

Study of two-photon exchange with polarized electron beam at A4 Boxing Gou for the A4 Collaboration

The 11th Workshop on Hadron Physics in China and Opportunities Worldwide, Tianjin, August 26, 2019

 Proton form factor puzzle and two-photon exchange

 Two-photon exchange study at MAMI-A4

• Published data and latest results

Proton form factors

Generalized form factors

Elastic scattering of two spin-1/2 particles can be described by 6 amplitudes (form factors).

 $\tilde{F}_1,\tilde{F}_2,\tilde{F}_3,\tilde{F}_4,\tilde{F}_5,\tilde{F}_6$

Small coupling (1/137) -> small higher order contributions

One-photon exchange approximation are regareded as sufficient

Form factors in Born approximation $G_{E}(Q^{2}) = F_{1}(Q^{2}) - \tau F_{2}(Q^{2})$ $G_{M}(Q^{2}) = F_{1}(Q^{2}) + F_{2}(Q^{2})$ Form factors • Dirac (F1) and Pauli (F2) form factors represents the helicity conserving and flip processes respectively • Sachs form factors ($G_{E'}, G_{M}$) describe the charge and magnetization distribution

Methods for form factor measurement

Rosenbluth separation $\sigma_{\rm R} = \epsilon G_{\rm E}^2(Q^2) + \tau G_{\rm M}^2(Q^2)$ $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{\alpha \mathbf{E'}}{4\mathrm{M}\mathbf{Q}^{2}\mathbf{E}}\right)^{2} \left|\mathcal{M}_{\gamma}\right|^{2} = \frac{\sigma_{\mathrm{Mott}}}{\epsilon(1+\tau)} \sigma_{\mathrm{R}}$.35 $\Delta Q^2 = 0.39 \pm 0.01 - \langle Q^2 \rangle = 0.389$ FFs extracted as Fit gives $\rho = 1.061 \pm 0.058$.30 $\gamma^2 = 0.200$ intercept and slope .25 $\sigma_{\rm Mott} = \frac{\alpha^2 E' \cos^2 \frac{\theta_e}{2}}{4E^3 \sin^4 \frac{\theta_e}{2}}$ The signs of the FFs can (Point-like) 20. 20 5. 15 not be determined τG_M^2 .10

 At large Q², uncertainty of G_E gets larger

Spin-transfer method

0.2

0.4

E

.05

.00

0.0

 $\tau = \frac{Q^2}{4M^2} \quad \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta_e}{2}\right]^{-1}$

Phys. Rev. C 23, 363 (1981)

$$I_0 P_x = -2\sqrt{\tau(1+\tau)}G_E G_M \tan\frac{\theta_e}{2}$$

$$P_y = 0$$

$$I_0 P_z = \frac{E_0 + E'}{M}\sqrt{\tau(1+\tau)}G_M^2 \tan\frac{\theta_e}{2}$$

$$I_0 = G_E^2(Q^2) + \frac{\tau}{\varepsilon}G_M^2(Q^2)$$

$$\frac{G_E}{G_M} = -\frac{P_t}{P_l}\frac{E_0 + E'}{M} \tan\frac{\theta_e}{2}$$

0.8

1.0

0.6

Proton form factor puzzle

- Discrepancy between Rosenbluth separation and spin transfer experiments.
- Failure of the Born approximation in electron scattering .

- A two-photon exchange (TPE) correction could explain the discrepancy.
- Two-photon exchange mechanism needs to be understood systematicly.
- Both theoretical and experimental investigations are needed.

TPE accessible via transverse spin asymmetry

Azimuthal asymmetry	
$A_{exp} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} = A_{\perp} \frac{\vec{s} \cdot \vec{p}}{ \vec{s} \vec{p} } = -A_{\perp} \cos \theta_{\downarrow}$	sφ
$A \downarrow \propto \frac{Im(\mathcal{M}_{\gamma}^*\mathcal{M}_{2\gamma})}{Im(\mathcal{M}_{\gamma}^*\mathcal{M}_{2\gamma})}$	
$\left \mathcal{M}_{\gamma}\right ^{2}$	Nucl. Phys. B 35 (1971) 365.

