

RESULTS FROM RHIC-SPIN

24 AUG 2019 | MARIA ŻUREK | LAWRENCE BERKELEY NATIONAL LABORATORY

11TH WORKSHOP ON HADRON PHYSICS IN CHINA AND OPPORTUNITIES WORLDWIDE

SPIN PHYSICS PROGRAM AT RHIC

Goal:

Using spin as a unique probe to unravel the internal structure and the QCD dynamics of nucleons with unprecedented precision

Questions:

$$S = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_G$$

- How do gluons contribute to the proton spin?
- What is the landscape of the polarized quark-sea in the nucleon?
- What do transverse-spin phenomena teach us about the structure of proton?

RHIC – POLARIZED PROTON COLLIDER

- Polarized proton $\sqrt{s} = 62, 200, 500 \text{ GeV}$
- Transverse and longitudinal polarization
- Alternating spin configurations bunch by bunch and fill by fill

Hard scattering processes with control of systematic effects

RHIC – POLARIZED PROTON COLLIDER

Year and √s	STAR <i>L</i> [pb⁻¹]	PHENIX <i>L</i> [pb ⁻¹]		
Longitudinal runs				
√s = 200 GeV				
2009	25	16		
2015	50	-		
√s = 500/510 GeV				
2009	10	14		
2011	12	18		
2012	82	32		
2013	300	155		
Transverse runs				
√s = 200 GeV				
2012	22	10		
2015	50	40		
√s = 500/510 GeV				
2011	25	-		
2017	320	_		

08/24/2019

SOLENOIDAL TRACKER AT RHIC

Electromagnetic Calorimeter

- Δφ = 2π, 1< η < 2
- Barrel ($|\eta| < 1$) and Endcap (-1 < $\eta < 2$)
- Energy measurement, trigger

Time Projection Chamber

- Δφ = 2π, |η| < 1, 0.5 T
- PID, tracking, vertex reconstruction

Time of Flight Barrel

- Δφ = 2π, |η| < 1
- PID

Forward Meson Spectrometer

- Δφ = 2π, 2.6 < η < 4
- Energy measurement, trigger

Beam-Beam Counter Vertex Position Detector

• Relative luminosity and MB trigger

Zero Degree Calorimeter

• Relative luminosity and local polarimetry

Characteristics

- Large acceptance (PID and calorimetry)
- Good for jets and correlations
- Upgrades: iTPC, EPD, ETOF

PHENIX DETECTOR

Took data up to 2016

Central Arm

- |η| < 0.35, Δφ = 2 × π/2, 0.78 T
- VTX detector
- Electromagnetic Calorimeter
- Tracking: Drift chambers, Pad chambers
- PID: RICH, ToF

Muon Arm

- 1.2 < |η| < 2.4, Δφ = 2π, 0.72 T
- Muon PID and Tracking
- PID, tracking, vertex reconstruction

Muon Piston Calorimeter

• $\Delta \phi = 2\pi, 3.1 < |\eta| < 3.9$

Beam-Beam Counter Zero Degree Calorimeter

• Relative luminosity

Characteristics

- High rate capabilities + good resolution
- Central arms: π^0 and η
- Muon arms

HELICITY STRUCTURE OF PROTON

Helicity $\Delta f(x)$

Density of partons with spin aligned with a longitudinally polarized proton that carry a fraction x of proton momentum

How do gluons contribute to the proton spin?

Double polarization

 $\vec{p}+\vec{p} \rightarrow {\rm jet/dijet/hadrons} + X$

What is the landscape of the polarized sea in the proton?

Single polarization + weak interaction

$$\vec{p} + p \to W^{+/-} \to e^{+/-} + \nu$$

HOW TO ACCESS ΔG ?

HOW TO ACCESS ΔG?

Which processes dominate at RHIC?

What are a₁₁ for these processes?

HOW TO ACCESS ΔG?

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\Sigma \Delta f_a \otimes \Delta f_b \otimes \hat{\sigma} a_{LL}^2 \otimes D}{\Sigma f_a \otimes f_b \otimes \hat{\sigma} \otimes D} \qquad \text{LO for illustration}$$

Which processes dominate at RHIC?

