Study of Meson Transition Form Factors at BESIII and A2

August 26, 2019 Max Lellmann Hadron-China 2019, NKU, Tianjin

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Motivation – Muon Anomalous Magnetic Moment

Anomalous magnetic Moment:

$$a_{\mu} = \frac{(g-2)_{\mu}}{2}$$

- 0.5 ppm accuracy in experiment and theory
 - Theory: (11659182.04 ± 3.65) × 10⁻¹⁰ (Phys. Rev. D79 (2018) 114025)
 - Exp. (BNL): (11659208.9 ± 6.3) × 10⁻¹⁰ (Phys. Rev. D73 (2006) 072003)
- Discrepancy between SM prediction and experiment observed
- New measurement at FermiLab and J-PARC
- SM prediction needs to be improved

DHMZ10 **JS11** HLMNT11 FJ17 DHMZ17 **KNT18** BNL 3.7σ BNL (x4 accuracy) 7.0σ 170 160 180 190 200 210 220 (aSM_u x 10¹⁰)-11659000

Keshavarzi, Nomura, Teubner Phys.Rev. D79 (2018) 114025

Motivation – Muon Anomalous Magnetic Moment

Increase precision of

$$a_{\mu}^{\rm SM} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm EW} + a_{\mu}^{\rm Strong}$$

Hadronic contributions limit SM prediction!

- Fix parameters with experimental input
- Hadronic Vacuum Polarization:
 - Related to hadronic R value
- Hadronic Light-by-Light scattering
 - Largest relative uncertainty
 - Depends on knowledge of hadrons coupling to photons

Standard model contribution	a _µ x 10 ¹¹	
QED	116 584 718.971(0.075)	
EW	153.6 (1.0)	
Strong		
HVP - LO	6894.6 (32.5)	
HLbL - LO	103.4 (28.8)	

Phys. Rev. D 97, (2018) 036001

8) 036001 Phys.Rev. D88 (2013) 053005 Study of Meson Transition Form Factors Jegerlehner, arXiv:1711.06089 [hep-ph]

M. Lellmann

3

Relevant Processes and Energies for HLbL

Counting Scheme: (de Rafael, Phys.Lett.B322, 239, 1994) Dominant processes are

- Pseudo scalar meson exchange
- Meson loop contribution

Relevant Processes and Energies for HLbL

 π^0, η, η'

G

 $\pi\pi$ $\pi\eta$

Counting Scheme: (de Rafael, Phys.Lett.B322, 239, 1994) Dominant processes are

- Pseudo scalar meson exchange
- Meson loop contribution

Contribution of neutral pion by 3D integral over Formfactor and weight functions:

$$a_{\mu}^{\text{HLbL};\pi^{0}(1)} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau w_{1}(Q_{1}, Q_{2}, \tau) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -(Q_{1}+Q_{2})^{2}) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{2}^{2}, 0)$$

$$a_{\mu}^{\text{HLbL};\pi^{0}(2)} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau w_{2}(Q_{1}, Q_{2}, \tau) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -Q_{2}^{2}) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(Q_{1} + Q_{2})^{2}, 0)$$

Relevant Energies: 0.25 GeV - 1.25 GeV

How to Measure Transition Form Factors

How to Measure Transition Form Factors

How to Measure Transition Form Factors

A2 at MAMI

- Mainzer Mikrotron
- (Un)polarized electron beam
- Quasi continuous (100% duty factor) and very stable beam
- Linac and 3 RTMs \rightarrow 885 MeV
- HDSM (MAMI C) \rightarrow 1604 MeV

A2 at MAMI

Glasgow Photon Tagger + End Point Tagger: radiator + electron → bremsstrahlung photons

A2 at MAMI

- Crystal Ball –TAPS setup
- Photon Beam: Energies up to 1580 MeV

Targets:

- Cryogen: LH₂, LD₂, ³He, ⁴He
- Solid: C, Al, Pb, ...
- Polarized Targets Optional

