Beam/Detecto

Data Taking

First Physics

GlueX a search for gluonic degrees of freedom in mesons.

Benedikt Zihlmann TJNAF

July 21, 2017

Nanjing 2017 1 / 24

Beam/Detecto

Data Taking

First Physics

QCD and Hadron Spectroscopy

- Visible universe: Mostly Hadrons
- Quark model: mesons, baryons *qq*, *qqq*

Beam/Detector

Data Taking

First Physics

QCD and Hadron Spectroscopy

- Visible universe: Mostly Hadrons
- Quark model: mesons, baryons *qq*̄, *qqq*
- Hadron mass is mostly dynamic
- QCD, underlying theory of quark interactions

Nanjing 2017 2/24

Beam/Detecto

Data Taking

First Physics

Light Meson Spectroscopy

2-fermion system: $q\overline{q}$ Spectroscopy: ^(2S+1)L_J

S=Spin, 0 or 1 L=Orbital Momentum, 0,1,2,... J=Total Orbital Momentum, 0,1,2,... J^{--} and J^{++} C = P =>S = 1

J^{PC} Quantum Numbers

- Parity = $(-1)^{L+1}$
- Charge Conjugation = $(-1)^{L+S}$
- Spin = J = |L S|, L, L + S
- Vacuum = ${}^{3}P_{0} = 0^{++}$

Quark Degrees of Freedom ONLY

Beam/Detecto

Data Taking

First Physics

Light Meson Spectroscopy

.IPC

2-fermion system: $q\overline{q}$ Spectroscopy: ${}^{(2S+1)}L_J$

S=Spin, 0 or 1 L=Orbital Momentum, 0,1,2,... J=Total Orbital Momentum, 0,1,2,... J^{--} and J^{++} C = P =>S = 1

J^{PC} Quantum Numbers

- Parity = $(-1)^{L+1}$
- Charge Conjugation = $(-1)^{L+S}$
- Spin = J = |L S|, L, L + S
- Vacuum = ${}^{3}P_{0} = 0^{++}$

Quark Degrees of Freedom ONLY

Mesons with exotic quantum numbers?

HYBRID-Meson $q\bar{q}$ with constituent gluon($J^{PC} = 1^{+-}, 1^{--}$):

$$S = 0, L = 0, m = 1$$

Introduction 000000

> $J^{PC} = 1^{--}, 1^{+-}$ non exotic states exotic states require *S* or $L \neq 0$

$$S = 1, L = 0, m = 1$$

$$J^{PC} = 0^{-+} 0^{++}$$

$$1^{-+} 1^{++}$$

$$2^{-+} 2^{++}$$

J^{PC} Exotic quantum numbers are

a signature for exotic mesons such as Glueball, qq-qq Molecule or Hybrid Mesons

GlueX: Search for hybrid mesons with exotic quantum numbers

Beam/Detecto

Data Taking

First Physics

Conclusion o GLUE

Hybrid Meson Mass Estimates

Lattice calculations predict exotic J^{PC} states

Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)

6/24

Beam/Detecto

Data Taking

First Physics

Hybrid Meson Production

Pion Beam on Hydrogen

- π with S=0, L=0 and Δ m=1 1⁺⁺, 1⁻⁻
- Require spin flip
- E852, GAMS, KEK, VES, COMPASS

Nanjing 2017 7/24

Beam/Detecto

Data Taking

First Physics

Hybrid Meson Production

Pion Beam on Hydrogen

• π with S=0, L=0 and Δ m=1 1⁺⁺, 1⁻⁻

- Require spin flip
- E852, GAMS, KEK, VES, COMPASS

Compass result on $\eta'\pi^-$ final state:

Nanjing 2017 7 / 24

Beam/Detecto

Data Taking

First Physics

Hybrid Meson Production

Pion Beam on Hydrogen

- π with S=0, L=0 and Δ m=1 1⁺⁺, 1⁻⁻
- Require spin flip
- E852, GAMS, KEK, VES, COMPASS

Photon Beam on Hydrogen

- γ with S=1, L=0 and Δ m=1 0⁻⁺, 0⁺⁻, 1⁻⁺, 1⁺⁻, 2⁻⁺, 2⁺⁻
- No spin flip required
- photon linearly polarized
- CLAS, Omega-Photon Coll.
- GlueX

Beam/Detector

Data Taking

First Physics

Jefferson Lab

GlueX Hall D

Where is Thomas Jefferson Lab and CEBAF?

