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Introduction



Hadron Physics

Hadron physics is mainly focused on hadron scatterings, spectra,
structures, interactions, etc.

• Hadron spectra are obtained from experimental
Hadron scattering.

• Hadron structures and interactions ⇌
Hadron spectra and scattering.

Hadron physics lies in the region of low energies with a large αs,
traditional perturbation expansion in series of (αs)n cannot work here.

• constituent quark model
• effective field theory —expanded by small momenta
• lattice QCD —discretized QCD
• QCD sum rule —operator product expansion—twist
• large Nc —1/Nc
• ... 2



Low-lying Baryons

Much more scattering data on low-lying baryons, N∗(1440), N∗(1535),
Λ(1405) compared to those for large-mass resonances or charmed
hadrons.

Naive quark model predicts wrong mass order for N∗(1440) & N∗(1535).

IF: harmonic oscillator form for confinement potential
Then: E = (2nr + L + 3/2)ω
N∗(1440): nr = 1, L = 0 =⇒ E = 7/2ω
N∗(1535): nr = 0, L = 1 =⇒ E = 5/2ω

Λ(1405) is with smaller mass than N∗(1535) in JP = 1/2− octet even if
it contains an s quark.

Triquark or pentaquark state?

...
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Lattice QCD

• LQCD starts from the first principle of QCD
• model independent, reliable
• LQCD gives hadron spectra and quark distribution functions

at finite volumes, large quark masses, discrete spaces
• not directly related to physical observables

4



Connection between Scattering Data and Lattice QCD Data

Lattice QCD

• large pion mass: extrapolation
• finite volume
• discrete space

Lattice QCD Data → Physical Data

• Lüscher Formalisms and extensions:
Model independent; efficient in single-channel problems

Spectrum → Phaseshifts; mKL − mKS etc.
• Effective Field Theory (EFT), Models, etc

with low-energy constants fitted by Lattice QCD data

Physical Data → Lattice QCD Data

• EFT: discretization, analytic extension, Lagrangian modification
• various discretization: eg. discretize the momentum in the loop

5



Lattice QCD and Effective Field Theory

Effective field theory deals with extrapolation powerfully.
Guo, Hanhart, Llanes-Estrada, Meißner, Quark mass dependence of the pion vector form factor, Phys.Lett.B678:90-96,2009.

Finite-volume effect can be studied by discretizing the EFT.
Molina, Doring, Pole structure of the Λ(1405) in a recent QCD simulation, Phys.Rev. D94 (2016) no.5, 056010, Addendum: Phys.Rev.

D94 (2016) no.7, 079901

discretize the mass equation (in integral form )
(most of time, potentials are momentum independent.)
Hall, Hsu, Leinweber, Thomas, Young, Finite-volume matrix Hamiltonian model for a ∆ → Nπ system, Phys.Rev. D87 (2013) no.9,

094510

discretize the Hamiltonian equation (in differential form )

Discrete spacing effects can also be studied with EFT.

Ren, Geng, Meng, Baryon chiral perturbation theory with Wilson fermions up to O(a2) and discretization effects of latest nf=2+1 LQCD

octet baryon masses, Eur.Phys.J. C74 (2014) no.2, 2754
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Scattering Data and Lattice QCD data are two important sources for
studying resonances.

We should try to analyse them both at the same time.
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Hamiltonian Effective Field Theory

Hamiltonian Effective Field Theory (HEFT)
analyses both experimental data at infinite volume
and lattice QCD results at finite volume at the same time.

• at infinite volume
Lagrangian (via 2-particle irreducible diagrams) →

potentials (via Betha-Salpeter Equation) →
phaseshifts and inelasticities

• at finite volume
potentials discretized (via Hamiltonian Equation)→ spectra
wavefunctions: analyse the structure of the eigenstates on the lattice

• finite-volume and infinite-volume results are connected by the
coupling constants etc.

8



This Work

We use Hamiltonian effective field theory to analyse the scatterings data
at experiment and spectra of lattice QCD which are related to

• N∗(1535)
• N∗(1440)
• Λ(1405)

By our analyses, we try to better understand the structures of those
resonances and relevant interactions.

9



Hamiltonian effective field theory
study of the N∗(1535) resonance
in lattice QCD



N∗(1535) with πN Scattering

N∗(1535) is the lowest resonance with I(JP) = 1
2 (

1
2
−
).

• One needs to consider the interactions
among the bare baryon N∗

0 , πN channel, and ηN channel.

• Phase shifts and inelasticities
are obtained by solving Bethe-Salpeter equation with the interactions.
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Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
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Spectra at Finite Volumes

3 sets of lattice QCD data at different pion masses and finite volumes
Non-interacting energies of the two-particle channels
Eigenenergies of Hamiltonian effective field theory
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Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
Eigenenergies of Hamiltonian effective field theory
Coloured lines indicating most probable states observed in LQCD
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Components of Eigenstates with L ≈ 3 fm
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• The 1st eigenstate at light quark masses is mainly πN scattering
states.

