Study of Low-Lying Baryons with

Hamiltonian Effective Field Theory

Zhan-Wei Liu Lanzhou University

Collaborators: Johnathan M. M. Hall, Waseem Kamleh, Derek B. Leinweber, Finn M. Stokes, Anthony W. Thomas, and Jia-Jun Wu

Department of Physics, University of Adelaide, SA5005

The 11th Workshop on Hadron Physics in China and Opportunities Worldwide, Tianjin. 24/8/2019

- 1. Introduction
- 2. Hamiltonian effective field theory study of the $\mathit{N}^*(1535)$ resonance in lattice QCD
- 3. Hamiltonian effective field theory study of the $\mathit{N}^*(1440)$ resonance in lattice QCD
- 4. Structure of the $\Lambda(1405)$ from Hamiltonian effective field theory
- 5. Summary

Introduction

Hadron Physics

Hadron physics is mainly focused on hadron scatterings, spectra, structures, interactions, etc.

- Hadron spectra are obtained from experimental Hadron scattering.
- Hadron structures and interactions ⇒
 Hadron spectra and scattering.

Hadron physics lies in the region of low energies with a large α_s , traditional perturbation expansion in series of $(\alpha_s)^n$ cannot work here.

- constituent quark model
- effective field theory —expanded by small momenta
- lattice QCD —discretized QCD
- QCD sum rule —operator product expansion—twist
- large Nc —1/Nc
-

Low-lying Baryons

Much more scattering data on low-lying baryons, $N^*(1440)$, $N^*(1535)$, $\Lambda(1405)$ compared to those for large-mass resonances or charmed hadrons.

Low-lying Baryons

Much more scattering data on low-lying baryons, $N^*(1440)$, $N^*(1535)$, $\Lambda(1405)$ compared to those for large-mass resonances or charmed hadrons.

Naive quark model predicts wrong mass order for $N^*(1440) \& N^*(1535)$.

IF: harmonic oscillator form for confinement potential

Then: $E = (2n_r + L + 3/2)\omega$ $N^*(1440): n_r = 1, L = 0 \implies E = 7/2\omega$ $N^*(1535): n_r = 0, L = 1 \implies E = 5/2\omega$ Much more scattering data on low-lying baryons, $N^*(1440)$, $N^*(1535)$, $\Lambda(1405)$ compared to those for large-mass resonances or charmed hadrons.

Naive quark model predicts wrong mass order for $N^*(1440) \& N^*(1535)$.

IF: harmonic oscillator form for confinement potential

Then:
$$E = (2n_r + L + 3/2)\omega$$

 $N^*(1440): n_r = 1, L = 0 \implies E = 7/2\omega$
 $N^*(1535): n_r = 0, L = 1 \implies E = 5/2\omega$

 $\Lambda(1405)$ is with smaller mass than $N^*(1535)$ in $J^P = 1/2^-$ octet even if it contains an s quark.

Much more scattering data on low-lying baryons, $N^*(1440)$, $N^*(1535)$, $\Lambda(1405)$ compared to those for large-mass resonances or charmed hadrons.

Naive quark model predicts wrong mass order for $N^*(1440) \& N^*(1535)$.

IF: harmonic oscillator form for confinement potential

Then:
$$E = (2n_r + L + 3/2)\omega$$

 $N^*(1440): n_r = 1, L = 0 \implies E = 7/2\omega$
 $N^*(1535): n_r = 0, L = 1 \implies E = 5/2\omega$

 $\Lambda(1405)$ is with smaller mass than $N^*(1535)$ in $J^P = 1/2^-$ octet even if it contains an s quark.

Triquark or pentaquark state?