Crystal Ball:

- 672 Nal Crystals
- 24 PID paddles
- 2 Multiwire proportional chambers

Two Arms Photon Spectrometer (TAPS):

- 366 BaF₂ and 72 PbWO₄ crystals
- Veto Paddles

BESIII at **BEPCII**

• Operated at BEPCII electron-positron collider:

 $2.0\,\mathrm{GeV} \le \sqrt{s} \le 4.6\,\mathrm{GeV}$

Design luminosity achieved

$$\mathcal{L} = 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$
 at $\sqrt{s} = 3.773 \, \mathrm{GeV}$

Data taking for:

- Charmonium spectroscopy and charm physics
- Light hadron spectroscopy
- R and T-mass-scan

August 26, 2019

BESIII at **BEPCII**

Time-like Transition Form Factors

Possible reactions to produce hadrons:

$$\gamma + p \rightarrow p + X$$
 $J/\psi \rightarrow \gamma + X e^+e^- \rightarrow \gamma X$

Accessing the TFF from the decay rate:

$$\frac{d\Gamma(A \to e^+ e^- B)}{dq^2 \Gamma(A \to B\gamma)} = \{\text{QED}\} |\mathcal{F}_{AB}|^2$$

Possible Channels (examples for neutral pion):

• $\pi^0 \rightarrow e^+ e^- \gamma$ or $e^+ e^- \rightarrow \gamma \pi^0$ • $\sqrt{q_1^2} = m(e^+ e^-)$ $\sqrt{q_2^2} = 0$ • $\omega \rightarrow e^+ e^- \pi^0$

•
$$\sqrt{q_1^2} = m(e^+e^-)$$
 $\sqrt{q_2^2} = m(\omega)$

Study of Meson Transition Form Factors

Time-like Transition Form Factors

Possible reactions to produce hadrons:

$$\gamma + p \rightarrow p + X$$
 $J/\psi \rightarrow \gamma + X e^+e^- \rightarrow \gamma X$

Accessing the TFF from the decay rate:

$$\frac{d\Gamma(A \to e^+ e^- B)}{dq^2 \Gamma(A \to B\gamma)} = \{\text{QED}\} |\mathcal{F}_{AB}|^2$$

Possible Channels (examples for neutral pion):

• $\pi^0 \rightarrow e^+ e^- \gamma$ or $e^+ e^- \rightarrow \gamma \pi^0$ • $\sqrt{q_1^2} = m(e^+ e^-)$ $\sqrt{q_2^2} = 0$ • $\omega \rightarrow e^+ e^- \pi^0$

•
$$\sqrt{q_1^2} = m(e^+e^-)$$
 $\sqrt{q_2^2} = m(\omega)$

Study of Meson Transition Form Factors

M. Lellmann

Time-like Transition Form Factors

Possible reactions to produce hadrons:

$$\gamma + p \to p + X$$
 $J/\psi \to \gamma + X e^+e^- \to \gamma X$

Accessing the TFF from the decay rate:

$$\frac{d\Gamma(A \to e^+ e^- B)}{dq^2 \Gamma(A \to B\gamma)} = \{\text{QED}\} |\mathcal{F}_{AB}|^2$$

Possible Channels (examples for neutral pion):

• $\pi^0 \rightarrow e^+ e^- \gamma$ or $e^+ e^- \rightarrow \gamma \pi^0$ • $\sqrt{q_1^2} = m(e^+ e^-) \qquad \sqrt{q_2^2} = 0$ • $\omega \rightarrow e^+ e^- \pi^0$

•
$$\sqrt{q_1^2} = m(e^+e^-)$$
 $\sqrt{q_2^2} = m(\omega)$

Study of Meson Transition Form Factors

Time-like TFFs at A2: $\pi^0 \rightarrow e^+ e^- \gamma$

Study of Meson Transition Form Factors

$\omega \rightarrow e^+ e^- \pi^0$

A2 publication: (Phys. Rev. C95 (2017), 035208)