What are a_{LL} for these processes?

STATUS OF ΔG Precision A_{LL}

- 1. Significant advance in respect to old data:
- About an order in precision
- Extended kinematic range
- Initial sensitivity to different x_g from rapidities

2. A_{LL} positive for large p_{T} - **positive gluon** polarization

- 3. Included in DSSV and the NNPDF **PDF fits** (NLO)
- These data drive the constraints on ΔG in both fits

DSSV:	$0.20^{+0.06}_{-0.05},$	at 90% C.L. , $x > 0.05$
NNPDF:	$0.23\pm0.07,$	0.05 < x < 0.5

Evidence for **positive gluon polarization** in the x range 0.05 < x < 0.2 and at $Q^2 = 10$ GeV²

```
Run 2009 - 25 pb<sup>-1</sup>
Further precision: Run 2015 – 50 pb<sup>-1</sup>
```

STATUS OF \Delta G Impact of A_{11} from 2009 data on ΔG

CENTRAL $\pi^{\scriptscriptstyle 0}$ AND JETS AT 510 GEV

Towards smaller x_g

- Consistent result from both energies and both experiments
- Higher \sqrt{s} pushes sensitivity to lower x > 0.02
- More to come:
 - → 2013 data: High luminosity 510 GeV: STAR and PHENIX
 - → 2015 data: Double 2009 statistics 200 GeV: STAR

STAR: A_{LL} of π^0 at 510 GeV with FMS (2.6 < η < 4, x > 0.001) PRD 98 (2018), 032013 STAR: A_{LL} of π^0 at 200 GeV at midrapidity PRD 80 (2009), 111108

DI-JET MEASUREMENT

Towards smaller $\mathbf{x}_{\mathbf{g}}$ and complementary probes

- Di-jets give stricter constraints to underlying **partonic kinematics**
- May place better constraints on **functional form of Δg(x)**
- More-forward production lower x down to 0.01, 2 likely gluon, 1 likely quark
- Narrow ranges of initial state partonic momentum tested

$$M = \sqrt{x_1 x_2 s} \qquad x_1 = \frac{1}{\sqrt{s}} (p_{T3} e^{\eta_3} + p_{T4} e^{\eta_4})$$
(LO)
$$\eta_3 + \eta_4 = \ln \frac{x_1}{x_2} \qquad x_2 = \frac{1}{\sqrt{s}} (p_{T3} e^{-\eta_3} + p_{T4} e^{-\eta_4})$$

Unlike-sign topology

Same-sign topology

DI-JET MEASUREMENT

Towards smaller x_{g} and complementary probes

- Central di-jet measurement Run 2009 √s = 200 GeV : PRD 95 (2017), 071103
- Central di-jet measurement Run 2012 \sqrt{s} = 510 GeV : arXiv:1906.02740, Accepted for publication in PRD
- Further precision: Run 2015 \sqrt{s} = 200 GeV x 1.5 statistics

08/24/2019

DI-JET MEASUREMENT Impact on Δg(x)

• Influence of central and forward di-jets from 2009 data \sqrt{s} = 200 GeV on DSSV caculations

QUARK-SEA HELICITIES

QUARK HELICITIES

Single spin asymmetry and cross sections for W production

Goal: Constrain the sea-quark helicity

Separation of quark flavour

• $W^{+}(W^{-})$: predominantly u(d) and $\overline{d}(\overline{u})$

Maximal parity violation

 W couples to left-handed particles or right-handed antiparticles

The decay process is calculable Free from fragmentation function

$$A_L^{W^+}(y_W) \propto \frac{\Delta d(x_1)u(x_2) - \Delta u(x_1)d(x_2)}{\bar{d}(x_1)u(x_2) + u(x_1)\bar{d}(x_2)}$$
$$A_L^{W^-}(y_W) \propto \frac{\Delta \bar{u}(x_1)d(x_2) - \Delta d(x_1)\bar{u}(x_2)}{\bar{d}(x_2) - \Delta d(x_1)\bar{u}(x_2)}$$

$$W_L^W(y_W) \propto \frac{\Delta u(x_1)u(x_2)}{\bar{u}(x_1)d(x_2) + d(x_1)\bar{u}(x_2)}$$