- LQCD starts from the first principle of QCD
- model independent, reliable
- LQCD gives hadron spectra and quark distribution functions at finite volumes, large quark masses, discrete spaces
- not directly related to physical observables

Lattice QCD

- large pion mass: extrapolation
- finite volume
- discrete space

Lattice QCD Data \rightarrow Physical Data

- Lüscher Formalisms and extensions: Model independent; efficient in single-channel problems Spectrum \rightarrow Phaseshifts; $m_{K_L} - m_{K_S}$ etc.
- Effective Field Theory (EFT), Models, etc with low-energy constants fitted by Lattice QCD data

$\mathsf{Physical}\ \mathsf{Data} \to \mathsf{Lattice}\ \mathsf{QCD}\ \mathsf{Data}$

- EFT: discretization, analytic extension, Lagrangian modification
- various discretization: eg. discretize the momentum in the loop

Effective field theory deals with extrapolation powerfully.

Guo, Hanhart, Llanes-Estrada, Meißner, Quark mass dependence of the pion vector form factor, Phys.Lett.B678:90-96,2009.

Finite-volume effect can be studied by discretizing the EFT.

Molina, Doring, Pole structure of the A(1405) in a recent QCD simulation, Phys.Rev. D94 (2016) no.5, 056010, Addendum: Phys.Rev.

D94 (2016) no.7, 079901

discretize the mass equation (in integral form) (most of time, potentials are momentum independent.)

Hall, Hsu, Leinweber, Thomas, Young, Finite-volume matrix Hamiltonian model for a $\Delta \rightarrow N\pi$ system, Phys.Rev. D87 (2013) no.9,

094510

discretize the Hamiltonian equation (in differential form)

Discrete spacing effects can also be studied with EFT.

Ren, Geng, Meng, Baryon chiral perturbation theory with Wilson fermions up to O(a2) and discretization effects of latest nf=2+1 LQCD

octet baryon masses, Eur.Phys.J. C74 (2014) no.2, 2754

Scattering Data and Lattice QCD data are two important sources for studying resonances.

We should try to analyse them both at the same time.

Hamiltonian Effective Field Theory (HEFT)

analyses both experimental data at infinite volume

and lattice QCD results at finite volume at the same time.

at infinite volume

Lagrangian (via 2-particle irreducible diagrams) \rightarrow potentials (via Betha-Salpeter Equation) \rightarrow phaseshifts and inelasticities

at finite volume

potentials discretized (via Hamiltonian Equation) \rightarrow spectra wavefunctions: analyse the structure of the eigenstates on the lattice

• finite-volume and infinite-volume results are connected by the coupling constants etc.

We use Hamiltonian effective field theory to analyse the scatterings data at experiment and spectra of lattice QCD which are related to

- N*(1535)
- N*(1440)
- A(1405)

By our analyses, we try to better understand the structures of those resonances and relevant interactions.

Hamiltonian effective field theory study of the $N^*(1535)$ resonance in lattice QCD

 $N^*(1535)$ is the lowest resonance with $I(J^P) = \frac{1}{2}(\frac{1}{2})$.

• One needs to consider the interactions

among the bare baryon N_0^* , πN channel, and ηN channel.

 $N^*(1535)$ is the lowest resonance with $I(J^P) = \frac{1}{2}(\frac{1}{2})$.

• One needs to consider the interactions

among the bare baryon N_0^* , πN channel, and ηN channel.

$$G_{\pi N;N_0^*}^2(k) = \frac{3g_{\pi N;N_0^*}^2}{4\pi^2 f^2} \omega_{\pi}(k)$$
$$V_{\pi N,\pi N}^{\mathcal{S}}(k,k') = \frac{3g_{\pi N}^{\mathcal{S}}}{4\pi^2 f^2} \frac{m_{\pi} + \omega_{\pi}(k)}{\omega_{\pi}(k)} \frac{m_{\pi} + \omega_{\pi}(k')}{\omega_{\pi}(k')}$$

 $N^*(1535)$ is the lowest resonance with $I(J^P) = \frac{1}{2}(\frac{1}{2})$.

• One needs to consider the interactions

among the bare baryon N_0^* , πN channel, and ηN channel.

 $N^*(1535)$ is the lowest resonance with $I(J^P) = \frac{1}{2}(\frac{1}{2})$.