- Theory and experimental results disagree
- 1100 signal events extracted
- First measurement with electrons
- $\Lambda^{-2} = (1.99 \pm 0.21) \,\mathrm{GeV^2}$

$\eta \rightarrow e^+ e^- \gamma$

A2 publication: (Phys. Rev. C95 (2017), 035208)

- 5.4×10⁴ signal events
- Systematic uncertainty for individual data points
- $\Lambda^{-2} = (1.97 \pm 0.11) \,\mathrm{GeV^2}$

$\eta' ightarrow e^+ e^- \gamma$

Ongoing A2 project:

- 10 weeks of beamtime with end-point tagger
- More than 6 million η' produced
- Covers momentum transfer up to 0.7 GeV²
 - includes ρ pole
- Competitive with BCSIII results

Time-like TFFs at BESIII: $\eta' \rightarrow e^+ e^- \gamma$

BESIII publication: Phys.Rev. D92 (2015) no.1, 012001

- $J/\psi \to \gamma \eta' \to \gamma e^+ e^- \gamma$
- 850 events extracted
- $\Lambda^{-2} = (1.60 \pm 0.17_{\text{stat.}} \pm 0.08_{\text{sys.}}) \,\text{GeV}^{-2}$
- Based on ~1.3 billion J/ψ
 - new 10 billion J/ψ data set available!
- Photon conversion background suppressed by vertex fit

JGU

 $\psi(2S) \rightarrow \gamma(\pi^0, \eta, \eta')$

- Study radiative charmonium transitions
- Measurement of branching ratios
- Clear signal of $\psi(2S) \rightarrow \gamma(\pi^0, \eta, \eta')$
- Statistical significance:
 - π^0 : 6.7 σ
 - η : 7.3 σ
 - η' : > 10 σ

 $e^+e^- \rightarrow \gamma(\pi^0, \eta, \eta')$

BESIII ongoing project:

- Measurement at high virtualities
- Time- and Space-like TFF equal at large virtualities $\overline{\bigcirc}_{2}^{0.2}$
- Check Brodsky-Lepage-Limit (pQCD)
- Shed light on BaBar-Belle puzzle

- Photon signature mimicked by photo conversion inside wire chamber
- First measurement of time-like TFF of the neutral pion in this momentum transfer region

Study of Meson Transition Form Factors

<mark>€€S</mark>∭ JG|∪

- Single-Tag measurement
 - One charged track, two photons
 - Cut on missing polar angle
 - Constraint on photon helicity angle
 - Reduction of radiative effects:

$$R_{\gamma} = \frac{\sqrt{s} - E_{e^{\pm}\pi^{0}}^{\text{CMS}} - p_{e^{\pm}\pi^{0}}^{\text{CMS}}}{\sqrt{s}} < 0.05$$

- Clear signals for π and η
- Q² from 0.3 GeV² to 3.1 GeV²
- Data driven background subtraction

- Systematic uncertainty 3.9% to 30%
 - Dominated by background subtraction
- Good agreement to previous measurements
- First measurement below 0.5 GeV²
- Unprecedented accuracy below 1.5 GeV²
- Competitive above 1.5 GeV²

JGU

$$F_{\rm VMD}(Q^2) = -\frac{N_c}{12\pi^2 F_\pi} \frac{M_V^2}{M_V^2 + Q^2}$$

$$F_{\rm LMD+V}(Q^2) = -\frac{F_{\pi}}{3} \frac{h_1 Q^4 - h_5 Q^2 + h_7}{(M_{V1}^2 + Q^2)(M_{V1}^2 + Q^2)M_{V1}^2 M_{V2}^2}$$

