

Transverse Hadron Structures from Lattice QCD with LaMET

Yong Zhao Massachusetts Institute of Technology Aug 25, 2019

11th Workshop on Hadron physics in China and Opportunities Worldwide Nankai University, Tianjin, China 08/23-28, 2019

Outline

- Large-momentum effective theory
 - Physical picture and factorization formula
 - Systematic approach to extract PDFs from lattice QCD
- Transverse hadron structures from lattice QCD
 - Generalized parton distributions
 - Transverse momentum dependent PDFs
 - Collins-Soper kernel from lattice QCD

So far our knowledge of the PDFs mostly comes from the analysis of high-energy scattering data

TMD PDF

Yong Zhao, SCET 2019, San Diego

See also STAR Collaboration, PRL116 (2016).

3

Lattice QCD calculation of partonic hadron structures? b

PDF:
$$q(x,\mu) = \int \frac{db^{-}}{2\pi} e^{-ib^{-}(xP^{+})} \langle P | \bar{\psi}(b^{-}) \frac{\gamma^{+}}{2} W[b^{-},0] \psi(0) | P \rangle$$
$$t \pm z$$

- Minkowski space, real time; •
- Defined on the light-cone which depends on the real time.

Z

ψ

Lattice QCD:

$$t = i\tau, e^{iS} \to e^{-S}, \langle O \rangle = \int D\psi D\bar{\psi} DA O(x) e^{-S}$$

- Euclidean space, imaginary time;
- Difficult to analytically continue lattice results back to Minkowski space.

Light-cone PDFs not directly accessible from the lattice!

Yong Zhao, Hadron-China 2019

 b^+

A novel approach to calculate light-cone PDFs

Large-Momentum Effective Theory: Ji, PRL110 (2013);
 Ji, SCPMA57 (2014).

A novel approach to calculate light-cone PDFs

Large-Momentum Effective Theory: Ji, PRL110 (2013);
 Ji, SCPMA57 (2014).

A novel approach to calculate light-cone PDFs

Large-Momentum Effective Theory: Ji, PRL110 (2013);
 Ji, SCPMA57 (2014).

A novel approach to calculate light-cone PDFs $\lim_{P^z \to \infty} \tilde{q}(x, P^z) = ?$

Instead of taking $P^{z} \rightarrow \infty$ limit, one can perform an expansion for large but finite P^{z} :

 $\tilde{q}(x, P^z) = C(x, P^z) \otimes q(x) + O\left(1/(P^z)^2\right)$

- $\tilde{q}(x, P^z)$ and q(x) have the same infrared physics (nonperturbative), but different ultraviolet (UV) physics (perturbative);
- Therefore, the matching coefficient $C(x, P^z)$ is perturbative, which controls the logarithmic dependences on P^z .

Systematic procedure of calculating the PDFs

$$\tilde{q}(x, P^{z}, \mu) = \int \frac{dy}{|y|} C\left(\frac{x}{y}, \frac{\mu}{yP^{z}}\right) q(y, \mu) + O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{x^{2}P_{z}^{2}}\right)$$

• X. Xiong, X. Ji, J.-H. Zhang and Y.Z., PRD90 (2014);

• Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018);

• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018).

- 1. Lattice simulation of the quasi-PDF;
- Lattice renormalization and the physical limits (continuum, infinite volume, physical pion mass);
- 3. Power corrections;
- 4. Perturbative matching.

For complete review of LaMET, see:

- Cichy and Constantinou, Adv.High Energy Phys. 2019 (2019) 3036904;
- Y.Z., Int.J.Mod.Phys. A33 (2019);
- C. Alexandrou et al. (ETMC), Phys.Rev. D99 (2019) no.11, 114504;

Also see Y.-Z. Liu's talk on Sunday for more detailed introduction.

