High Strangeness Dibaryon Search with STAR Data

Jinhui Chen

Shanghai Institute of Applied Physics, CAS
"9th Workshop on Hadron Physics in China and
Opportunities Worldwide", July 24-29, 2017, NJU, Nanjing, China

Outline

VIntroduction
छ $\mathrm{V} \Omega$ dibaryon
■ Two-particle correlation function
$-P \Omega$ correlation function
(ISummary and Outlook

Introduction (1)

(V) Standard Model: Baryons - 3 quarks and Mesons - pair of quark-antiquark

I] 1977: within Quark Bag Model, Jaffe predicted H-dibaryon made of six quarks (uuddss) (Phys. Rev. Lett. 38,195 (1977); 38, 617(E)(1977))

I] Exotic hadrons - long standing challenge in hadron physics

Tetraquark
Meson-Meson molecule

Hexaquark
Baryon-Baryon molecule

V Observation of exotic states @ WASA-at-COSY, Belle, LHCb

\square Multi-quark states or molecular states?

Phys. Rev. Lett. 115 (2015) 072001
Phys. Rev. Lett. 112 (2014) 222002
Phys. Rev. Lett. 106 (2011) 242302

Exotics in Strangeness Sector

Quark content, decay modes and mass of exotic states in strangeness sector:

particle	Mass (MeV)	Quark composition	Decay mode
f_{0}	980	$q \bar{q} \mathrm{~s} \bar{s}$	$\pi \pi$
a_{0}	980	$q \bar{q} s \bar{s}$	$\pi \eta$
K(1460)	1460	$q \bar{q} q \bar{s}$	K $\pi \pi$
$\Lambda(1405)$	1405	qqq s \bar{q}	$\pi \Sigma$
$\Theta^{+}(1530)$	1530	q9q ${ }^{\text {¢ }}$ s	KN
H	2245	uuddss	\
$N \Omega$	2573	qqqsss	
E $\underbrace{\square}$	2627	qqissss	$\Lambda \Xi$
$\Omega \Omega$	3228	SSSSSS	$\Lambda \mathbf{K}^{-}+\Lambda \mathbf{K}^{-}$

Phys. Rev. C 84 (2011) 064910, Phys. Rev. C 83 (2011) 015202
■ Recent results on H -dibaryon search:

- STAR Col., Phys. Rev. Lett. 114 (2015) 022301
- ALICE Col., Phys. Lett. B 752 (2016) 267

$N \Omega$ Dibaryon

- Nucleon- Ω (N Ω): A strangeness = -3 dibaryon is stable against strong decay
"...there is no color-magnetic effect and the energies are dominated by modification to the single-quark wave function"
- Phys. Rev. Lett. 59 (1987) 627, Phys. Rev. C69 (2004) 065207, Phys. Rev. C70 (2004) 035204.
- Scattering length, effective range and binding energy (BE) of $\mathbf{N} \Omega$-dibaryon:

	Scattering length $\left(\mathrm{a}_{0}\right) \mathrm{fm}$	Effective range $\left(\mathrm{r}_{\text {eff }}\right) \mathrm{fm}$	$\mathrm{BE}(\mathrm{sc})$ MeV	$\mathrm{BE}(\mathrm{cc})$ MeV
SU(2)	1.87	0.87	23.2	19.6
SU(3)	-4.23	2.1	ub	ub
QDCSM	2.58	0.9	8.1	7.3
HALQCD	$-1.28+0.13^{0.14}$	$0.499+0.026^{0.029}$	-0.048	$18.9+5.0^{12.1}$

Phys. Rev. C 83 (2011) 015202, Nucl. Phys. A 928 (2014) 89

STAR

Venues for Dibaryon Search

I Systematic study of double strangeness systems

STAR
 N Ω-dibaryon from Heavy-Ion Collisions

I $\mathrm{N} \Omega$-dibaryon is an isospin $1 / 2$ doublet and has both $\mathrm{p} \Omega$ and $\mathrm{n} \Omega$ channels possible

[In experiments, we can look at $\mathrm{p} \Omega$ channel with two particle correlation analysis or invariant mass analysis (the $\mathrm{J}=2, \mathrm{~S}=-3$ state weakly decay is challenging)

- Invariant mass

- Significant combinatorial background in central Au+Au collisions makes exotic particle searches difficult in heavy-ion collisions