Target Spin Asymmetry in ${ m e}ec{p} ightarrow ep$	Beam Spin Asymmetry in $\vec{e}p ightarrow ep$
 Imaginary parts of \tilde{F}_1, \tilde{F}_2, \tilde{F}_3 $A_\perp \sim \alpha \sim 10^{-2}$ No experiments 	• Imaginary parts of \tilde{F}_3 , \tilde{F}_4 , \tilde{F}_5 • $A_{\perp} \sim \alpha \cdot \frac{m_e}{E} \sim 10^{-5} - 10^{-6}$ • SAMPLE@MIT-Bates • HAPPEX, G0, Q_{weak} @JLab • A4@MAMI

MAMI

Mainz Microtron (MAMI)

- Electron beam: 0.2 1.5GeV, current ~ 20μ A
- Energy, current, position and angle are stabilized and monitored

A4 experiment

- Parity violation asymmetry: <u>Strange form factor</u>
- Azimuthal asymmetry: Two-photon exchange

Pol. beam

- Photoelectric effect on GaAs with circularly polarized laser: **longitudinally** polarized electrons
- Wien filter + procession in micrtrons → **longitudinal / transverse**
- Solenoid: transverse → vertical
- Beam polarization ~ 80%
- Pol. state reverses every 20 ms, flip pattern follows either $\uparrow\downarrow\downarrow\uparrow\uparrow$ or $\downarrow\uparrow\uparrow\downarrow\downarrow$

A4 experiment

Electromagnetic calorimeter

- PbF_2 crystals, pure Cherenkov \rightarrow fast response (20 ns)
- 1022 crystals: 7 rings x 146 frames $\rightarrow \varphi$: (0, 2π)
- Read out: sum of 3x3 crystals. $\Delta E/E \approx 3.9\% / \sqrt{E[GeV]}$
- Rotatable platform: both forward $(30^{\circ} 40^{\circ})$ and backward $(140^{\circ} - 150^{\circ})$
- Plastic scintillator to veto γ in backward config.

High power liquid target

- Hydrogen
- Deuterium
- Forward (L = 10 cm, $\mathcal{L} = 0.5 \times 10^{38} cm^{-2} \cdot s^{-1}$)
- Backward (L = 23 cm, $\mathcal{L} = 1.2 \times 10^{38} cm^{-2} \cdot s^{-1}$)

Luminosity monitor

• 8 water Cherenkov counters $(4.4^{\circ} - 10^{\circ})$

Asymmetry extraction

- Integrate spectra under elastic peak -> $N^{\uparrow}(N^{\downarrow})$
- Raw asymmetry for each frame $A_f = \frac{N^{\uparrow} N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$
- Correct helicity related false aymmetry $A_f^{Raw} \rightarrow A_f$

False asymmetry caused by difference in

- Beam position $(\Delta X, \Delta Y)$
- Beam angle $(\Delta X', \Delta Y')$
- Beam current ΔI
- Beam energy ΔE

Corrected via regression analyses

$$A_{exp} = P \cdot A_{phy} + \sum_{i=1}^{6} a_i X_i$$

Fit
$$A_f$$
 by $A_f = A \cos\left[\frac{2\pi}{146} \cdot (f - 0.5)\right] + C$

Asymmetry extraction

- Integrate spectra under elastic peak -> $N^{\uparrow}(N^{\downarrow})$
- Raw asymmetry for each frame $A_f = \frac{N^{\uparrow} N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$
- Correct helicity related false aymmetry $A_f^{Raw} \rightarrow A_f$

False asymmetry caused by difference in

- Beam position $(\Delta X, \Delta Y)$
- Beam angle $(\Delta X', \Delta Y')$
- Beam current ΔI
- Beam energy ΔE

Corrected via regression analyses

$$A_{exp} = P \cdot A_{phy} + \sum_{i=1}^{6} a_i X_i$$

Fit
$$A_f$$
 by $A_f = A \cos\left[\frac{2\pi}{146} \cdot (f - 0.5)\right] + C$

Asymmetry in luminosity monitor

- Large statistics
- Large asymmetry
- Serve as polarization monitor

False asymmetry caused by difference in

- Beam position (ΔX , ΔY)
- Beam angle $(\Delta X', \Delta Y')$
- Beam current ΔI
- Beam energy ΔE

Corrected via regression analyses

$$A_{exp} = P \cdot A_{phy} + \sum_{i=1}^{6} a_i X_i$$

Asymmetry calculation

Theory by B. Pasquini and M. Vanderhaeghen Phy. Rev. C 70, 045206(2004)

A4 results: 2005

• Significant inelastic contribution

A4 results: 2005 ---> 2017

A4 results: 2005 ---> 2017 ---> 2019

Asymmetry in resonance region

- Large asymmetry in inelastic region.
- Test models describling $N \rightarrow \Delta$ transations beyond one-photon exchange.
- Background understood by Monte-Carlo simulation.

- Discrepancy between Rosenbluth separation and polarization transfer triggered the two-photon exchange (TPE) study.
- Transverse spin asymmetry (A_{\perp}) provides an ideal test bed to study TPE.
- A4 has completed the A_{\perp} measurement in elastic scattering.
- A4 is still delivering new results (A_{\perp} and PVA in inelastic region).

Thanks for your attention !