High Strangeness Dibaryon Search with STAR Data

Jinhui Chen

Shanghai Institute of Applied Physics, CAS

"9th Workshop on Hadron Physics in China and Opportunities Worldwide", July 24-29, 2017, NJU, Nanjing, China

- $\mathbf{M} \mathbf{N} \mathbf{\Omega}$ dibaryon
- **M**Two-particle correlation function
 - $-P\Omega$ correlation function
- Summary and Outlook

- Standard Model: Baryons 3 quarks and Mesons pair of quark-antiquark

1977: within Quark Bag Model, Jaffe predicted H-dibaryon made of six quarks (uuddss) (Phys. Rev. Lett. 38,195 (1977); 38, 617(E)(1977))

Exotic hadrons – long standing challenge in hadron physics

Tetraquark **Meson-Meson molecule**

Hexaguark **Baryon-Baryon molecule**

Pentaquark **Meson-Baryon molecule**

Observation of exotic states @ WASA-at-COSY, Belle, LHCb

STAR

Multi-quark states or molecular states?

Phys. Rev. Lett. 115 (2015) 072001 Phys. Rev. Lett. 112 (2014) 222002 Phys. Rev. Lett. 106 (2011) 242302

Quark content, decay modes and mass of exotic states in strangeness sector:

particle	Mass (MeV)	Quark composition	Decay mode
f _o	980	qqss	ππ
a ₀	980	q q s s	πη
K(1460)	1460	q q q s	Κππ
Λ(1405)	1405	qqq s q	πΣ
Θ ⁺ (1530)	1530	qqq q s	KN
н	2245	uuddss	٨٨
NΩ	2573	qqqsss	ΛΞ
EE	2627	qqssss	ΛΞ
ΩΩ	3228	SSSSSS	$\Lambda K^- + \Lambda K^-$

Phys. Rev. C 84 (2011) 064910, Phys. Rev. C 83 (2011) 015202

Market Recent results on H-dibaryon search:

- STAR Col., Phys. Rev. Lett. 114 (2015) 022301
- ALICE Col., Phys. Lett. B 752 (2016) 267

• Nucleon- Ω (N Ω): A strangeness = -3 dibaryon is stable against strong decay

"...there is no color-magnetic effect and the energies are dominated by modification to the single-quark wave function"

- Phys. Rev. Lett. 59 (1987) 627, Phys. Rev. C69 (2004) 065207, Phys. Rev. C70 (2004) 035204.
- Scattering length, effective range and binding energy (BE) of N Ω -dibaryon:

	Scattering length (a ₀) fm	Effective range (r _{eff}) fm	BE (sc) MeV	BE (cc) MeV
SU(2)	1.87	0.87	23.2	19.6
SU(3)	-4.23	2.1	ub	ub
QDCSM	2.58	0.9	8.1	7.3
HALQCD	-1.28+0.13 ^{0.14} -0.15	0.499+0.026 ^{0.029} -0.048	18.9+5	.0 ^{12.1} -1.8

Phys. Rev. C 83 (2011) 015202, Nucl. Phys. A 928 (2014) 89

Venues for Dibaryon Search

Systematic study of double strangeness systems

STAR

Environment suitable for existence of exotic hadron

NΩ-dibaryon from Heavy-Ion Collisions

 \mathbf{M} N Ω -dibaryon is an isospin 1/2 doublet and has both p Ω and n Ω channels possible

MIn experiments, we can look at $p\Omega$ channel with two particle correlation analysis or invariant mass analysis (the J=2, S=-3 state weakly decay is challenging)

Invariant mass

STAR

Significant combinatorial background in central Au+Au collisions makes exotic particle searches difficult in heavy-ion collisions

STAR

Two Particle Correlation in HIC

STAR

Lambda-Lambda Correlation Function

The STAR Detector at RHIC

Ω Reconstruction (1)

Reconstructed invariant mass of $\Omega + \overline{\Omega}$

Proton Identification with TPC+TOF

Excellent PID with TPC+TOF

- ✓ Number of fit points > 15
- ✓ Ratio of fit points to possible points > 0.52
- ✓ p_T cut for proton tracks > 0.15 GeV/c
- DCA < 0.5 cm

STAR

• $0.75 < m^2 < 1.1 (GeV/c^2)^2$

With proton and anti-proton S/(S+B) ~ 99%

STAR Few Definitions and Corrections

Step-I Raw correlations

$$\mathbf{C}(\mathbf{k^*}) = \frac{P(p_a, p_b)}{P(p_a)P(p_b)} = \frac{real \ pairs}{mixed \ pairs}$$

n - momentum of particles a and b

p – momentum of particles a and
Q – relative momentum

Step-II Purity correction

$$CF_{corrected} (k^*) = \frac{CF_{measured} (k^*) - 1}{PP (k^*)} + 1$$

 $PP(k^*) = P(\Omega) \times P(p)$ is pair purity.