Two Particle Correlation in HIC

I/Baryon interaction via two particle correlation

$$
C_{A B}(Q)=\frac{N_{A B}^{\mathrm{pair}}\left(k_{A}, k_{B}\right)}{N_{A}\left(k_{A}\right) N_{B}\left(k_{B}\right)}
$$

Lambda-Lambda Correlation Function

STAR Col. Phys. Rev. Lett. 114, 022301 (2015)

VIAll model fits to data suggest that a rather weak interaction is present between $\Lambda \Lambda$ pairs

$$
\begin{aligned}
& \text { n-n } \rightarrow \text { Phys. Lett. B, } 80(1979) 187 \\
& \text { p-n } \rightarrow \text { Phys. Rev. C 66, 047001 (2002) } \\
& \text { p-p } \rightarrow \text { Mod. Phys. } 39(1967) 584 \\
& \text { p- } \Lambda \rightarrow \text { Phys. Rev. Lett. 83, } 3138 \text { (1999) } \\
& \Lambda \Lambda \rightarrow \text { Phys. Rev. C 66, 024007(2002) } \\
& \Lambda \Lambda \rightarrow \text { Nucl. Phys. A } 707 \text { (2002) } 491
\end{aligned}
$$

The STAR Detector at RHIC

Ω Reconstruction (1)

$A u+A u V_{s}=200 \mathrm{GeV}$ (1.41 B events)
$\Omega \rightarrow \Lambda K$ (Mass $=1.672 \mathrm{GeV} / \mathrm{c}^{2}$)
Branching ratio $=67.8 \%$
Mean Life time: $\tau=0.82 \times 10^{-10} \mathrm{~s}$
$\mathbf{c} \tau=2.46 \mathrm{~cm}$

Reconstructed Ω

Ω Reconstruction (2)

Reconstructed invariant mass of $\Omega+\bar{\Omega}$

STAR
 Proton Identification with TPC+TOF

Excellent PID with TPC+TOF

\checkmark Number of fit points >15
\checkmark Ratio of fit points to possible points >0.52
$\checkmark \mathrm{p}_{\mathrm{T}}$ cut for proton tracks $>0.15 \mathrm{GeV} / \mathrm{C}$

- DCA $<0.5 \mathrm{~cm}$
- $0.75<\mathrm{m}^{2}<1.1\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{2}$

Particle identification

With proton and anti-proton S/(S+B) ~ 99\%

STAR Few Definitions and Corrections

Step-I Raw correlations

$$
\mathbf{C}\left(\mathbf{k}^{*}\right)=\frac{P\left(p_{a}, p_{b}\right)}{P\left(p_{a}\right) P\left(p_{b}\right)}=\frac{\text { real pairs }}{\text { mixed pairs }}
$$

p - momentum of particles a and b
Q - relative momentum
Step-II Purity correction

$$
C F_{\text {corrected }}\left(\mathrm{k}^{\star}\right)=\frac{C F_{\text {measured }}\left(\mathrm{k}^{*}\right)-1}{P P\left(\mathrm{k}^{*}\right)}+1
$$

$P P\left(k^{*}\right)=P(\Omega) \times P(p)$ is pair purity.
$P(\Omega)=S /(S+B) * F r(\Omega)$ and $P(p)=S /(S+B) * \operatorname{Fr}(p)$ where $\operatorname{Fr}(\mathrm{x})$ is Fraction of primary particles
$\operatorname{Fr}(\Omega)=1$ and $\operatorname{Fr}(\mathrm{p})=0.52$
Step-III Momentum smearing

$$
C F\left(\mathrm{k}^{*}\right)=\mathrm{CF}\left(\mathrm{k}^{*}\right) \frac{C F_{\text {nosmearing }}}{C F_{\text {smearing }}}
$$

Smearing correction factor is 0.99

$P \Omega$ Correlation Function

PP \rightarrow Pair Purity Correction
PP+SC \rightarrow Pair Purity + Mom. Smearing Correction $R \rightarrow$ Emission source size
Boxes \rightarrow systematic uncertainty
Comparison of measured $\mathrm{P} \Omega$ correlation function from 0-40 and 40$80 \%$ centrality with the predictions for $\mathrm{P} \Omega$ interaction potentials $\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{II}}$ and