Nanjing 2017 8/24

Beam/Detector 0000

Data Taking

First Physics

GlueX Hall D

CEBAF Accelerator site:

Nanjing 2017 8/24

Beam/Detector

Data Taking

First Physics

Conclusion O

GlueX Hall D

Nanjing 2017 8/24

- *e*⁻(12GeV/c) beam
- 20µm thick diamond radiator
- Coherent Bremsstrahlung

- 76m Photon beam line for collimation.
- 40% polarization at 9 GeV
- Hall-D beam dump for photons only!

- $20\mu m$ thick diamond radiator
- 76 m flight path to collimator
- 40% polarization at peak (9GeV)
- $10^8 \gamma/s$ at 8.4-9.0 GeV
- Fixed Array Hodoscope 3-11.7 GeV
- Microscope 800 MeV coverage

Nanjing 2017 10/24

Magnet, Target

- Solenoid (hermiticity)
- Super-conducting
- 2 Tesla
- LH₂ target

The GlueX Detector

Tracking Chambers CDC Straw tube chamber dE/dx for PID •

- FDC
- Cathode strips $\delta p/p \sim 1-2\%$

Nanjing 2017 11/24

118.1⁰ Calorimetry 126.4⁰ **Barrel Calorimeter** Scin. fiber/lead 185cm • $\delta E/E = 5.4/\sqrt{E} \oplus 2.3\%$ **Forward Calorimeter** Lead glass • $\delta E/E = 5.7/\sqrt{E} \oplus 2.0\%$ 342cm 48cm 560cm 30cm-Target Ŧ.

- 14.70

10.89

The GlueX Detector

- Solenoid, Target
- Tracking
- Calorimetry
- Timing
- Future PID \rightarrow DIRC

Beam/Detecto

Data Taking

First Physics

Running periods

- Spring 2016: 12 GeV Engineering run
 - Electron Beam Energy: 12.05 GeV
 - Commissioning complete: Detector, Beamline, DAQ
 - Data taken for early physics results: ~26 billion events, ~7 billion with good quality
- Spring 2017: GlueX Phase-I, first part
 - Electron Beam Energy: 11.64 GeV
 - $58\mu m$ diamond radiator
 - DAQ trigger rate 30-50 kHz
 - Exceeded nominal luminosity
 - Accumulated ${\sim}50$ billion events (20%)
- October 2017: Continue GlueX Phase-I

Beam/Detecto

Data Taking

First Physics

Calorimeter Resolutions

FCAL and BCAL Energy resolution with π^0 :

Beam/Detecto

Data Taking

First Physics

Photon Beam Polarization

Triplet Polarimeter: $\gamma e^- \rightarrow e^- e^+ e^-$

 $N_{||} \propto A(\phi)(1 - \mathbf{P}\Sigma\cos(2(\phi - \phi_o)))$

Polarization: $P(E_{\gamma})$

Nanjing 2017 15/24

 \rightarrow A road map to search for exotic mesons in GlueX.

Nanjing 2017 17/24

Jefferson Lab Photo-production of Pseudo-scalar Mesons

- PRD 92 (2015) 074013 $\Sigma = \frac{|\omega + \rho|^2 - |b + h|^2}{|\omega + \rho|^2 + |b + h|^2}$
- Beam asymmetry sensitive to nature of exchange particles
- $\Sigma \approx +1 \Rightarrow$ vector meson dominance

First GlueX Physics Result

Azimuthal Beam Asymmetries in π^0 and η production: Published: H. Al Ghoul, et al., Phys. Rev. C 95, 042201 (2017)

- Both π^0 and η asymmetries close to +1
- No dip observed at $t = -0.5 (\text{GeV/c})^2$
- First measurement on η asymmetries
- $\Sigma \approx +1 \Rightarrow$ vector meson exchange dominates