- One needs to consider the interactions among the bare baryon N_0^* , πN channel, and ηN channel.
- Phase shifts and inelasticities

7

 $N^*(1535)$ is the lowest resonance with $I(J^P) = \frac{1}{2}(\frac{1}{2})$.

- One needs to consider the interactions among the bare baryon N_0^* , πN channel, and ηN channel.
- Phase shifts and inelasticities

$$egin{aligned} & T_{lpha,eta}(k,k';E) = V_{lpha,eta}(k,k') + \sum_{\gamma}\int q^2 dq \ & V_{lpha,\gamma}(k,q)rac{1}{E-\sqrt{m_{\gamma_1}^2+q^2}-\sqrt{m_{\gamma_2}^2+q^2}+i\epsilon} \, T_{\gamma,eta}(q,k';E) \end{aligned}$$

 $N^*(1535)$ is the lowest resonance with $I(J^P) = \frac{1}{2}(\frac{1}{2})$.

- One needs to consider the interactions among the bare baryon N_0^* , πN channel, and ηN channel.
- Phase shifts and inelasticities

 $N^*(1535)$ is the lowest resonance with $I(J^P) = \frac{1}{2}(\frac{1}{2})$.

- One needs to consider the interactions among the bare baryon N_0^* , πN channel, and ηN channel.
- Phase shifts and inelasticities

 $N^*(1535)$ is the lowest resonance with $I(J^P) = \frac{1}{2}(\frac{1}{2})$.

- One needs to consider the interactions among the bare baryon N_0^* , πN channel, and ηN channel.
- Phase shifts and inelasticities

3 sets of lattice data at different pion masses and finite volumes

Spectra with $I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$ at finite volumes

3 sets of lattice QCD data at different pion masses and finite volumes Non-interacting energies of the two-particle channels

Spectra with $I(J^P) = \frac{1}{2}(\frac{1}{2})$ at finite volumes

3 sets of lattice QCD data at different pion masses and finite volumes Non-interacting energies of the two-particle channels Eigenenergies of Hamiltonian effective field theory

Spectra with $I(J^P) = \frac{1}{2}(\frac{1}{2})$ at finite volumes

3 sets of lattice data at different pion masses and finite volumes Eigenenergies of Hamiltonian effective field theory Coloured lines indicating most probable states observed in LQCD

Spectra with $I(J^P) = \frac{1}{2}(\frac{1}{2})$ at finite volumes

Components of Eigenstates with $L \approx 3$ fm

- The 1st eigenstate at light quark masses is mainly πN scattering states.
- The most probable state at physical quark mass is the 4th eigenstate. It contains about 60% bare $N^*(1535)$, 20% πN and 20% ηN .

Components of Eigenstates with $L \approx 3$ fm

Lattice Results \rightarrow Experimental Results

- Experimental Data \rightarrow Lattice QCD Data We have shown that.
- Lattice QCD Data \rightarrow Experimental Data We show it here.

 $\label{eq:L} \begin{array}{ll} L\approx 3 \mbox{ fm} & L\approx 2 \mbox{ fm} \\ \mbox{Spectra with } I(J^P)=\frac{1}{2}(\frac{1}{2}^-) \mbox{ and the bare mass is fitted by LQCD data} \end{array}$

By fitting lattice QCD data, the pole for $N^*(1535)$ at infinite volume lies at $1602 \pm 48 - i \ 88.6^{+0.7}_{-2.8}$ MeV. PDG: $1510\pm 20 - i \ 85 \pm 40$.

Effects of Separable Potentials

fit for lattice QCD data

Hamiltonian effective field theory study of the $N^*(1440)$ resonance in lattice QCD

- $N^*(1440)$, usually called Roper, is the excited state $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$
- Naive quark model predicts m_{N*(1440)} > m_{N*(1535)} if they are both dominated by 3-quark core. But contrary to experiment.

To check whether a 3-quark core largely exists in Roper, we consider models

- with a bare Roper
- without any bare baryons
- including the effect of the bare nucleon

$N^*(1440)$ Resonance

- with a bare Roper
- without any bare baryons
- including the effect of the bare nucleon

Results of the Model with a Bare Roper

Spectrum given by the scenario with a bare Roper. $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ and $L \approx 3$ fm.