Spin-2 $\mathrm{p} \Omega$ potentials	V_{I}	V_{II}	$\mathrm{V}_{\mathrm{III}}$
Binding energy $\mathrm{E}_{\mathrm{B}}(\mathrm{MeV})$	-	6.3	26.9
Scattering length $\mathrm{a}_{0}(\mathrm{fm})$	-1.12	5.79	1.29
Effective range $\mathrm{r}_{\text {eff }}(\mathrm{fm})$	1.16	0.96	0.65

[^0]
STAR Proposal on Source Size Dependence Analysis

\square The ratio of the correlation function between the small and large collision system is insensitive to the Coulomb interaction and also to the source model of the emission, thus it provides a useful measure to extract the strong interaction part of the $\mathrm{p} \Omega$ attraction from experiments at RHIC/LHC

sTAR Source Size Analysis on $\mathrm{P} \Omega$ Correlation Function

The ratio of correlation function between small and large collision systems for the background is unity within uncertainties.

The ratio of correlation function between small and large collision systems at low k^{*} is lower than background.

SS \rightarrow Static source ES \rightarrow Expanding source
Background $\rightarrow \boldsymbol{\Omega}$ sideband is used Boxes \rightarrow systematic uncertainty

Spin-2 $\mathrm{p} \Omega$ potentials	V_{I}	V_{II}	$\mathrm{V}_{\text {III }}$	
Binding energy $\mathrm{E}_{\mathrm{B}}(\mathrm{MeV})$	-	6.3	26.9	
Scattering length $\mathrm{a}_{0}(\mathrm{fm})$	-1.12	5.79	1.29	
Effective range $\mathrm{r}_{\text {eff }}(\mathrm{fm})$	1.16	0.96	0.65	
Phys. Rev. C 94, 031901 (2016)				

Summary

V/Present the 1st measurement of correlation function for $\mathrm{P} \Omega$ from Au+Au collisions @ 200 GeV

IVThe ratio of correlation function for the small (peripheral collisions) to the large (central collisions) system is smaller than unity at low k^{*}
\square The measured ratio of correlation function from peripheral to central collisions is compared with predictions based on the $\mathrm{P} \Omega$ interaction potentials derived from lattice QCD simulations

STAR Major Upgrades before 2020

ViTPC Upgrade:

- Rebuilds the inner sectors of the TPC
- Continuous Coverage
- Improves dE/dx
- Extends η coverage from 1.0 to 1.5
- Lowers $\mathrm{p}_{\text {т }}$ cut-in from $125 \mathrm{MeV} / \mathrm{c}$ to $60 \mathrm{MeV} / \mathrm{c}$

VIEPD Upgrade:

- Allows a better and independent reaction plane measurement critical to BES physics
- Improves trigger
- Reduces background

Status of the Inner TPC Upgrade

- ${ }^{-1}$ SAMPA FEE (MWP2)

-2 FEEs and RDO installed on one inner most row of TPC

- Running through USB port with beam
- Design and producing pre-production RDO and FEE to instrument one Full sector for tests in fall

I Sectors (strongback + padplane + MWPC)

- Precision assembly at LBL of padplane to strongbacks and sidemounts ongoing
- Sector production started at SDU (3 completed, testing ongoing) with first fully tested sectors expected to be installed in STAR in October
[Insertion tool
- Completed at UIC and currently being commissioned at BNL

Thank You for Your Attention!

STARProposal on source size dependence analysis

The ratio of correlation function between small and large collision systems to extract strong p-Omega interaction w/o much contamination from Coulomb interaction.
Morita etc. arXiv:1605.06765

TABLE I: The binding energy $\left(E_{\mathrm{B}}\right)$, the scattering length $\left(a_{0}\right)$ and the effective range ($r_{\text {eff }}$) with and without the Coulomb attraction in the $p \Omega$ system. Physical masses of the proton and Ω are used.

Spin-2 $N \Omega$ Potentials				V_{I}
	$V_{\text {II }}$	$V_{\text {III }}$		
	$E_{\mathrm{B}}[\mathrm{MeV}]$	-	0.05	24.8
	$a_{0}[\mathrm{fm}]$	-1.0	23.1	1.60
	$r_{\text {eff }}[\mathrm{fm}]$	1.15	0.95	0.65
	$E_{\mathrm{B}}[\mathrm{MeV}]$	-	6.3	26.9
with Coulomb	$a_{0}[\mathrm{fm}]$	-1.12	5.79	1.29
	$r_{\text {eff }}[\mathrm{fm}]$	1.16	0.96	0.65

[^0]: Phys. Rev. C 94, 031901 (2016)

