Latest on the Proton Charge Radius from the PRad Experiment

Haiyan Gao

Duke University and Duke Kunshan University

Lepton scattering: powerful microscope!

- Clean probe of hadron structure
- Electron (lepton) vertex is well-known from QED
- One-photon exchange dominates, *higher-order* exchange diagrams are suppressed (two-photon physics)
- Vary the wave-length of the probe to view deeper inside

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E^2 \sin^4 \frac{\theta}{2}} \frac{E'}{E} \left(\frac{G_E^2 + \tau G_M^2}{1 + \tau} \cos^2 \frac{\theta}{2} + 2\tau G_M^2 \sin^2 \frac{\theta}{2} \right) \qquad \tau = -q^2 / 4M^2$$

2

What is inside the proton/neutron?

1933: Proton's magnetic moment

Nobel Prize In Physics 1943

Otto Stern

Richard E. Taylor

1960: Elastic e-p scattering

Nobel Prize In Physics 1961

Robert Hofstadter

"for ... and for his discovery of the magnetic moment of the proton".

 $q \neq 2$

"for ... and for his thereby achieved discoveries concerning the structure of the nucleons"

Form factors \rightarrow Charge distributions

1969: Deep inelastic e-p scattering

Nobel Prize in Physics 1990 Jerome I. Friedman, Henry W. Kendall,

"for their pioneering investigations concerning deep inelastic scattering of electrons on protons ...". Jian-Wei Qiu

1974: QCD Asymptotic Freedom

Nobel Prize in Physics 2004 David J. Gross, H. David Politzer. Frank Wilczek

"for the discovery of asymptotic freedom in the theory of the strong 3 interaction".

Proton Charge Radius

- An important property of the nucleon
 - Important for understanding how QCD works
 - Challenge to Lattice QCD (exciting new results, Alexandrou et al.)
 - An important physics input to the bound state QED calculations, affects muonic H Lamb shift $(2S_{1/2} 2P_{1/2})$ by as much as 2%
- Electron-proton elastic scattering to determine electric form factor (Nuclear Physics)

$$\sqrt{\langle r^2 \rangle} = \sqrt{-6 \frac{dG(q^2)}{dq^2}} |_{q^2=0}$$

- Spectroscopy (Atomic physics)
 - Hydrogen Lamb shift
 - Muonic Hydrogen Lamb shift

Proton Charge Radius Puzzle

- p Lamb shift measurements by CREMA (2010, 2013)
 - Unprecedented precision, <0.1%

Unpolarized electron-nucleon scattering (Rosenbluth Separation)

• Elastic e-p cross section

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \cos^2 \frac{\theta}{2}}{4E^2 \sin^4 \frac{\theta}{2}} \frac{E'}{E} \left(\frac{G_E^{p^2} + \tau G_M^{p^2}}{1 + \tau} + 2\tau G_M^{p^2} \tan^2 \frac{\theta}{2} \right)$$
$$= \sigma_M f_{rec}^{-1} \left(A + B \tan^2 \frac{\theta}{2} \right)$$

- At fixed Q², fit $d\sigma/d\Omega$ vs. $tan^{2}(\theta/2)$
 - Measurement of absolute cross section
 - Dominated by either G_E or G_M
 - Low Q^2 by G_E
 - High Q^2 by G_M

 G_F or G_M

 $\varepsilon = (1 + 2(1 + \tau) \tan \theta)$

Electron-proton elastic scattering with longitudinally polarized electron beam and recoil proton polarization measurement

 G_E^p

 \overline{G}_{M}^{p}

Polarization Transfer

Recoil proton polarization

- Focal Plane Polarimeter
 - recoil proton scatters off secondary ¹²C target
 - $\begin{array}{ll} & \mathsf{P}_{\mathsf{t}}, \, \mathsf{P}_{\mathsf{l}} \text{ measured from} \\ \phi \text{ distribution} \end{array}$
 - P_b, and analyzing power cancel out in ratio

Focal-plane polarimeter

Asymmetry Super-ratio Method Polarized electron-polarized proton elastic scattering