Experiment Signature:

Large p_⊤ lepton, missing E_⊤

Experiment Challenges:

- Charge-ID at large | η |
- Electron-hadron discrimination
- High luminosity needed

(LO)

QUARK HELICITIES

Cross sections for W production

- Agreement with NLO pQCD theory and with other experiments
- Support for the NLO pQCD interpretation of asymmetry measurements

- W+/W-: Probing the $\overline{d}(x)/\overline{u}(x)$ ratio
- Complementary to NA51, E866, and SeaQuest
- STAR data cover ~0.1 < x < ~0.3, $|\eta_e|$ < 1
- Run 17: 350 pb⁻¹ of polarized data

QUARK HELICITIES Single spin asymmetry for W production at STAR

- Significant preference for $\Delta \overline{u}$ over $\Delta \overline{d}$
- Opposite to the spin-averaged quark-sea distributions
- Verification of different nucleon structure models

- 2013 data (300 pb⁻¹) Most precise data to date
- Combined precision (full available data set) important constraint on sea asymmetry
- Predictions from DSSV and NNPDF agree with data
- Data agrees with DIS results in the valence region

For a complete picture of nucleon spin structure at leading twist: **transversity**

Methods to access it at RHIC

Single spin asymmetries of the azimuthal distributions A_{ut}

Spin-dependent modulation of hadrons in jets Collins function (TMD FF)

Correlation of transverse spin of fragmenting quark and transverse momentum kick given to fragmentation hadron

Di-hadron correlation measurements "interference FF" (collinear framework)

Correlation of transverse spin of fragmenting quark and and momentum cross-product of di-hadron pair

Interference Fragmentation Function (IFF)

- The angle $\phi_{RS} = \phi_{R} \phi_{S}$ modulates the asymmetry due to the product of transversity and the IFF by sin(ϕ_{RS})
- First **significant transversity signal** measured in the central detector in pp collisions
- Well described by recent IFF asymmetry calculations incorporating SIDIS and Belle e⁺e⁻ data
- Gobal analysis including the IFF results from 200 GeV pp collisions
 M. Radici and A. Bacchetta, PRL 120, (2018) 192001
 - → Reduction of the uncertainty for h_1^{u}
 - → uncertainty for $h_1^{\ d}$: dominated by g → π⁺π⁻ FF

Interference Fragmentation Function (IFF)

- The angle $\phi_{RS} = \phi_{R} \phi_{S}$ modulates the asymmetry due to the product of transversity and the IFF by sin(ϕ_{RS})
- First **significant transversity signal** measured in the central detector in pp collisions
- Well described by recent IFF asymmetry calculations incorporating SIDIS and Belle e⁺e⁻ data
- Gobal analysis including the IFF results from 200 GeV pp collisions M. Radici and A. Bacchetta, PRL 120, (2018) 192001
 - → Reduction of the uncertainty for h_1^{u}
 - → uncertainty for h_1^{d} : dominated by g → π⁺π⁻ FF

Collins asymmetry

Transversity x Collins

 $d\sigma_{UT} \sim d\sigma_{UU} [1 + \frac{A'_{UT}}{\sin(\phi_s - \phi_h)} + A''_{UT} \sin(\phi_s - 2\phi_h)]$

The angle $\varphi_{SH} = \varphi_S - \varphi_H$ modulates the asymmetry due to the product of transversity and the Collins function by sin(φ_{RS})

D'Alesio, Murgia & Pisano PLB 773 (2017), 300

Kang, Prokudin, Ringer & Yuan, PLB 774 (2017), 635 without and with evolution

- Theory predistions using transversity and Collins FF extracted from SIDIS and e^+e^-
- TMD Evolution effects appear to be small