Outline

- Large-momentum effective theory
 - Physical picture and factorization formula
 - Systematic approach to extract PDFs from lattice QCD
- Transverse hadron structures from lattice QCD
 - Generalized parton distributions
 - Transverse momentum dependent PDFs
 - Collins-Soper Kernel of TMDPDF from lattice QCD

Three-dimensional partonic hadron structures

- Longitudinal Parton Distribution Functions (PDFs): $q_{i=q,\bar{q},g}(x)$
- Generalized Parton Distributions (GPDs): $F_i(x, \xi = 0, \overrightarrow{b}_T)$
 - \vec{b}_T : transverse position of the parton.
- Transverse momentum dependent (TMD) PDFs $q_i(x, \vec{k}_T)$
 - \vec{k}_T : transverse momentum of the parton.
- Wigner distributions or generalized transverse
 momentum dependent distributions

 $W_i(x,\xi=0,\overrightarrow{k}_T,\overrightarrow{b}_T)$

Yong Zhao, Hadron-China 2019

The longitudinal and transverse PDFs provide complete 3D structural information of the proton.

GPD

- Light-cone GPD: $\xi = \frac{P^{+} - P'^{+}}{P^{+} + P'^{+}}, \quad t = (P' - P)^{2} \equiv \Delta^{2}$ $F_{\Gamma}(x, \xi, t, \mu) = \int \frac{d\zeta^{-}}{4\pi} e^{-ix\bar{P}^{+}\zeta^{-}} \langle P', S' | \bar{\psi}(\frac{\zeta^{-}}{2}) \Gamma U(\frac{\zeta^{-}}{2}, -\frac{\zeta^{-}}{2}) \psi(-\frac{\zeta^{-}}{2}) | P, S \rangle$
- Measurable in hard exclusive processes such as deeply virtual Compton scattering:

Quasi-GPD

 $\tilde{\xi} = \frac{P^z - P^{'z}}{P^z + P^{'z}} = \xi + O(\frac{M^2}{P_z^2})$

• Definition:

$$\tilde{F}_{\tilde{\Gamma}}(x,\tilde{\xi},t,\mu) = \int \frac{dz}{4\pi} e^{-ixP^{z}z} \langle P',S' | \bar{\psi}\left(\frac{z}{2}\right) \tilde{\Gamma} U\left(\frac{z}{2},-\frac{z}{2}\right) \psi\left(-\frac{z}{2}\right) | P,S \rangle$$

- Renormalization:
 - Same operator as the quasi-PDF, can be renormalized the same way!

• Y.-S. Liu, Y.Z. et al., PRD100 (2019) no.3, 034006

Factorization formula:

$$\begin{split} \tilde{F}_{\tilde{\gamma}^{z}}(x,\xi,t,\mu) &= \int_{-1}^{1} \frac{dy}{|\xi|} C\left(\frac{x}{\xi},\frac{y}{\xi},\frac{\mu}{\xi P^{z}}\right) F_{\gamma^{+}}(y,\xi,t,\mu) + O\left(\frac{M^{2}}{P_{z}^{2}},\frac{t}{P_{z}^{2}},\frac{\Lambda_{\text{QCD}}^{2}}{x^{2}P_{z}^{2}}\right) \\ &= \int_{-1}^{1} \frac{dy}{|y|} \bar{C}\left(\frac{x}{y},\frac{\xi}{y},\frac{\mu}{yP^{z}}\right) F_{\gamma^{+}}(y,\xi,t,\mu) + O\left(\frac{M^{2}}{P_{z}^{2}},\frac{t}{P_{z}^{2}},\frac{\Lambda_{\text{QCD}}^{2}}{x^{2}P_{z}^{2}}\right) \end{split}$$

- First lattice calculation of pion GPD, Chen, Lin and Zhang, arXiv: 1904.12376.
- Preliminary results for quasi-GPDs (ETMC), see M. Constantinou's talk at QCD Evolution 2019.

TMDPDF

• Collinear factorization (e.g., for Drell-Yan): $d\sigma$

 $\frac{d\sigma}{dQdY} = \sum_{a,b} \sigma_{ab}(Q,\mu,Y) f_a(x_1,\mu) f_b(x_2,\mu)$

• TMDPDF factorization:

 $\frac{d\sigma}{dQdYd^2q_T} = \sum_{i,j} H_{ij}(Q,\mu) \int d^2b_T e^{i\vec{b}_T \cdot \vec{q}_T} f_i^{\text{TMD}}(x_a,\vec{b}_T,\mu,\zeta_a) f_j^{\text{TMD}}(x_b,\vec{b}_T,\mu,\zeta_b)$

q_T: Net transverse momentum of the color-singlet final state, and *q_T*<<*Q*; ζ : Collins-Soper Scale. $\zeta_a \zeta_b = Q^4$

