

Status of the GlueX Experiment: Early results and Future Plans

A. Somov, Jefferson Lab

for the GlueX collaboration

The 11th Workshop on Hadron Physics in China and Opportunities Worldwide, Tianjin, China, August 22 – 28, 2019

Outline

GlueX detector in experimental Hall D and experiments

- linearly polarized photon beam
- main goal: search for exotic hybrid mesons
- GlueX early results
 - prospects for search for hybrid mesons
 - photoproduction of J/ψ close to threshold
 - beam asymmetries of meson production
- > Status of the PrimEx η experiment
- Future detector upgrade
 - study rare decays of η mesons

Hall D Physics Program: Approved Experiments

Name	Days	Detector Upgrade	Target
Mapping the spectrum of light quark mesons and gluonic excitations with Linearly polarized photons	120		LH ₂
A study of meson and baryon decays to strange final states with GlueX in Hall D	220 (200)	PID	LH ₂
A precision measurement of the η radiative decay width via the Primakoff effect	79		LH _{2,} LHe ₄
Measuring the charged pion polarizability	25		Pb
Studying short range correlations with real photon beams at GlueX	15		LHe, LD, C
Eta decays with emphasis on rare neutral modes: The JLab Eta Factory experiment (JEF)		Forward Calorimeter	LH ₂

Hall D Timeline

- GlueX Phase I (low luminosity)
 - Spring 2016: Initial production run 15 pb⁻¹, $E\gamma > 8$ GeV
 - Spring 2017: 53 pb⁻¹
 - Spring / Fall 2018: 153 pb⁻¹ (291 pb⁻¹ in total)
- Spring 2019:
 - Primakoff η experiment (30 % of statistics)
 - Commissioning of DIRC particle ID detector
- GlueX Phase II (high luminosity)
 - Start in the Fall of 2019
 - Increase luminosity by a factor of two (at least 6 times large statistics than in GlueX Phase I)
- Upgrade forward calorimeter: 2023 (?)

Exotic Mesons

Excited gluonic field coupled to a qq pair can result in hybrid mesons with exotic J^{PC}

➢ Predicted by several models. Recent calculations using lattice QCD - constituent gluon with $J^{PC} = 1^{+-}$ and mass 1 - 1.5 GeV

Lattice QCD Predictions

Dudek et al. PRD 88 (2013) 094505

Lattice QCD Predictions

Mass predictions:

- 1^{-+} 2.0 2.4 GeV/c²
- $J^{PC} = 0^{+-} = 2.3 2.5 \text{ GeV/c}^2$
 - 2^{+-} 2.4 2.8 GeV/c²

• Lattice calculations predict light-quark hybrid mesons and mesons with strange quark content

Search Modes of Exotic Decays

J ^{PC}	Exotic Meson	Possible Decays
1 -+	π_1 (1900)	ρπ, $b_1 \pi$, $f_1 \pi$, ηπ, η'π, η a_1
	η ₁ (2100)	f_2 η, a_2 π, η f_1 , ηη', π(1300) π
	$\eta_1'(2300)$	K[*]K , K ₁ (1270) K, K ₁ (1410) K, ηη'
2 +-	b ₂ (2500)	$ωπ$, $a_2π$, $ρη$, $f_1ρ$, $a_1π$, $h_1π$, $b_1η$
	h ₂ (2500)	ρπ, b_1 π, ωη, f_1 ω
	h ₂ '(2600)	$K_1(1270) K, K_1(1410) K, K_2^* K, \phi\eta$
0+-	$b_0(2400)$	$\pi(1300) \pi, h_1\pi, f_1\rho, b_1\eta$
	$h_0(2400)$	$b_1\pi$, $h_1\eta$
	h ₀ ' (2500)	$K_1(1270)$ K, $K_1(1460)$ K, $h_1\eta$

Easy channels, statistics needed, hard

• Search for mesons in many final states

Experimental Status

Exotic mesons have been searched in several experiments: GAMS, VES, CBAR, E852, COMPASS, CLAS

> Exotic Meson Candidate $(J^{PC} = 1^{-+})$

$\pi_1(2000) \to f_1\pi$	
$\pi_1(2000) \rightarrow b_1 \pi$	

Seen by several experiments. Interpretation unclear: dynamic origin, 4-quark state. Not a hybrid (?)