• Polarized beam-target asymmetry

 $A_{exp} = P_b P_t \frac{-2\tau v_{T'} \cos \theta^* G_M^{p-2} + 2\sqrt{2\tau(1+\tau)} v_{TL'} \sin \theta^* \cos \phi^* G_M^p G_E^p}{(1+\tau) v_L G_E^{p-2} + 2\tau v_T G_M^{p-2}}$

• Super-ratio

$$R_A=rac{A_1}{A_2}=rac{a_1-b_1\cdot G_E^p/G_M^p}{a_2-b_2\cdot G_E^p/G_M^p}$$

BLAST pioneered the technique, later also used in Jlab Hall A experiment

Hydrogen Spectroscopy

The absolute frequency of H energy levels has been measured with an accuracy of 1.4 part in 10^{14} via comparison with an atomic cesium fountain clock as a primary frequency standard.

```
Yields R_{\infty} (the most precisely known constant)
```

Comparing measurements to QED calculations that include corrections for the finite size of the proton provide an indirect but very precise value of the rms proton charge radius

Proton charge radius effect on the muonic hydrogen Lamb shift is 2%

Muonic hydrogen Lamb shift at PSI (2010, 2013)

2010: new value is $r_p = 0.84184(67)$ fm

New PSI results reported in Science 2013

2013: r_p = 0.84087(39) fm, A. Antognini *et al.*, Science 339, 417 (2013)

Recent ep Scattering Experiments

Three spectrometer facility of the A1 collaboration:

- Large amount of overlapping data sets
- Statistical error $\leq 0.2\%$
- Luminosity monitoring with spectrometer
- $Q^2 = 0.004 1.0 (GeV/c)^2$ result: $r_p = 0.879(5)_{stat}(4)_{sys}(2)_{mod}(4)_{group}$

Measurements @ Mainz

J. Bernauer, PRL 105,242001, 2010

5-7 σ higher than muonic hydrogen result !

(J. Bernauer)

JLab Recoil Proton Polarization Experimental

13

Proton Charge Radius from recent experiments and analyses

Revisits QED Calculations....

Contribution	Value	Uncertainty	
	[meV]	$[10^{-4} \text{ meV}]$	match CODATA value
Uehling	205.0282		-
Källen–Sabry	1.5081		
VP iteration	0.151		
Mixed $\mu - e$ VP	0.00007		
Hadronic VP [21,23]	0.011	20 Eva	luation by Jentschura,
Sixth order VP [24]	0.00761	Annals Phys. $326, 500, (2011)$	
Whichmann–Kroll	-0.00103	AIII	1015 1 Hys. 520, 500 (2011)
Virtual Delbrück	0.00135	Rec	ent summary by
Light-by-light	_	10	$\mathbf{r} = \mathbf{r} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} v$
		A. <i>P</i>	Antognini et al., arXiv.1208.2657
Muon self–energy and muonic VP (2 nd order)	-0.66788		
Fourth order electron loops	-0.00169	Dirco	and McGovorn arViv:1206 2020
VP insertion in self energy [17]	-0.0055		
Proton self–energy [18]	-0.0099	0.015	(4) meV (proton polarizability)
Recoil [17, 43]	0.0575	JN	I. Alarcon. et al. 1312.1219
Recoil correction to VP (one–photon)	-0.0041	0.0	$00 \dots V$
Recoil (two-photon) [19]	-0.04497	0.0	voð mev
Recoil higher order [19]	-0.0096		
Recoil finite size [32]	0.013	10	
Einite size of order $(7 \circ)^4$ [22] 5 1075(1) σ^2	2.070		Millor arViv:1200 4667
Finite size of order $(Z\alpha)^{5}$ [32] $-5.1975(1)T_{p}^{2}$	-3.979	(620) G.A	. WIIIEL, al XIV.1209.4007
Finite size of order $(Z\alpha)^6$ $0.0347(30) T_p^6$	0.0232	(20)	
Finite size of order $(Z\alpha)^{\circ}$	-0.0005	New	
Additional size for VP [10] $= 0.0164 \pi^2$	-0.0083	inev	v experiments at HIGS and
Proton polarizability [18] $-0.0104 r_{\rm p}$	-0.0128	40 Mai	nz on proton polarizabilities
Troton polarizatinty [10,55]	0.010	10 1101	
Fine structure $\Delta E(2P_{2/2}-2P_{1/2})$	8.352	10	-
$2P_{\rm p}^{\rm F=2}$ hyperfine splitting	1.2724		
$2S_{F=1}^{F=1}$ hyperfine splitting [42], (-22.8148/4)	-5.7037	20	
	011001		