 The definition of TMDPDF involves a collinear beam function (or un-subtracted TMD) and soft function:

Rapidity divergence regulator

$$f_i^{\text{TMD}}(x, \overrightarrow{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0, \tau \to 0} Z_{\text{UV}}(\epsilon, \mu, xP^+) B_i(x, \overrightarrow{b}_T, \epsilon, \tau, xP^+) \Delta S^i(b_T, \epsilon, \tau)$$

UV divergence regulator

Yong Zhao, Hadron-China 2019

Evolution of TMDPDF

• Evolution of TMDPDF:

$$f_i^{\text{TMD}}(x, \overrightarrow{b}_T, \mu, \zeta) = f_i^{\text{TMD}}(x, \overrightarrow{b}_T, \mu_0, \zeta_0) \exp\left[\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_{\mu}^i(\mu', \zeta_0)\right] \exp\left[\frac{1}{2} \gamma_{\zeta}^i(\mu, b_T) \ln\frac{\zeta}{\zeta_0}\right]$$
$$\cdot \mu \sim Q, \, \zeta \sim Q^2 >> \Lambda_{\text{QCD}^2};$$

· μ_{θ} , ζ_{θ} : initial or reference scales, measured in experiments or determined from lattice (~2 GeV).

 $\gamma^{\iota}_{\mu}(\mu',\zeta_0)$ Anomalous dimension for μ evolution, perturbatively calculable;

 $\gamma_{\zeta}^{\iota}(\mu, b_T)$ Collins-Soper kernel, becomes nonperturbative when $b_T \sim 1/\Lambda_{QCD}$.

Both Initial-scale TMDPDF and the Collins-Soper kernel must be modeled in global fits of TMDPDF from experimental data.

$$\begin{split} \gamma_{\zeta}^{i}(\mu, b_{T}) &= -2 \int_{\mu(b_{T})}^{\mu} \frac{df\mu'}{\mu'} \Gamma_{\text{cusp}}^{i} [\alpha_{s}(\mu')] + \gamma_{\zeta}^{i} [\alpha_{s}(\mu(b_{T}))] \\ &+ g_{K}(b_{T}) \qquad \qquad \mu(b_{T}) \gg \Lambda_{\text{QCD}} \end{split}$$

- Bachetta et al., JHEP 1706 (2017);
- Scimemi and Vladimirov, EPJC78 (2018);
- Bertone, Scimemi and Vladimirov, JHEP 1906 (2019).

Yong Zhao, Hadron-China 2019

Towards a lattice calculation of the TMDPDF

Beam function:

 $|\vec{b}_{\perp}|$

• Ji, Sun, Xiong and Yuan, PRD91 (2015); • Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019); • M. Ebert, I. Stewart, Y.Z., PRD99 (2019); M. Ebert, I. Stewart, Y.Z., arXiv:1901.03685. $B_q(x,\vec{b}_T,\epsilon,\tau) = \left[\frac{db^+}{2\pi}e^{-i(xP^+)b^-}\langle P | \bar{q}(b^\mu)W(b^\mu)\frac{\gamma^+}{2}W_T(-\infty\bar{n};\vec{b}_T,\vec{0}_T)W^{\dagger}(0)q(0)\right] | P\rangle$ $|ec{b}_{\perp}|$ Lorentz boost and $L \rightarrow \infty$

L

 \tilde{B}_q

Quasi-beam function on lattice:

$$\begin{split} \tilde{B}_{q}(x,\overrightarrow{b}_{T},a,\boldsymbol{L},P^{z}) &= \int \frac{db^{z}}{2\pi} e^{ib^{z}(xP^{z})} \tilde{B}_{q}(b^{z},\overrightarrow{b}_{T},a,\boldsymbol{L},P^{z}) \\ &= \int \frac{db^{z}}{2\pi} e^{ib^{z}(xP^{z})} \langle P \,|\, \bar{q}(b^{\mu}) W_{\hat{z}}(b^{\mu};\boldsymbol{L}-b^{z}) \frac{\Gamma}{2} W_{T}(\boldsymbol{L}\hat{z};\,\overrightarrow{b}_{T},\,\overrightarrow{0}_{T}) W_{\hat{z}}^{\dagger}(0)q(0) \,|\, P \rangle \end{split}$$