- First seen by VES, E852, COMPASS
- 3π controversial:
 - 3π not seen in photoproduction (CLAS)
- May be a hybrid
- Need more analysis and data
- Seen by E852 (but not seen by VES)
- Statistics is limited
- May be a hybrid

Evidence for Exotic Light-quark Mesons

- Many searches, strongest evidence for π_1 in $\eta'\pi$ and $\eta\pi$ P-waves
- COMPAS data is described by a coupled-channel analysis by Joint Physics Analysis Center (JPAC) Rodas et al. PRL 122, 042002 (2019)

GlueX Detector

- Optimized to detect multi-particle final states
- Hermetic, large/uniform acceptance for charged and neutral particles, good energy and momentum resolution

Polarized Photon Beam

- Beam photons are produced by 12 GeV electrons (I < 1.1 μ A) on a thin diamond crystal (20 – 50 μ m)) • Photon energy: detect bremsstrahlung electrons $\Delta E / E \sim 10^{-3}$
- Pass beam photons through the collimator
 - increase the fraction of linearly polarized photons
 - beam intensity: $5 \cdot 10^7 \gamma$ /sec for 8.4 < E_{γ} < 9.1 GeV

Status of the Search for Exotic Mesons

- 20 % of the recorded GlueX (Phase I) data
- Able to reconstruct well known channels
- Understanding of efficiencies
 and acceptances Is in progress
- PWA analysis:
 - Started looking on the lowest predicted exotic states:
 π₁ (1 ⁻⁺) meson reconstructed in η'π and ηπ modes

Expect more than two times larger statistics than in COMPASS (for GlueX Phase I)

Prospect for Spectroscopy: $y p \rightarrow p + \pi \eta$

Beam Asymmetries

• Measure angular distributions

 $\sigma = \sigma_0 \cdot [1 - \mathsf{P}_{v} \cdot \sum \cdot \cos(2\varphi)]$

for two orientations of the beam polarization

• Asymmetry \sum depends on the production mechanism (naturality)

Beam Asymmetries: $\gamma + p \rightarrow p + \pi^0 / \eta$

First GlueX physics publication PRC 95, 042201 (2017)

- Natural exchange dominates $\Sigma \sim 1$
- Improved measurements
 - increase statistics by a factor of 8
- More papers on asymmetries expected in 2019

Beam Asymmetries: New Measurements

 $\gamma p \rightarrow \pi^{-} \Delta^{++}$

Dominated by pion exchange at small t

B.-G. Yu and K.-J. Kong, PLB 769, 262 (2017)

B.-G. Yu and K.-J. Kong, PLB 769, 262 (2017)

 $\gamma p \rightarrow \eta' p$

J/ψ Production Near Threshold

Production cross section is sensitive to high-x gluon distribution

Brodsky et al., PLB 498 (2002)

leading-twist

Search for the LHCb pentaquark

s-channel production $\gamma + p \rightarrow P_c(4450) \rightarrow J/\psi + p$ at 10.1 GeV

Primary uncertainty in Br (P (4450) \rightarrow J/ ψ + p) assuming VMD

Reconstruction of $J/\psi \rightarrow e^+ e^-$

- Kinematically fit exclusive reaction
- Normalize cross section to the Bethe – Heitler reaction γ p → (e⁺e⁻)p
- Analysis is based on about
 25 % of the collected data

J/\u03c6 Cross Section Measurement

- Cross section measured by SLAC and Cornel in 1975 (E > 11 GeV, inclusive production)
- Three-gluon exchange dominates (shape of the distribution)
- Large gluonic contribution to the proton mass
 Y.Hatta et al, 1906.00894 (2019)

(see talk by Y. Hatta tomorrow)

LHCb Pentaquark

 $\Lambda_b \rightarrow J/\psi \ p \ K^-$

- 3 narrow peaks in the J/ψ p mass spectrum
 - No spin parity identification
 - Several possible descriptions

M [MeV]

 $4311.9 \pm 0.7^{+6.8}_{-0.6}$

 $4440.3 \pm 1.3^{+4.1}_{-4.7}$

 $4457.3 \pm 0.6^{+4.1}_{-1.7}$

 $\Gamma [MeV]$

 $9.8 \pm 2.7^{+ 3.7}_{- 4.5}$

 $20.6 \pm 4.9^{+ \ 8.7}_{-10.1}$

 $6.4 \pm 2.0^{+}_{-}$

(see talk by L. Zhang)

State

 $P_c(4312)^+$

 $P_c(4440)^+$

 $P_{c}(4457)^{+}$

GlueX: Search for Pentaquark States

- GlueX Collaboration, PRL 123, 072001 (2019)
- Model-dependent estimations of Br(Pc \rightarrow J/ ψ p) assuming J^P=3/2⁻, and widths taken from LHCb $P_c(4312) < 4.6\%$ $P_{c}(4440) < 2.3\%$ $P_{c}(4457) < 3.8\%$ upper limits at 90 % CL (JPAC model PRD 94, 034002)