Knecht, Nyffeler Phys. Rev. D65 (2002) 07303

$$F_{\rm n-Octet}(Q^2) = -\frac{N_c}{12\pi^2 F_{\pi}} + \sum_{i=1}^n \frac{4\sqrt{2}h_{Vi}f_{Vi}}{3F_{\pi}}Q^2(D_{\rho_i} - D_{\omega_i})$$
Czyz et al. Phys. Rev. D55 (2012) 094010

- Parameters fixed according to publications
- Agreement with result:

 $\chi^2_{\rm VMD} = 8.48$ $\chi^2_{\rm LMD+V} = 8.62$ $\chi^2_{\rm 1-Octet} = 9.54$ $\chi^2_{\rm 2-Octet} = 24.14$

- Construct spacelike TFF using time-like results in dispersive calculations
 - Hoferichter et al., Phys. Rev. Lett. 121, 112002 (2018)

- Fit previous measurements with Padé approximants
 - Model independent
 - Estimate of systematic uncertainties

JG U

Outlook

- Un-Tagged Measurements
 - Determination of radiative width
- Single-Tagged Measurements
 - Complete TFF study of single mesons states (η , η')
 - First single-tagged measurement of π⁺π⁻
 Full helicity angle coverage
 Mass coverage from two-pion threshold to 2 GeV
 - Two-Meson studies in neutral channels ($\pi\pi,\pi\eta,\eta\eta$)
 - Investigation of higher multiplicity states (3π , 4π ...)
- Double-Tagged Measurements
 - Single mesons (π^0, η, η') studies for $Q^2 < 2 \text{ GeV}$
 - ~100 events expected for π^0
 - Smaller Q² region as BaBar η' TFF measurement

GeV/c

0.100

Events /

A2 and BESIII ...

- ... are great facilities to the properties of light mesons at high precision
- A2 is able to deliver high quality measurements of time-like TFFs of light mesons
 - Time-like TFF measurement for π^0 , η available
 - Ongoing efforts to measure η' TFF and improve π^0 TFF measurement
- BESIII is suitable for measurements of singly virtual space-like TFFs of the lightest mesons in the relevant Q² range for a_u with unprecedented accuracy
 - Most accurate measurement of space-like π^0 TFF
 - First results of single-tagged measurements of meson pairs expected soon
 - Double-Tagged measurements of space-like TFFs started
- Both experiments contribute significantly to the SM prediction of a_u!

Back-up

- MC distribution do not describe data
 - Use data-driven, sideband-like background subtraction method
- Fit invariant mass distribution for each Q² bin in $0.07 \leq IM_{\gamma\gamma} [GeV/c^2] \leq 0.2$
 - Exclude peak region from fit $(0.115 \le IM_{\gamma\gamma} [GeV/c^2] \le 0.151)$
 - Count number of events in peak region above fitted background

Back-up

	Source	Contribution
External	Tracking efficiency	0.25%
	Photon detection efficiency	1%
	Luminosity	0.25%
Analysis	$q_{\rm tag}\cdot\cos\theta_{\rm miss}<-0.99$	0.1% – 3.1%
	$\cos\theta_{\rm H} < 0.8$	0.2% – 4.5%
	$ \Delta\phi_{\gamma\gamma} < \frac{\pi}{2}$	negligible
	$ \Delta \theta_{\gamma\gamma} - 0.01 q_{\rm tag} > 0.02$	0.3% – 9.8%
	$R_{\gamma} < 0.05$	1.0% - 7.7%
	Reconstruction efficiency	1.6% – 17.2%
Background subtraction	Signal shape	0.1% - 1.9%
	Event counting	0.1% - 11.1%
	Background shape	0.2% - 21.0%
Total		3.9% - 30.0%

- Contributions added in quadrature
- Full correlation between contributions of analysis conditions and background subtraction assumed

Error estimate does not consider radiative effects

To be evaluated with recently released Ekhara 3.0 (arXiv:1805.07756)

Study of Meson Transition Form Factors

M. Lellmann

1 /