An additional 0.31 meV to

Revisits of e-p scattering data (just 2015)

- Re-analysis of existing proton form factor data
 - D. W. Higinbotham, arXiv:1510.01293: two parameter dipole form fit describes the data at both low Q² and high Q² well, and the result is consistent with PSI value
 - K. Griffioen, C. Carson, S. Maddox, arXiv:1509.06676: reanalysis of Mainz data, focusing on the low Q² part with a polynomial form fit.
 - M. Horbatsch and E. A. Hessels, arXiv:1509.05644: re-analysis of Mainz data, simple fits (one-parameter model, dipole model, linear model) for low Q2 data, and spline extension to high Q2 data, these fits can all describe data well, but the extracted radius varies from 0.84 ~ 0.89 fm. So current data is not able to resolve the puzzle.
 - J. Arrington, arXiv:1506.00873: re-analysis of world data, found the previous scattering results might underestimate the uncertainty.
 - Distler, Walcher, and Bernauer, arXiv1511.00479 *All these studies emphasize even more the importance of low Q² e-p scattering data*

New Physics or what? - Incomplete list

- New physics: new particles, Barger et al., Carlson and Rislow; Liu and Miller,....New PV muonic force, Batell et al.; Carlson and Freid; Extra dimension: Dahia and Lemos; Quantum gravity at the Fermi scale R. Onofrio;.....
- Contributions to the muonic H Lamb shift: Carlson and Vanderhaeghen,; Jentschura, Borie, Carroll et al, Hill and Paz, Birse and McGovern, G.A. Miller, J.M. Alarcon, Ji, Peset and Pineda....
- Higher moments of the charge distribution and Zemach radii, Distler, Bernauer and Walcher,.....
- J.A. Arrington, G. Lee, J. R. Arrington, R. J. Hill discuss systematics in extraction from ep data, no resolution on discrepancy
- Donnelly, Milner and Hasell discuss interpretation of ep data,..... Discrepancy explained by some but others disagree
- Dispersion relations: Lorentz et al.
- Frame transformation: D. Robson
- New experiments: Mainz (e-d, ISR), JLab (PRad), PSI (Lamb shift, and MUSE), H Lamb shift

The Proton Radius Puzzle (June 2016)

- New, preliminary value for r_p was reported in PRP-2016 Workshop (Trento, Italy) from ordinary hydrogen
- Consistent with the muonic-hydrogen result !
- Is the Puzzle solved? No, new measurements are needed (spectroscopy, ep-scattering)

Update on proton radius puzzle

- Deuteron radius puzzle
 - Deuteron rms charge radius from muonic deuterium spectroscopy (R. Pohl et al., Science 353, 6300, 669, 2016)
 - 7.5σ smaller than the CODATA-2010 value, and 3.5σ smaller than the value from electronic deuterium spectroscopy (R. Pohl et al., Metrologia 54, L1, 2017)
 - Confirms proton radius puzzle
- Analysis of electron scattering data
 - Focusing on the low-q data yields a consistent result with CREMA's value K. Griffioen, C. Carlson, and S. Maddox. (Phy. Rev. C 93, 065207, 2016)
 D. Higinbotham, A.A. Kabir, V. Lin, D. Meekins, B. Norum, and B. Sawatzky. (Phys. Rev. C 93, 055207, 2016)
 M. Horbatsch and E.A. Hessels. (Phys. Rev. C 93, 015204, 2016)
 - However, I. Sick and D. Trautmann (Phys. Rev. C 95, 012501(R), 2017) claim that the above analyses led to a systematically smaller proton rms-radius because of the ignorance of the correlations from higher moments $< r^{2n} >$

Deuteron Charge Radius?