Disfavor hadrocharmonium and some molecular models

Primakoff η **Experiment**

> PrimEx η experiment with the GlueX detector to measure the width $\Gamma(\eta \rightarrow \gamma \gamma)$ using Primakoff process

- collected about 30 % of data in Spring 2019
- two targets: LH₄ and LH₂
- the experiment complements the Primakoff program at Jefferson Lab (measurement of $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ in Hall B)

Primakoff η Experiment

- New liquid He and Be targets
- New Compton Calorimeter
- Use Compton events for:
 - absolute luminosity normalization (Be target)
 - stability monitoring (He target)
- Solenoid field switched off
- Beam energy range if interest 9 GeV – 11.2 GeV
- Collected 30 % of the total statistics
 use LHe target in Spring 2019

The Primakoff Method

- Extract decay width $\Gamma(\eta \rightarrow \gamma \gamma)$ from the measured cross section $d\sigma/d\Omega$
- Use low A targets LH₂ and LHe₄ to control:
 - coherency
 - contributions from nuclear processes

Measurements of $\Gamma(\eta \rightarrow \gamma \gamma)$

- > The partial width $\Gamma(\eta \rightarrow \gamma \gamma)$ was derived from measurements
 - collider experiments in the reaction $e^+e^- \rightarrow e^+e^- \eta$
 - Primakoff production of η mesons
- Some disagreemnts between collider and Primakoff results

Experiments

New PrimEx experiment in Hall D at Jefferson Lab Measure $\Gamma(\eta \rightarrow \gamma \gamma)$ using Primakoff process with the precision of 3.2%

Physics Motivation

> Light quark mass ratio:

• $\Gamma(\eta \rightarrow \gamma \gamma)$ obtained in PrimEx can be used to compute $\Gamma(\eta \rightarrow 3\pi)$

 $\Gamma(\eta \rightarrow 3\pi) = \Gamma(\eta \rightarrow \gamma\gamma) \cdot BR(3\pi) / BR(\gamma\gamma)$

Branching fractions are measured with good precision

• $\eta \rightarrow 3\pi$ is forbidden by isospin symmetry. The quark mass ratio R can be extracted from the width $\Gamma(\eta \rightarrow 3\pi)$

$$R^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \quad \text{where } \hat{m} = \frac{1}{2}(m_u + m_d)$$

Physics Motivation

- Model dependent extraction of the mixing angle
- Uncertainty in the $\Gamma(\eta' \rightarrow \gamma \gamma)$ has less impact on the angle extraction

Reconstruction of Compton Events

- > Measure Compton $\gamma + e \rightarrow \gamma + e$ cross section in the forward direction during physics production runs
- Monitor target thickness and beam flux during production runs (rate of reconstructed events ~ 30 Hz)
- Use Compton for the cross section normalization

$\eta \rightarrow \gamma \gamma$ Angular Distribution

GlueX Upgrade

FCAL

- Upgrade the inner part of the lead glass Forward Calorimeter with the PbWO₄ crystals (FCAL-II)
 - significantly improve detection of multi-photons from η decays
 - allow to study rare decays such as $\eta \rightarrow \pi^0 \gamma \gamma$ in the $\gamma + p \rightarrow \eta + p$ reaction using a beam of tagged photons with the energy between 9 11.7 GeV

Jefferson Lab Eta Factory (JEF)

JEF Project Overview

Mode	Branching Ratio	Physics Highlight	Photons
priority:			
$\pi^0 2\gamma$	Upgrade the F	4	
$\gamma + B$	beyond SM	4	
$3\pi^0$	$(32.6 \pm 0.2)\%$	$m_u - m_d$	6
$\pi^+\pi^-\pi^0$	$(22.7 \pm 0.3)\%$	$m_u - m_d$, CV	2
3γ	$< 1.6 \times 10^{-5}$	CV, CPV	3
ancillary:			
4γ	$<2.8\times10^{-4}$	$< 10^{-11}[112]$	4
$2\pi^0$	$< 3.5 \times 10^{-4}$	CPV, PV	4
$2\pi^0\gamma$	$< 5 imes 10^{-4}$	CV, CPV	5
$3\pi^0\gamma$	$< 6 imes 10^{-5}$	CV, CPV	6
$4\pi^0$	$< 6.9 \times 10^{-7}$	CPV, PV	8
$\pi^0\gamma$	$< 9 imes 10^{-5}$	CV,	3
		Ang. Mom. viol.	
normalization:			
2γ	$(39.3 \pm 0.2)\%$		
			2