Yong Zhao, Hadron-China 2019

 B_{q}

Towards a lattice calculation of the TMDPDF

Soft function:

• Quasi-soft function on lattice (naive definition):

 $\tilde{S}_{q}(b_{T},a,L) = \frac{1}{N_{c}} \langle 0 | \operatorname{Tr} \left[S_{\hat{z}}^{\dagger}(\overrightarrow{b}_{T};L) S_{-\hat{z}}(\overrightarrow{b}_{T};L) S_{T}(L\hat{z};\overrightarrow{b}_{T},\overrightarrow{0}_{T}) S_{-\hat{z}}^{\dagger}(\overrightarrow{0}_{T};L) S_{n}(\overrightarrow{0}_{T};L) S_{T}(-L\hat{z};\overrightarrow{b}_{T},\overrightarrow{0}_{T}) \right] | 0 \rangle$

Quasi-TMDPDF and its relation to TMDPDF

Quasi-TMDPDF (in the MSbar scheme):

 $\tilde{f}_{q}^{\text{TMD}}(x,\vec{b}_{T},\mu,P^{z}) = \lim_{L \to \infty} \int \frac{db^{z}}{2\pi} e^{ib^{z}(xP^{z})} \tilde{Z}'(b^{z},\mu,\tilde{\mu}) \tilde{Z}_{\text{UV}}(b^{z},\mu,a) \frac{\tilde{B}_{q}(b^{z},\vec{b}_{T},a,L,P^{z})}{\sqrt{\tilde{S}_{q}(b_{T},a,L)}}$

Relation to TMDPDF:

• M. Ebert, I. Stewart, Y.Z., arXiv:1901.03685.

L

$$\tilde{f}_{ns}^{TMD}(x, \vec{b}_T, \mu, P^z) = C_{ns}^{TMD}(\mu, xP^z) g_q^S(b_T, \mu) \exp\left[\frac{1}{2}\gamma_\zeta^q(\mu, b_T)\ln\frac{(2xP^z)^2}{\zeta}\right]$$
$$\times f_{ns}^{TMD}(x, \vec{b}_T, \mu, \zeta) + \mathcal{O}\left(\frac{b_T}{L}, \frac{1}{b_T P^z}, \frac{1}{P^z L}\right)$$
Hierarchy of scales: $b^z \sim \frac{1}{P^z} \ll b_T \ll L$ For $b_T \ll \Lambda_{QCD}^{-1} \quad g_q^{S_{naive}}(b_T, \mu) = 1 + \frac{\alpha_s C_F}{2\pi} \ln\frac{b_T^2 \mu^2}{4e^{-2\gamma_E}} + O(\alpha_s^2)$

- Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019);
- M. Ebert, I. Stewart, Y.Z., arXiv:1901.03685.

Yong Zhao, Hadron-China 2019

Collins-Soper kernel of TMDPDF from lattice QCD

- M. Ebert, I. Stewart, Y.Z., PRD99 (2019);
- M. Ebert, I. Stewart, Y.Z., arXiv:1901.03685;
- M. Ebert, I. Stewart, Y.Z., in progress.

 $|\vec{b}_{\perp}|$

(or un-subtracted quasi-TMD)

 $\times \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{2}^{z}) \int db^{z} \ e^{ib^{z}xP_{1}^{z}} \ \tilde{Z}'(b^{z}, \mu, \tilde{\mu}) \tilde{Z}_{\mathrm{UV}}(b^{z}, \tilde{\mu}, a) \tilde{B}_{\mathrm{ns}}(b^{z}, \overrightarrow{b}_{T}, a, L, P_{1}^{z})}{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{1}^{z}) \int db^{z} \ e^{ib^{z}xP_{2}^{z}} \ \tilde{Z}'(b^{z}, \mu, \tilde{\mu}) \tilde{Z}_{\mathrm{UV}}(b^{z}, \tilde{\mu}, a) \tilde{B}_{\mathrm{ns}}(b^{z}, \overrightarrow{b}_{T}, a, L, P_{2}^{z})}$

The idea of forming ratios to cancel the soft function has been used in the calculation of x-moments of TMDPDFs by

Hagler, Musch, Engelhardt, Yoon, et al., EPL88 (2009), PRD83 (2011), PRD85 (2012), PRD93 (2016), arXiv:1601.05717, PRD96 (2017)

Collins-Soper kernel of TMDPDF from lattice QCD

- M. Ebert, I. Stewart, Y.Z., PRD99 (2019);
- M. Ebert, I. Stewart, Y.Z., arXiv:1901.03685;
- M. Ebert, I. Stewart, Y.Z., in progress.