Nanjing 2017 20/24

First Physics 00000000

The ω , Beam Asymmetry

π⁰

Hadronic ω

Radiative ω

- Radiative/Hadronic ω decay
- $A^{\pi^{o}\gamma} = -\frac{1}{2}P\cos(2(\Phi-\phi))$
- $A^{3\pi} = P \cos(2(\Phi \phi))$
- Beam Asymmetry Ratio $R = \frac{\Sigma_{3\pi}}{\Sigma_{\pi^o \gamma}}$
- Expect: *R* = −2 PRC 78 (2008) 038201

Beam/Detecto

Data Taking

First Physics

The ω , Beam Asymmetry

- Radiative/Hadronic ω decay
- $A^{\pi^o\gamma} = -\frac{1}{2}P\cos(2(\Phi-\phi))$
- $A^{3\pi} = P \cos(2(\Phi \phi))$
- Beam Asymmetry Ratio $R = rac{\Sigma_{3\pi}}{\Sigma_{\pi^o\gamma}}$
- Expect: R = -2 PRC 78 (2008) 038201
- Measured: $R = -1.88 \pm 0.13$

Nanjing 2017 21/24

First Physics

The ω , Beam Asymmetry

- Radiative/Hadronic ω decay
- $A^{\pi^o\gamma} = -\frac{1}{2}P\cos(2(\Phi-\phi))$
- $A^{3\pi} = P \cos(2(\Phi \phi))$
- Beam Asymmetry Ratio $R = rac{\Sigma_{3\pi}}{\Sigma_{\pi^o\gamma}}$
- Expect: R = -2 PRC 78 (2008) 038201
- Measured: $R = -1.88 \pm 0.13$

Jefferson Lab

- Determine Detector Acceptance
- Determine Detector Efficiencies
- Extract Cross Sections, $\frac{d\sigma}{dt}$
- Determine SDMEs for ρ, ω, ϕ

Beam/Detecto

Data Taking

First Physics

J/ψ Photo Production

- Study J/ ψ -nucleon interaction
- Probe gluon in the nucleon
- Probe multi-quark correlations

J/ψ Photo Production

- Study J/ψ-nucleon interaction
- Probe gluon in the nucleon
- Probe multi-quark correlations
- N-gluon exchange

Nanjing 2017 22/24

Beam/Detector

Data Taking

First Physics

Conclusion O GLUE

J/ψ Photo Production

- Study J/ ψ -nucleon interaction
- Probe gluon in the nucleon
- Probe multi-quark correlations
- N-gluon exchange
- GlueX Range 12 GeV max

Nanjing 2017 22/24

Beam/Detecto

Data Taking

First Physics

J/ψ Photo Production

- Study J/ψ-nucleon interaction
- Probe gluon in the nucleon
- Probe multi-quark correlations
- N-gluon exchange
- GlueX Range 12 GeV max
- LHCb reports J/ψp pentaquark candidate
- PRL 115, 072001 (2015)

Beam/Detecto

Data Taking

First Physics

J/ψ Photo Production

s-channel production in GlueX:

- Study J/ ψ -nucleon interaction
- Probe gluon in the nucleon
- Probe multi-quark correlations
- N-gluon exchange
- GlueX Range 12 GeV max
- LHCb reports J/ψp pentaquark candidate
- PRL 115, 072001 (2015)
- P_c at $E_{\gamma_{beam}} \sim 10~GeV$

Nanjing 2017 22/24

First Physics

J/ψ at GlueX a first look

J/ψ cross section as function of $E_{\gamma_{beam}}$

Plan: Combine 2016/2017 data sets \rightarrow upper limit to P_c photo-production

Beam/Detecto

Data Taking

First Physics

Conclusions

- Successfully commissioned HallD beam line and GlueX detector
- First GlueX publication: Phys. Rev. C 95, 042201 (2017) beam asymmetries for π^{0} and η
- GlueX physics program started: 20% complete (Phase-I)
- Data analysis underway to reach cross sections and SDMEs
- Next data taking period Fall 2017
- Other experiments in HallD:
 a) η Radiative Decay Width via the Primakoff Effect
 b) Charged Pion Polarizability in the γγ → π⁺π⁻ Reaction
 c) Meson and baryon decays to strange final states
 - d) Rare η decay channels