Main physics goal:

- Probe interplay of VMD & scalar resonances in ChPT to calculate O(p⁶) LEC's in the chiral Lagrangian
- 2. Search for a dark boson (B)
- 3. Directly constrain CVPC new physics
- 4. Constrain the light quark mass ratio

Impact of $\eta \rightarrow \pi^0 \gamma \gamma$ measurements on ChPT

Unique probe for the high order ChPT: the major contributions to η →π⁰γγ are two O(p⁶) counter-terms in the chiral Lagrangian

L. Ametller, J, Bijnens, and F. Cornet, Phys. Lett., B276, 185 (1992)

- Study contribution of scalar resonances in calculation of O(p⁶) low-energy constants (LEC) in the chiral Lagrangian
- Shape of Dalitz distribution is sensitive to the role of scalar resonances

J.N. Ng, et al., Phys. Rev., D46, 5034 (1992)

Measurements of $\eta \rightarrow \pi^0 \gamma \gamma$

 $\gamma p \rightarrow \eta p \ (\mathbf{E}_{\gamma} = 1.5 \ \mathbf{GeV})$

GAMS (Z. Phys. C25,225, 1985) $\pi p \rightarrow \eta p \quad (\mathbf{E}_{\pi} = \mathbf{30 \ GeV})$

JEF (proposed) $\gamma p \rightarrow \eta p (E_{\gamma} = 9-11.7 \text{ GeV})$

- Smaller background with η energy boost
- Large statistics

Projections for $\eta \rightarrow \pi^0 \gamma \gamma$ Decay

Constrain contribution of scalar resonances in the calculation of $O(p^6)$ low-energy constants

A2 at MAMI arXiv:1405.4904, 2014

35

Search for B boson

• Dark leptophobic B-boson

$$L = \frac{1}{3} g_B \overline{q} \gamma^\mu q B_\mu + \dots$$

• Arises from a new gauge baryon symmetry $U(1)_B$

Early studies by Lee and Yang, Phys.Rev.,98 (1955) 1501; Okun, Yad.Fiz., 10 (1969) 358,

• Unified genesis of baryonic and dark matter

• the $m_B < m_\rho$ region is strongly constrained by long-range forces search exp.; the $m_B > 50 GeV$ has been investigated by the collider experiments

 GeV-scale domain is poorly constrained discovery opportunity!

Search for B-boson in η decay

B production:

A.E. Nelson, N. Tetradis, Phys. Lett., B221, 80 (1989)

$$\eta \rightarrow B\gamma$$
 decay (m_B < m_η)

B decay: $B \rightarrow \pi^0 \gamma$ in 140-600 MeV mass range

Triangle diagram

JEF Experimental Reach $(\eta \rightarrow B\gamma \rightarrow \pi^0 \gamma \gamma)$

A stringent constraint on the leptophobic Bboson in 140-550 MeV range

Summary

GlueX has collected a large sample of photoproduction data

- ▶ First physics results based on 20% of the collected data:
 - measurement of the J/ψ production near threshold
 - measurements of beam asymmetries
- The GlueX detector provides a unique capability to perform a precision measurement of the η radiative decay width using Primakoff reaction
- The PrimEx η experiment collected about 30 % of required data in Spring 2019
- Future upgrade of the GlueX calorimeter will extend the physics potential of GlueX and provide an opportunity to study rare decays of η mesons

Backup Slides

CEBAF Upgrade to 12 GeV

- Upgrade CEBAF energy from 6 GeV to 12 GeV.
- New experimental Hall D with GlueX detector
 - photon beam (linear polarization)

Photoproduction of Exotic Mesons

Exchange particle		Final States	
Р	0 +	0 +- , 2 +-	b ⁰ , h, h'
π^0	0 -	2 +-	b ₂ ⁰ , h ₂ , h ₂ '
π^{\pm}	0 -	1-+	π_1^{\pm}
ω	1 -	1-+	$\pi_1,\eta_1,\ \eta_1'$

□ t-channel exchange

- couple to photoproduction (via Vector Meson Dominance)
- Polarized photon beam helps to determine production mechanism (naturality)

• detect tagged electrons with $E_{\gamma} > 9.2 \text{ GeV}$ during data runs

Photon Flux and Beam Polarization: Pair Spectrometer

Two layers of scintillator detectors:

High-granularity hodoscope (measure photon energy in the range 6 – 12 GeV)

Low-granularity counters (use in the trigger)