Quasi-beam function (or un-subtracted quasi-TMD)

$$\times \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{2}^{z}) \int db^{z} \ e^{ib^{z}xP_{1}^{z}} \ \tilde{Z}'(b^{z}, \mu, \tilde{\mu})\tilde{Z}_{\mathrm{UV}}(b^{z}, \tilde{\mu}, a)\tilde{B}_{\mathrm{ns}}(b^{z}, \overrightarrow{b}_{T}, a, L, P_{1}^{z})}{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{1}^{z}) \int db^{z} \ e^{ib^{z}xP_{2}^{z}} \ \tilde{Z}'(b^{z}, \mu, \tilde{\mu})\tilde{Z}_{\mathrm{UV}}(b^{z}, \tilde{\mu}, a)\tilde{B}_{\mathrm{ns}}(b^{z}, \overrightarrow{b}_{T}, a, L, P_{2}^{z})}$$

Physical Collins-Soper (CS) kernel does not depend on the external hadron state, which means that one can just calculate it with a pion state including heavy valence quarks.

work in progress with

Phiala Shanahan and Michael Wagman.

Procedure of lattice calculation

1. Lattice simulation of the bare quasi-beam function

$$(b^z, \tilde{\mu}, a) \tilde{B}_{ns}(b^z, \overrightarrow{b}_T, a, L, P_1^z)$$

 $b^z \sim \frac{1}{P^z} \ll b_T \ll \eta < \frac{L_{\text{Lat}}}{2}$

Choice of γ matrix: to choose γ^t or γ^z depending on operator mixing.

• M. Constantinou et al., PRD99 (2019)

Procedure of lattice calculation

• 2. Renormalization and matching to the MSbar scheme

$$\tilde{Z}'(b^z, \mu, \tilde{\mu})\tilde{Z}_{\text{UV}}(b^z, \tilde{\mu}, a)\tilde{B}_{\text{ns}}(b^z, \overrightarrow{b}_T, a, L, P_1^z)$$

$C_{\rm ns}^{\rm TMD}(\mu, xP_1^z) \int db^z \ e^{ib(W)} \mathbb{Z}(b^z, \mu, \tilde{\mu}) \tilde{Z}_{\rm UV}(b^z, \tilde{\mu}, a) \tilde{B}_{\rm ns}(b^z, \overrightarrow{b}_T, a, L, P_2^z)$

 $\tilde{Z}_{\rm HV}(b^z,\tilde{\mu},a)$

Multiplicative renormalizability of the Wilson line operator assumed to be provable using the auxiliary field formalism.

Linear power divergence:

$$\sim \frac{|L - b_z|}{a} + \frac{b_T}{a} + \frac{L}{a}$$

Nonperturbative Renormalization:

Perturbative matching to MSbar scheme: $\tilde{Z}'(b^z, \mu, \tilde{\mu})$

- X. Ji, J.-H. Zhang, and Y.Z., PRL120 (2018);
- J. Green et al., PRL121 (2018);

Procedure of lattice calculation

• 3. Fourier transform and calculate the ratio at different P^z $\gamma_{\zeta}^q(\mu, b_T) = \frac{1}{\ln(P_1^z/P_2^z)}$

 $\times \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{2}^{z}) \int db^{z} \ e^{ib^{z}xP_{1}^{z}} \ \tilde{Z}'(b^{z}, \mu, \tilde{\mu})\tilde{Z}_{\mathrm{UV}}(b^{z}, \tilde{\mu}, a)\tilde{B}_{\mathrm{ns}}(b^{z}, \vec{b}_{T}, a, L, P_{1}^{z})}{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{1}^{z}) \int db^{z} \ e^{ib^{z}xP_{2}^{z}} \ \tilde{Z}'(b^{z}, \mu, \tilde{\mu})\tilde{Z}_{\mathrm{UV}}(b^{z}, \tilde{\mu}, a)\tilde{B}_{\mathrm{ns}}(b^{z}, \vec{b}_{T}, a, L, P_{2}^{z})}$

- Independent of the choice of *x*!
- Independent of P^z!
- Fourier transform has truncation errors, but for given P^z there is always a region of x that is insensitive to such truncation effects;
- One may still seek alternatives to Fourier transforms that can be done directly in coordinate space.