"Proton Charge Radius Puzzle" is still unsolved after seven years.

There is a newly developing "Deuteron Charge Radius Puzzle"

H/D isotope shift: Muonic deuterium: Electronic deuterium: $r_d^2 - r_p^2 = 3.82007(65) \text{ fm}^2$ $r_d = 2.12562(13)_{exp}(77)_{theory}$ fm $r_d = 2.14150(450)$ fm

Deuteron charge radius [fm]

Calls for new independent experiments with possible highest accuracy!

(R. Pohl, 2017)

New ed- cross sections at low Q² will be a critical input to reduce theory error in r_d extracted from µD spectroscopy.

Charge Radius of Helium Nuclei

Helium

Electron scattering consistent with µ-spectroscopy

PRad Experimental Setup in Hall B at JLab

- High resolution, large acceptance, hybrid HyCal calorimeter (PbWO₄ and Pb-Glass)
- Windowless H₂ gas flow target
- Simultaneous detection of elastic and Moller electrons
- Q^2 range of $2x10^{-4} 0.14$ GeV²
- XY veto counters replaced by GEM detector (3) ISR experiments at Mainz
- Vacuum chamber

Spokespersons: D. Dutta, H. Gao, A. Gasparian, M. Khandaker

Sub 1% measurements:

- (1) ep elastic scattering at Jlab (PRad)
- (2) μp elastic scattering at PSI 16 U.S.

institutions! (MUSE)

Ongoing H spectroscopy experiment s^2

23

• vacuum tank pressure: 0.3 mTorr

I Indro con

PRad Setup (Side View)

- Two large area GEM detectors
- Small overlap region in the middle
- Excellent position
 resolution (72 μm)
- Improve position resolution of the setup by > 20 times
- Similar improvement
 for Q² determination
 at small angle

I Indra gar

PRad Setup (Side View)

- Hybrid EM calorimeter (HyCal)
 - Inner 1156 PWO₄ modules
 - Outer 576 lead glass modules
- 5.8 m from the target
- Scattering angle coverage: ~0.6° to 7.5°
- Full azimuthal angle coverage
- High resolution and efficiency

HyCal Resolution and Efficiency

- HyCal energy resolution and trigger efficiency extracted using high energy photon beam from Hall B at Jlab
 - > 99.5% trigger efficiency obtained for E_{γ} > 500 MeV, for various parts of HyCal
 - Energy resolution $\sim 2.5\%$ for PWO₄ part, lead glass part about 2.5 time worse

Performance of GEM Detectors

- GEM detection efficiency measured in both photon beam calibration (pair production) and production runs (*ep* and *ee*)
- Using overlap region of GEMs to measure position resolution (72 μ m)

Plots courtesy of X. Bai

Preliminary Results:

Preliminary Elastic ep Cross Section

- Plots show the extracted differential cross section v.s. scattering angle and Q², with 2.2 GeV data in 0.7 ~ 3.5 deg range (very preliminary)
- Statistical error at this stage: ~0.2% per point
- Systematic errors are conservatively assigned at ~2% at current stage (shown as shadow area)

PRad Analysis Status: Event Selection Quality

- Control of background in the PRad experiment.
- Consistency of two practically independent measurements (within the ~ 0.2% statistical errors)demonstrates that we control the background, and

PRad will reach its goal of sub-percent extraction of the Proton Radius!!!

PRad Projected Result with world data

Summary and outlook

- After several years, the proton charge radius remains puzzling, and perhaps also the deuteron charge radius
- PRad experiment had a successful data taking in May/June 2016
- PRad collaboration is making good progress in data analysis and preliminary cross section results (partial data) announced in June 2017
- Preliminary radius result is anticipated in the fall 2017 –Stay tuned!

Acknowledgement: the SoLID collaboration, and the PRad Collaboration (supported in part by U.S. Department of Energy under contract number DE-FG02-03ER41231, NSF MRI PHY-1229153)