• Reconstruct the energy of a beam photon by detecting the e^{\pm} pair produced by the photon in a thin converter

- measure the spectrum of the collimated photon beam
- monitor the photon beam flux
- calibrate energy of tagger detectors

Beam Polarization

- Polarization measurements:
 - triplet production process $e \gamma \rightarrow e^- e^+ e^-$
 - photon beam spectrum
 - physics channel like $\gamma p \rightarrow \rho p$

(Triplet Polarimeter)(Pair Spectrometer, Tagger Microscope)

- Two orthogonal orientations of the polarization plane (radiator orientation)
 - horizontal and perpendicular

GlueX Detector

Tracking:

- Central Drift Chamber
- Forward Drift Chamber

Calorimetry:

- Barrel Calorimeter
- Forward Calorimeter

PID:

- Time of Flight wall
- Start Counter
- Barrel Calorimeter
- DIRC detector

GlueX Detector

Barrel Calorimeter:

- Angular coverage 11° < θ < 120 °
- 191 layers Pb:ScFib:Glue (37:49:14%)
- Double side readout (SiPM)
- $\sigma_{\rm E}$ / E = 6 % / $\sqrt{\rm E} \oplus$ 1.6 %
- σ_z = 5 mm / \sqrt{E}
- σ_t = 74 ps / $\sqrt{E \oplus 33}$ ps

Calorimetry

Forward Calorimeter:

- Angular coverage $2^{\circ} < \theta < 11^{\circ}$
- 2800 Pb-glass blocks: 4cm x 4 cm x 45 cm
- $\sigma_{\rm E}$ / E = 6 % / $\sqrt{\rm E}$ \oplus 2.0 %
- σ_{xy} = 6.4 mm / \sqrt{E}

Kaon Identification

- Install quartz bars (used in BaBar DIRC)
 - improve K/ π separation up to 4.0 GeV/c

Eff = 15 % (no DIRC) Eff = 33 % (with DIRC) purity 95 %

 installation scheduled for spring 2018

Charged Pion Polarizability

- Electric and magnetic dipole polarizabilities are fundamental low-energy properties of strong interactions
- Use Primakoff production $\gamma A \rightarrow \pi^+ \pi^- A$ to extract pion polarizability - *test* χ_{PT} *predictions*
- Use polarized photon beam to reduce background from ρ decays and $\mu^{\!+}\mu^{\!-}$
- Require new muon detector

Charged Pion Polarizability

- $\begin{aligned} \alpha_{\pi} & \text{-} \ \beta_{\pi} \text{=} (\ 5.7 \pm 1.0 \) \ \cdot 10^{\text{--}4} \ fm^3 \\ \alpha_{\pi} & \approx \text{-} \ \beta_{\pi} \end{aligned}$
- Latest measurement of COMPASS $(\pi^-\gamma \rightarrow \pi^-\gamma)$ *PRL 114, 062002 (2015)*
- α_{π} = ($2.0\pm0.6\pm0.7$) $\cdot10$ $^{-4}$ fm^{3} assuming α_{π} = β_{π}
- GlueX expectation

$$\sigma (\alpha_{\pi} - \beta_{\pi}) \sim 0.6 \cdot 10^{-4} \, \text{fm}^3$$

New Calorimeter for GlueX: FCAL-II

FCAL-II (PbWO₄) vs. FCAL (Pb glass)

Property	Improvement factor
Energy σ	2
Position σ	2
Granularity	4
Radiation- resistance	10

- Replace the inner part of FCAL with the PWO insertion:
 - 100x100 cm² in Size (2496 PbWO₄)
 - 2cm x 2cm x 18cm per module

C Invariance

- Maximally violated in the weak force and is well tested
- SM prediction:

BR($\eta \rightarrow 3\gamma$) <10⁻¹⁹ via P-violating weak interaction.

- Study constraints on CVPC from EDM
 - no constraints in the presence of a conspiracy or new symmetry; only the direct searches are unambiguous

M. Ramsey-Musolf, phys. Rev., D63 (2001); <u>talk at the AFCI workshop</u>, studies are in progress

C Violating η neutral decays

Final State	Branching Ratio (upper limit)	Gammas in Final State
3γ	< 1.6•10 ⁻⁵	2
π ⁰ γ	< 9•10 ⁻⁵	3
2π ⁰ γ	< 5 · 10 ⁻⁴	
		5
3γπ ⁰	Nothing published	
3π ⁰ γ	< 6•10 ⁻⁵	7
3γ2π ⁰	Nothing published	•

World competition in η decays