Lattice calculation

• Lattice setup:

generated by Michael Endres

- Quenched Wilson gauge configurations;
- β =6.30168, a=0.06(1) fm, 32³×64;
- Probe valence pion with $m_{\pi} \sim 1.2 \text{ GeV}$
- Each momentum uses 2 gauge fixed plane wave ("wall") quark sources;
- A first look at N_{cfg}=7.

 $0 \le b^{z}, b_{T} \le \eta, \quad \eta = \{7, 8, 9, 10\}a \quad p^{z} = \{2, 3, 4\}\frac{2\pi}{L}, p_{\max}^{z} = 2.6 \text{ GeV}$

Caveat N_{cfg}=7 **Bare matrix elements** $P^{z}=2.6 \text{ GeV}$

•

23

Lattice renormalization in the RI'/MOM Scheme

Green's function:

$$G(b,p) = \sum_{x} \left\langle \gamma_5 S^{\dagger}(p,b+x) \gamma_5 U(b+x,x) \frac{\Gamma}{2} S(p,x) \right\rangle$$

Amputated Green's function (or vertex function):

$$\Lambda(b,p) = \left(\gamma_5 \left[S^{-1}(p)\right]^{\dagger}\right) G(b,p) S^{-1}(p)$$

Momentum subtraction condition:

$$Z_{\mathcal{O}}^{-1}(b, p_{\mu}^{R}, \mu_{R}) Z_{q}(\mu_{R}) G(b, p) \Big|_{p_{\mu} = p_{\mu}^{R}} = G^{\text{tree}}(b, p_{R}),$$

- I. Stewart and Y.Z., PRD97 (2018);
- Constantinou and Panagopoulos, PRD96 (2017);
- M. Constantinou et al., PRD99 (2019).

$$Z_{q}(\mu_{R}) = \frac{1}{12} \operatorname{Tr} \left[S^{-1}(p) S^{\operatorname{tree}}(p) \right] \Big|_{p^{2} = \mu_{R}^{2}}$$

Mixing

- Tracing with a projection operator to define the renormalization factors.
- For simplicity, we choose $\mathscr{P} = \gamma^t$
- To study the mixing effects, we also choose all the other 15 Gamma matrices.

Tr $\Lambda_{\gamma^t}(z,p)\mathcal{P}$

Mixing

- Tracing with a projection operator to define the renormalization factors.
- For simplicity, we choose $\mathscr{P} = \gamma^t$
- To study the mixing effects, we also choose all the other 15 Gamma matrices.

Yong Zhao, Hadron-China 2019

Tr $\Lambda_{\gamma t}(z,p)\mathcal{P}$

Matching to MSbar scheme @ 2GeV

 $Z_{\overline{\mathrm{MS}}}(\eta, b_z, b_T, \mu, a) = Z_{\mathcal{O}}^{-1}(\eta, b^z, b_T, p_\mu^R, \mu^R, a) \cdot C(\eta, b^z, b_T, p_\mu^R, \mu^R, \mu)$

- The RIMOM renormalization factor is most sensitive to p_{R^z};
- Perturbative matching is a small correction, but it compensates for the p_{R²} dependence in the matching factor;
- Matched result can be fitted with a constant within the uncertainties.

Yong Zhao, Hadron-China 2019

Renormalized matrix element in the MSbar scheme @ 2 GeV Caveat N_{cfg}=7

Renormalization renders the real and imaginary parts more anti-symmetric in b_z

Yong Zhao, Hadron-China 2019

Extraction of the CS kernel with Naive Fourier transform and without matching

Conclusion

- The LaMET approach can be readily applied to the lattice calculation of GPDs;
- Progress has been made in the application of LaMET to TMDPDFs;
- The Collins-Soper kernel can be calculated with LaMET by forming the ratios of quasi-beam functions;
- Encouraging results that LQCD calculations of the CS kernel might be achieved with present-day resources;
- Future work will include (much) larger statistics, different lattice spacings (for taking the continuum limit), and more systematic treatment than the naive Fourier transform.