Collins-like Asymmetry

 $\begin{aligned} \text{Linearly polarized gluons x Collins-like} \\ d\sigma_{UT} \sim d\sigma_{UU} [1 + A'_{UT} \sin(\phi_s - \phi_h) + A''_{UT} \sin(\phi_s - 2\phi_h)] \end{aligned}$

- First ever measured Collins-like Asymmetry
- First limit on linearly polarized gluons in a polarized proton
- Best sensitivity at low $\boldsymbol{p}_{\scriptscriptstyle T}$
- First input to constrain models

PRD 97 (2018), 032004

More from STAR on IFF and Collins

- Collins results from 2012 200 GeV being finalized
- 200 GeV data from 2015 (x 2 more then 2012)
- 500 GeV data from 2017 (x 12 more)

Precision data at fixed x and different $\sqrt{s} \rightarrow$ ideal to constrain TMD evolution

Transverse spin structure

- Most observables in pp only related through Twist-3 formalism: collinear quark-gluon-quark correlations (1 hard scale needed, e.g., p_τ of hadron or jet)
- **TMD parton distributions**: e.g. Collins or Sivers functions (require 2 scales, e.g., p_τ and M of W)

Sivers function - describes correlation between parton's **transverse momentum** inside the proton with proton **transverse spin** (initial state TMD)

Not universal in hard scattering

Rescattering of the stuck parton in the color field of the remnant of polarized proton

Fundamental prediction about the nature of QCD

Nonuniversality of Sivers function in QCD: Sivers_{DIS} = - Sivers_{DY/W/Z}

→ Critical test of k_{T} factorization

- STAR: A_N for W production with 25 pb⁻¹ of data W kinematics fully reconstructed
- 2017 results will be based on 350 pb⁻¹ data – more definite test
- Other opportunities, e.g. photons (sign change in the Twist-3 formalism), Drell-Yan
- Gradual **upgrades** to existing STAR forward instrumentation
- Fit based on Kang-Qiu (KQ) model Z. Kang and J. Qiu, PRL 103 (2009), 172001
- Results favor sign change if evolution effects are not large

Nonuniversality of Sivers function in QCD: Sivers_{DIS} = - Sivers_{DY/W/Z}

→ Critical test of k_{T} factorization

- STAR: A_N for W production with 25 pb⁻¹ of data – W kinematics fully reconstructed
- 2017 results will be based on 350 pb⁻¹ data – more definite test
- Other opportunities, e.g. photons (sign change in the Twist-3 formalism), Drell-Yan
- Gradual **upgrades** to existing STAR forward instrumentation
- Kang-Qiu (KQ) model Z. Kang and J. Qiu, PRL 103 (2009), 172001
 - ➤ No TMD evolution
- EIKV model M. Echevarria, A. Idilbi, Z. Kang and I. Vitev, PRD 89 (2014), 074013
 - → TMD evolved

ORIGIN OF LARGE FORWARD A_N

ORIGIN OF LARGE FORWARD A_N

Puzzle since E704

- Large asymmetries nearly independent on \sqrt{s} (especially π^{0})
- Interpretations within Twist-3 formalism:
 - K. Kanazawa, Y. Koike, A. Metz and D. Pitonyak, PRD 89 (2014), 111501(R) 3-parton collinear FF fit to RHIC data + soft-gluon pole term fixed – good description of π A_N
 - L. Gamberg, Z.-B. Kang, and A. Prokudin, PRL 110 (2013), 232301 description of forward jet A_N from A_NDY Collaboration, PLB 750 (2015), 660 Twist-3 parton correlation function for u and d valence quarks cancel opposite sign but equal magnitude of Sivers functions from SIDIS

ORIGIN OF LARGE FORWARD A_N

- Description of A_N beyond pQCD 2 \rightarrow 2 process
- Low-multiplicity observation suggests diffraction mechanism
- STAR Roman Pots + FMS (2.6 < η < 4) direct access to diffractive A_N

NUCLEAR DEPENDENCE OF A_N

Very forward neutron

In the **perturbative** region:

