E / E \approx 3.9 \% / \sqrt{E[G e V]}$

- Rotatable platform: both forward $\left(30^{\circ}-40^{\circ}\right)$ and backward $\left(140^{\circ}-150^{\circ}\right)$
- Plastic scintillator to veto γ in backward config.

High power liquid target

- Hydrogen
- Deuterium
- Forward ($\mathrm{L}=10 \mathrm{~cm}, \mathcal{L}=0.5 \times 10^{38} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}$)
- Backward ($\mathrm{L}=23 \mathrm{~cm}, \mathcal{L}=1.2 \times 10^{38} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}$)

Luminosity monitor

- 8 water Cherenkov counters $\left(4.4^{\circ}-10^{\circ}\right)$

Asymmetry extraction

- Integrate spectra under elastic peak $->N^{\uparrow}\left(N^{\downarrow}\right)$
- Raw asymmetry for each frame $A_{f}=\frac{N^{\uparrow}-N^{\downarrow}}{N^{\dagger}+N^{\downarrow}}$
- Correct helicity related false aymmetry $A_{f}^{\text {Raw }} \rightarrow A_{f}$

False asymmetry caused by difference in

- Beam position $(\Delta X, \Delta Y)$
- Beam angle $\left(\Delta X^{\prime}, \Delta Y^{\prime}\right)$
- Beam current ΔI
- Beam energy ΔE

Corrected via regression analyses

$$
A_{\text {exp }}=P \cdot A_{p h y}+\sum_{i=1}^{6} a_{i} X_{i}
$$

- Fit A_{f} by $A_{f}=A \cos \left[\frac{2 \pi}{146} \cdot(f-0.5)\right]+C$

Asymmetry extraction

- Integrate spectra under elastic peak $->N^{\uparrow}\left(N^{\downarrow}\right)$
- Raw asymmetry for each frame $A_{f}=\frac{N^{\top}-N^{\downarrow}}{N^{\dagger}+N^{\downarrow}}$
- Correct helicity related false aymmetry $A_{f}^{\text {Raw }} \rightarrow A_{f}$

False asymmetry caused by difference in

- Beam position $(\Delta X, \Delta Y)$
- Beam angle $\left(\Delta X^{\prime}, \Delta Y^{\prime}\right)$
- Beam current ΔI
- Beam energy ΔE

Corrected via regression analyses

$$
A_{\text {exp }}=P \cdot A_{p h y}+\sum_{i=1}^{6} a_{i} X_{i}
$$

- Fit A_{f} by $A_{f}=A \cos \left[\frac{2 \pi}{146} \cdot(f-0.5)\right]+C$

Asymmetry in luminosity monitor

- Large statistics
- Large asymmetry
- Serve as polarization monitor

False asymmetry caused by difference in

- Beam position $(\Delta X, \Delta Y)$
- Beam angle $\left(\Delta X^{\prime}, \Delta Y^{\prime}\right)$
- Beam current ΔI
- Beam energy ΔE

Corrected via regression analyses

$$
A_{\text {exp }}=P \cdot A_{p h y}+\sum_{i=1}^{6} a_{i} X_{i}
$$

Asymmetry calculation

Theory by B. Pasquini and M. Vanderhaeghen Phy. Rev. C 70, 045206(2004)

QED

Ground proton state G_{E} and G_{M} as input

A4 results: 2005

Kinematics	Energy \& Target
Forward	Hydrogen
	570

- Significant inelastic contribution

A4 results: 2005 ---> 2017

Kinematics	Energy \& Target	
Forward	Hydrogen	
	570	
	855	
Backward	Hydrogen	Deuterium
	315	315
	420	420

Phy. Rev. Lett. 119, 012501(2017)

- Significant inelastic contribution
- Backward data agree well with the theory

A4 results: 2005 ---> 2017 ---> 2019

Kinematics	Energy \& Target	
	Hydrogen	Hydrogen
		315
		420
		510
	570	
	855	855
		1508
Backward	Hydrogen	Deuterium
	315	315
	420	420

Phy. Rev. Lett. 119, 012501(2017)

- Significant inelastic contribution
- Backward data agree well with the theory
- Tension between forward data and theory.
- $\pi \pi N$ intermediate states?

Asymmetry in resonance region

- Large asymmetry in inelastic region.
- Test models describling $N \rightarrow \Delta$ transations beyond one-photon exchange.
- Background understood by Monte-Carlo simulation.

Summary

- Discrepancy between Rosenbluth separation and polarization transfer triggered the two-photon exchange (TPE) study.
- Transverse spin asymmetry $\left(A_{\perp}\right)$ provides an ideal test bed to study TPE.
- A4 has completed the A_{\perp} measurement in elastic scattering.
- A4 is still delivering new results (A_{\perp} and PVA in inelastic region).

Thanks for your attention!