• The most probable state at physical quark mass is the 4th eigenstate.
It contains about 60% bare N∗(1535), 20% πN and 20% ηN.
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Components of Eigenstates with L ≈ 3 fm
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Lattice Results → Experimental Results

• Experimental Data → Lattice QCD Data We have shown that.
• Lattice QCD Data → Experimental Data We show it here.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
m2
π/GeV2

1200

1400

1600

1800

2000

E
/M

eV

matrix Hamiltonian model

1st most probable

2nd most probable

3rd most probable

CSSM

Cyprus

L ≈ 3 fm

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
m2
π/GeV2

1200

1400

1600

1800

2000

E
/M

eV

matrix Hamiltonian model

1st most probable

2nd most probable

3rd most probable

Lang & Verduci

JLab

L ≈ 2 fm
Spectra with I(JP) = 1

2 (
1
2
−
) and the bare mass is fitted by LQCD data

By fitting lattice QCD data, the pole for N∗(1535) at infinite volume lies
at 1602 ± 48 − i 88.6+0.7

−2.8 MeV. PDG: 1510±20 − i 85 ± 40. 13



Effects of Separable Potentials

fit for lattice QCD data
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Hamiltonian effective field theory
study of the N∗(1440) resonance
in lattice QCD



N∗(1440) Resonance

• N∗(1440), usually called Roper , is the excited state I(JP) = 1
2 (

1
2
+
)

• Naive quark model predicts mN∗(1440) > mN∗(1535)
if they are both dominated by 3-quark core. But contrary to experiment.

To check whether a 3-quark core largely exists in Roper, we consider models

• with a bare Roper

• without any bare baryons

• including the effect of the bare nucleon

15



N∗(1440) Resonance

1100 1200 1300 1400 1500 1600 1700 1800
Ecm/MeV

0.0

0.2

0.4

0.6

0.8

1.0

in
el

as
ti

ci
ty

with bare roper

without bare baryon

with bare nucleon

1100 1200 1300 1400 1500 1600 1700 1800
Ecm/MeV

0

50

100

150

p
h

as
e

sh
if

t/
d

eg
re

e

with bare roper

without bare baryon

with bare nucleon

πN scattering with I(JP) = 1
2 (

1
2
+
)

• with a bare Roper
• without any bare baryons
• including the effect of the bare nucleon
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Results of the Model with a Bare Roper
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At low pion masses, the 2nd state contains more than 20% bare Roper,
so this state should be observed with a 3-quark interpolating operators
on the lattice.

But it is not. 16



Results of the Model without Bare Baryons
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• The lattice data sit on the eigenenergy spectrum of this model;
• ALTHOUGH it is hard to predict which state is easier to observe on

the lattice,
• we notice that lattice QCD prefers to extract eigenstates with

non-trivial mixing of scattering states. 17



Including the Effect of the Bare Nucleon
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• The bare nucleon does not affect the spectrum very much compared
to the results of the model without any bare baryons;

• We can plot the probability based on the distribution of the bare
nucleon;

• It can explain both the experimental data and lattice data. 18



Our results are verified
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No these two higher states with N−P(0)π(0)... from CMMS. 19



Structure of the Λ(1405) from
Hamiltonian effective field theory



Λ(1405) with K−p scattering

• The well-known Weinberg-Tomozawa potentials are used.
momentum-dependent, non-separable

• We can fit the cross sections of K−p well
both with and without a bare baryon.
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Λ(1405) with K−p scattering

• The well-known Weinberg-Tomozawa potentials are used.
momentum-dependent, non-separable

Vα,β(k, k′) = gα,β
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Spectrum on the Lattice
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Spectra with S = −1, I(JP) = 0( 1

2
−
) in the finite volume.

• The bare baryon is important for interpreting the lattice QCD data
at large pion masses.
The bare state introduces a new pole for Λ(1670) at 1660-30i MeV

• Λ(1405) is mainly a K̄N molecular state
containing very little of bare baryon at physical pion mass.
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Summary



Extension of the Roper work

• effects of a resonance with bare mass/pole around 2 GeV
• constituent quark model w/ harmonic oscillator potential predicts

mass of first radially excited nucleon is approximately 2 GeV
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Quark model states + dynamically generated states
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Summary

We have analysed the scattering data at experiment and the lattice
spectra on the lattice relevant to N∗(1440), N∗(1535), and Λ(1405) with
Hamiltonian effective field theory

• N∗(1535) contains a 3-quark core;

• N∗(1440) should contain little of 3-quark consistent;

• Λ(1405) is mainly a K̄N molecular state at physical quark mass,
while a 3-quark core dominates at large quark masses.
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Thanks!
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