- color-glass-condensate models: hadronic A_N should decrease with increasing A e.g. Y. V. Kovchegov and M. D. Sievert, PRD 86, 034028 (2012)
- Some approaches based on pQCD factorization: A_N would stay approximately the same J.-W. Qiu, in Proceedings of the RIKEN/RBRC Workshop:

Forward Physics at RHIC, 2012

No studies in **nonperturbative** region or diffractive scattering

Possible explanation:

- EM processes important at large Z
- nonresonant photo- π^+ production and n from from photonucleon excitation Δ resonance

OUTLOOK

STAR Forward Upgrade

- Access to the charged hadron asymmetries up to the highest \sqrt{s} at RHIC
- Full jets in forward direction at \sqrt{s} = 200 and 500 GeV TMDs at low and high x and $\Delta g(x)$ at small x
- Precision A_N (Drell-Yan) to complete the Sivers measurements
- **Tracking:** Si disks + small Thin Gap Chambers
- Calorimetry: hadronic and electromagnetic

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

SUMMARY

RHIC - critical and complimentary role in resolving the spin structure of the proton.

From **longitudinal** polarized p+p collisions RHIC has provided unique insight into:

- The **polarized sea quark** distributions via W/Z production.
- Constraints on the **polarized gluon distribution** through jet and di-jet A_{LL}
 - → Towards lower x: high luminosity 2013 data at \sqrt{s} = 510 GeV
 - → Towards precision in current x region: 2015 data at \sqrt{s} = 200 GeV

Transverse polarized p+p collisions at RHIC have accessed the transverse spin processes:

- Sivers' sign-change from W-boson data
 - → Sivers' measurements with W-bosons, Drell-Yan, and photons in 2017 (x 12 more data)
- Transverity sensitive quantities through the Collins asymmetry and IFF
- Gluon linear polarization through the first measurement of the Collins-like asymmetry
 - → More data from 2015 run (x 1.5 for \sqrt{s} = 200 GeV and x 12 for 510 GeV)

Ongoing forward upgrades to STAR

• Aiming for complete upgrade for potential polarized pp run at 500 GeV in 2022 and future data taking periods

THANK YOU

mariakzurek@lbl.gov

@mariakzurek

PLANS

RHIC cold-QCD plan for 2017-2023 (arXiv:1602.03922):

	Year	√s (GeV)	Delivered	ered Scientific Goals Observable		Required
			Luminosity			Upgrade
	2017	p [†] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism	A_N for γ , W^{\pm} , Z^0 , DY	A_N^{DY} : Postshower to FMS@STAR
				Transversity, Collins FF, linearly pol. Gluons, Gluon Sivers in Twist-3	$A_{UT}^{\sin(\phi_s - 2\phi_h)} A_{UT}^{\sin(\phi_s - \phi_h)}$ modula- tions of h^{\pm} in jets, $A_{UT}^{\sin(\phi_s)}$ for jets	None
				First look at GPD Eg	A_{UT} for J/ Ψ in UPC	None
Sche	2023	p [†] p @ 200	300 pb ⁻¹ 8 weeks	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Yes Forward instrum.
duled RF				evolution of ETQS fct. properties and nature of the diffractive exchange in p+p collisions.	A_N for γ A_N for diffractive events	None None
HC run	2023	p [†] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY	$R_{pAu}(DY)$:Yes Forward instrum.
ining				Nuclear dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None
				Clear signatures for Saturation	Dihadrons, y-jet, h-jet, diffraction	Yes Forward instrum.
	2023	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R_{pAl} : direct photons and DY	R _{pAl} (DY): Yes
			o moons	A-dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None
				A-dependence for Saturation	Dihadrons, y-jet, h-jet, diffraction	Yes Forward instrum.