At low pion masses, the 2nd state contains more than 20% bare Roper, so this state should be observed with a 3-quark interpolating operators on the lattice.

But it is not.

Results of the Model without Bare Baryons

Spectrum given by the scenario without any bare baryon. $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ and $L \approx 3$ fm.

- The lattice data sit on the eigenenergy spectrum of this model;
- ALTHOUGH it is hard to predict which state is easier to observe on the lattice,
- we notice that lattice QCD prefers to extract eigenstates with non-trivial mixing of scattering states.

Including the Effect of the Bare Nucleon

Spectrum given by the scenario with a bare nucleon. $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ and $L \approx 3$ fm.

- The bare nucleon does not affect the spectrum very much compared to the results of the model without any bare baryons;
- We can plot the probability based on the distribution of the bare nucleon;
- It can explain both the experimental data and lattice data.

Our results are verified

interpolating operators: N(0), $N(0)\sigma(0)$, $N(p)\pi(-p)$, $\Delta(p)\pi(-p)$. from Lang, Leskovec, Padmanath, Prelovsek, PRD95 (2017) no.1, 014510. No these two higher states with $N^{-P}(0)\pi(0)$... from CMMS.

Structure of the $\Lambda(1405)$ from Hamiltonian effective field theory

$\Lambda(1405)$ with $K^- p$ scattering

The well-known Weinberg-Tomozawa potentials are used.
 momentum-dependent, non-separable

$\Lambda(1405)$ with K^-p scattering

• The well-known Weinberg-Tomozawa potentials are used.

momentum-dependent, non-separable

$$V_{\alpha,\beta}(k,k') = g_{\alpha,\beta} \frac{\omega_{\alpha_M}(k) + \omega_{\beta_M}(k')}{8\pi^2 t^2 \sqrt{2\omega_{\alpha_M}(k)} \sqrt{\omega_{\beta_M}(k')}}$$

$\Lambda(1405)$ with $K^- p$ scattering

The well-known Weinberg-Tomozawa potentials are used.
 momentum-dependent, non-separable

$\Lambda(1405)$ with K^-p scattering

- The well-known Weinberg-Tomozawa potentials are used. momentum-dependent, non-separable
- We can fit the cross sections of K^-p well

both with and without a bare baryon.

$\Lambda(1405)$ with $K^- p$ scattering

- The well-known Weinberg-Tomozawa potentials are used. momentum-dependent, non-separable
- We can fit the cross sections of $K^- p$ well

both with and without a bare baryon.

• Two-pole structure of $\Lambda(1405)$

1430 - i 22 MeV, 1338 - i 89 MeV

Spectrum on the Lattice

 The bare baryon is important for interpreting the lattice QCD data at large pion masses.

The bare state introduces a new pole for $\Lambda(1670)$ at 1660-30i MeV

 Λ(1405) is mainly a *KN* molecular state containing very little of bare baryon at physical pion mass.

Summary

Extension of the Roper work

- effects of a resonance with bare mass/pole around 2 GeV
- constituent quark model w/ harmonic oscillator potential predicts mass of first radially excited nucleon is approximately 2 GeV

22

We have analysed the scattering data at experiment and the lattice spectra on the lattice relevant to $N^*(1440)$, $N^*(1535)$, and $\Lambda(1405)$ with Hamiltonian effective field theory

- N*(1535) contains a 3-quark core;
- N*(1440) should contain little of 3-quark consistent;
- Λ(1405) is mainly a *KN* molecular state at physical quark mass, while a 3-quark core dominates at large quark masses.

Thanks!

This report is mainly based on the following works:

Phys.Rev. D97 (2018) no.9, 094509 Phys.Rev. D95 (2017) no.1, 014506 Phys.Rev. D95 (2017) no.3, 034034 Phys.Rev.Lett. 116 (2016) no.8, 082004