 $P(\Omega) = S/(S+B)*Fr(\Omega)$ and P(p) = S/(S+B)*Fr(p)where Fr(x) is Fraction of primary particles

 $Fr(\Omega) = 1$ and Fr(p) = 0.52Step-III Momentum smearing

CF (k*) = CF(k*) $\frac{CF_{nosmearing}}{CF_{smearing}}$

Smearing correction factor is 0.99

PΩ Correlation Function

 $R \rightarrow$ Emission source size

STAR

Boxes → systematic uncertainty

Comparison of measured P Ω correlation function from 0-40 and 40-80% centrality with the predictions for P Ω interaction potentials V_I, V_{II} and V_{III}.

Phys. Rev. C 94, 031901 (2016)

STAR Proposal on Source Size Dependence Analysis

M The ratio of the correlation function between the small and large collision system is insensitive to the Coulomb interaction and also to the source model of the emission, thus it provides a useful measure to extract the strong interaction part of the p Ω attraction from experiments at RHIC/LHC

STAR Source Size Analysis on PΩ Correlation Function

The ratio of correlation function between small and large collision systems for the background is unity within uncertainties.

The ratio of correlation function between small and large collision systems at low k* is lower than background.

Spin-2 p Ω potentials	V	V _{II}	V _{III}
Binding energy E _B (MeV)	-	6.3	26.9
Scattering length a_0 (fm)	-1.12	5.79	1.29
Effective range r _{eff} (fm)	1.16	0.96	0.65

Phys. Rev. C 94, 031901 (2016)

 \mathbf{M} Present the 1st measurement of correlation function for PΩ from Au+Au collisions @ 200 GeV

The ratio of correlation function for the small (peripheral collisions) to the large (central collisions) system is smaller than unity at low k*

The measured ratio of correlation function from peripheral to central collisions is compared with predictions based on the PΩ interaction potentials derived from lattice QCD simulations

STAR Major Upgrades before 2020

MiTPC Upgrade:

- Rebuilds the inner sectors of the TPC
- Continuous Coverage
- Improves dE/dx
- Extends η coverage from 1.0 to 1.5
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c

EPD Upgrade:

- Allows a better and independent reaction plane measurement critical to BES physics
- Improves trigger
- Reduces background

Status of the Inner TPC Upgrade

SAMPA FEE (MWP2)

- 2FEEs and RDO installed on one inner most row of TPC
- Running through USB port with beam
- Design and producing pre-production RDO and FEE to instrument one Full sector for tests in fall

Sectors (strongback + padplane + MWPC)

- Precision assembly at LBL of padplane to strongbacks and sidemounts ongoing
- Sector production started at SDU (3 completed, testing ongoing) with first fully tested sectors expected to be installed in STAR in October

Mage: Insertion tool

 Completed at UIC and currently being commissioned at BNL

SAMPA is well behaved

Thank You for Your Attention!

STAR Proposal on source size dependence analysis

The ratio of correlation function between small and large collision systems to extract strong p-Omega interaction w/o much contamination from Coulomb interaction.

100 0 -100 -200 -300 -400 -500 HAL QCD data V, ٧u -500 -600 VIII -700 Coulomb -800 0.2 0 0.4 0.6 0.8 1 1.2 1.4 1.6 r [fm]

TABLE I: The binding energy $(E_{\rm B})$, the scattering length (a_0) and the effective range $(r_{\rm eff})$ with and without the Coulomb attraction in the $p\Omega$ system. Physical masses of the proton and Ω are used.

Spin-2 $N\Omega$ Potentials		$V_{\rm I}$	$V_{\rm II}$	$V_{\rm III}$
without Coulomb	$E_{\rm B} [{\rm MeV}]$	-	0.05	24.8
	a_0 [fm]	-1.0	23.1	1.60
	$r_{\rm eff}$ [fm]	1.15	0.95	0.65
with Coulomb	$E_{\rm B} [{\rm MeV}]$	-	6.3	26.9
	a_0 [fm]	-1.12	5.79	1.29
	$r_{\rm eff}$ [fm]	1.16	0.96	0.65

0.5

7

6

Morita etc. arXiv:1605.06765

1.6