PLANS

K. N. Barish - Spin 2018, Ferrara

	Year	\sqrt{s}	Delivered	Scientific Goals	Observable	Required
		(GeV)	Luminosity			Upgrade
	2023	р ^т р @	300 pb ⁻¹	Subprocess driving the large	A_N for charged	Forward instrum.
		200	8 weeks	A_N at high x_F and η	hadrons and	ECal+HCal+Tracking
0					flavor enhanced	
ich					jets	
edu	2023	p⁺Au	1.8 pb ⁻¹	What is the nature of the	R_{pAu} direct	
ileo		@	8 weeks	initial state and hadronization	photons and DY	Forward instrum.
1 R		200		in nuclear collisions		ECal+Hcal+Tracking
HI						
C				Clear signatures for	Dihadrons, γ -jet,	
		T		Saturation	h-jet, diffraction	
Ini.	2023	p'Al	12.6 pb ⁻¹	A-dependence of nPDF,	R_{pAl} : direct	Forward instrum.
Bu		@	8 weeks	A daman damaa fan Satamatian	photons and DY	ECal+HCal+Tracking
		200		A-dependence for Saturation	Dihadaana wist	
					Dinadrons, γ -jet,	
	2021		1.1.0.1		n-jet, unnaction	F 1' (
	2021	p'p @	1.1 ID	I MDs at low and high x	A_{UT} for Collins	Forward instrum.
fut		510	10 weeks		observables, i.e.	ECal+HCal+Tracking
Po					hadron in jet	
ten e ri					modulations at η	
ntia	2021		1.1.0.1		>]	T II
l	2021	p p @	I.I fb	$\Delta g(x)$ at small x	A_{LL} for jets, di-	Forward instrum.
ad		510	10 weeks		jets, h/γ-jets	ECal+HCal
					at $\eta > 1$	

UNPOLARIZED PDFs

HELICITY DEPENDENT PDFs

M. Żurek – RHIC Spin Results

STATUS OF ΔG

Impact of ALL from 2009 data on ΔG

DI-JETS MEASUREMENT

Towards smaller $\mathbf{x}_{\mathbf{g}}$ and complementary probes

- Di-jets give stricter constraints to underlying **partonic kinematics**
- May place better constraints on **functional form of Δg(x)**
- Much narrower ranges of initial state partonic momentum tested
- Different di-jet topologies enhances sensitivity of the data to selected x

2015 data at 200 GeV (2x statistics)

DI-JET MEASUREMENT

Towards smaller x_g and complementary probes: $\sqrt{s} = 510$ GeV

0.45

0.35

0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 10⁻³

Topology A Forward - Forward - Dijet x ₁ Dijet x ₂	Dijet A Dijet	Topology A Forward - Forward
Toology B	0.06	
Forward - Central	0.04	Forward - Central $p+p \rightarrow Jet+Jet+X$ Anti $k_T R = 0.5$
	0.02	+
	0	+*++++++++++++++++++++++++++++++++++++
	-0.02	· · · · ·
	0.08	
Central - Central	0.06	Central - Central
	0.04	+ I
	0.02	+ + + +
[[†]'		DSSV 2014
	-0.02	— NNPDF11
Tanalogy D	0.06	Tanalagy D
Forward - Backward	0.04	Forward - Backward
	0.02	h
	0	
	-0.02	\pm 6.6% polarization scale uncertainty not shown
10 ⁻² 10 ⁻¹ X	1 .	20 30 40 50 60 70 80 90 100 110 Parton Dijet Miny (GeV/c ²)

ArXiv:1906.02740, Accepted to publication in PRD

Used topology

η_3 and η_4 Regions	Physics Description
$0.3 < \eta_{3,4} < 0.9; \eta_3 \cdot \eta_4 > 0$	Forward-Forward
$ \eta_{3,4} < 0.3; \ 0.3 < \eta_{4,3} < 0.9$	Forward-Central
$ \eta_{3,4} < 0.3$	Central-Central
$0.3 < \eta_{3,4} < 0.9; \ \eta_3 \cdot \eta_4 < 0$	Forward-Backward

• Analysis with 2013 data - high luminosity 510 GeV: ongoing

DI-JET MEASUREMENT Impact on Δg(x)

• Influence of central and forward di-jets from 2009 data \sqrt{s} = 200 GeV on DSSV calculations

FORWARD PION PRODUCTION

Towards smaller \boldsymbol{x}_{g} and complementary probes

1 – likely quark, 2 – likely gluon

X₁

x,

-2.5

-2

 $\log_{10}(x)$

-1.5

-1

- A_{LL} of neutral pions at 510 GeV
- Measured with FMS (2.6 < η < 4)
- Access to gluons x > 0.001

X₁

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2 0.1

-3.5

-3

Relative Yield

• All available 510 GeV analyzed: run 2012 (82 pb⁻¹) and 2013 (300 pb⁻¹)

-0.5

FMS

• Run 2015 at 200 GeV (50 pb⁻¹) – analysis underway. Can probe x > 0.0025.

0

M. Żurek – RHIC Spin Results

HELICITY OUTLOOK

Helicity structure of proton from STAR

1. Non-perturbative sea-quark polarization at W-mass scale, free of fragmentation uncertainties

QUARK HELICITIES

Single spin asymmetry and cross sections for W production

- Cross sections well-described by NLO pQCD theory (FEWZ + MSTW08),
- Support NLO pQCD interpretation of the asymmetry measurements

- PHENIX: $W \rightarrow \mu A_{L}, \sigma, 1.2 < |\eta| < 2.4, PRD98, 032007 (2018)$ $W \rightarrow e A_{L}, |\eta| < 0.35, PRD93, 051103 (2016)$ $W \rightarrow e \sigma, PRL106 062001 (2011)$
- STAR: $W \rightarrow e A_{L}$, $|\eta| < 1$, PRL113, 072301 (2014) $W \rightarrow e \sigma$, PRD85 092010 (2011)

TRANSVERSE SPIN MEASUREMENTS

TMD formalism

Twist-3 formalism

Sivers function – correlation between parton transverse momentum and nucleon transverse spin

ETQS function – transverse momentum integrated distribution Twist-3 analog

$$T_{q,F}(x,x) = -\int d^2k_{\perp} \frac{|k_{\perp}|^2}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{SIDIS}$$

Collins function – correlation of the transverse spin of a fragmenting quark and the transverse momentum of a hadron

Twist-3 analog fragmentation function

Requires **2 scales**: hard scale Q^2 and soft scale p_T Where: $\lambda_{QCD} < p_T << Q$

Observables: azimuthal dependences of hadrons within a jet, Drell-Yan, W/Z

Requires **1 scale**: Q^2 or p_T Where: $\lambda_{QCD} \ll p_T$, Q

Observables: Inclusive A_N (π^0 , γ , jet, charmed mesons)

For a complete picture of nucleon spin structure at leading twist: transversity

- Difficult to access chiral-odd nature
- Couples to chiral-odd fragmentation functions
- Much less data than for helicity
- Before observed in SIDIS combined with e⁺e⁻
- First **global analyses:** simultaneously the transversity and polarized FF
 - → Phys. Rev. D 87, 094019 (2013)
 - → Phys. Rev. Lett. 107, 012001 (2011)
- All show large uncertainties

Transversity: δq(x)

Net density of quarks with spin aligned with the transversely polarized nucleon

STAR: KINEMATIC COVERAGE

IFF and Collins asymmetry

PRD 97 (2018), 032004 K. Adkins (STAR), SPIN 2014

TRANSVERSITY

Collins asymmetry

- 500 GeV pp results hinted the $A_{_{\rm UT}}$ peak shifts to higher $j_{_{\rm T}}$ as z increases
- Preliminary 200 GeV pp results show similar behavior
- Hadron j_{τ} is independent of initial state transverse momentum
- Additional statistics for both 200 (x 2.5) and 500 GeV (x 12) available

RHIC KINEMATIC

Collins and Sivers asymmetry

08/24/2019

TWIST-3 Heavy flavor A_N

- PHENIX: $A_N \mu$ asymmetries from open heavy-flavor decays at $\sqrt{s} = 200$ GeV.
- Heavy flavor asymmetries sensitive to twist-3 tri-gluon correlator

