Meson Structure with Dilepton Production

Jen-Chieh Peng

University of Illinois at Urbana-Champaign

9th Workshop on "Hadron Physics in China and Opportunities Worldwide" Nanjing University, July 24-28, 2017

In collaboration with Wen-Chen Chang and Stephane Platchkov

<u>Outline</u>

- Overview of Drell-Yan experiments with meson beams
- What have we learned from these experiments
- What we would like to learn in the future
- Summary and outlook

First Dimuon Experiment

 $p+U \rightarrow \mu^+ + \mu^- + X$ 29 GeV proton Lederman et al. PRL 25 (1970) 1523 Experiment originally designed to search for neutral weak boson (Z⁰) Missed the J/ Ψ signal ! "Discovered" the Drell-Yan process

The Drell-Yan Process

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

(Received 25 May 1970)

$$p + p - (\mu^+ \mu^-) + \cdots$$
 (1)

Our remarks apply equally to any colliding pair such as (pp), $(\overline{p}p)$, (πp) , (γp) and to final leptons $(\mu^+\mu^-)$, $(e\overline{e})$, $(\mu\nu)$, and $(e\nu)$.

(4) The full range of processes of the type (1) with incident p, \overline{p} , π , K, γ , etc., affords the interesting possibility of comparing their parton and antiparton structures.

List of Drell-Yan experiments with π^- beam Experiments at CERN and Fermilab

Exp	P (GeV)	targets	Number of D-Y events
WA11	175	Be	500 (semi-exclusive)
WA39	40	W (H ₂)	3839 (all beam, M > 2 GeV)
NA3	150, 200, 280	Pt (H ₂)	21600, 4970, 20000 (535, 121, 741)
NA10	140, 194, 286	W (D ₂)	~84400, ~150000, ~45900 (3200,, 7800)
E331/E444	225	C, Cu, W	500
E326	225	W	
E615	80, 252	W	4060, ~50000

• Relatively pure π^- beam

• Relatively large cross section due to $\overline{u}d$ contents in π^-

5

List of Drell-Yan experiments with π^+ beam

Exp	P (GeV)	targets	D-Y events
WA39	40	W (H ₂)	
NA3	200	Pt (H ₂)	1750 (40)
E331/E444	225	C, Cu, W	

- Require beam particle identification to reject large proton content
- Smaller DY cross section due to \overline{du} contents in π^+
- Very few DY data with π^+ beam

Drell-Yan experiments with K^- beam

Exp	P (GeV)	targets	D-Y events
WA39	40	W (H ₂)	
NA3	150, 200	Pt	688, 90

Drell-Yan experiments with K^+ beam

Exp	P (GeV)	targets	D-Y events
WA39	40	W (H ₂)	
NA3	200	Pt	170

Drell-Yan experiments with \bar{p} beam

Exp	P (GeV)	targets	D-Y events
WA39	40	W (H ₂)	
NA3	150, 200	Pt	275, 32
E537	125	W, Cu, Be	380

Ratio of $(\pi^- + A)/(p + A)$ Drell-Yan cross sections

Ratios of $(\pi^+ + C) / (\pi^- + C)$ Drell-Yan cross sections

$(\pi^- + W)$ versus $(\overline{p} + W)$ Drell-Yan cross sections

Valence quark *x*-distribution in pion is broader than that in antiproton (proton)

How to determine the valence quark distribution in pion?

Compare $(\pi^- + D)$ with $(\pi^+ + D)$ Drell-Yan cross sections

$$\sigma_{DY}(\pi^{-}+D) \propto 4V_{\pi}(x_{1})V_{N}(x_{2}) + 5S_{\pi}(x_{1})V_{N}(x_{2}) + 5V_{\pi}(x_{1})S_{N}(x_{2}) + 10S_{\pi}(x_{1})S_{N}(x_{2})$$

$$\sigma_{DY}(\pi^{+}+D) \propto V_{\pi}(x_{1})V_{N}(x_{2}) + 5S_{\pi}(x_{1})V_{N}(x_{2}) + 5V_{\pi}(x_{1})S_{N}(x_{2}) + 10S_{\pi}(x_{1})S_{N}(x_{2})$$

$$\sigma_{DY}(\pi^- + D) - \sigma_{DY}(\pi^+ + D) \propto 3 V_{\pi}(x_1) V_N(x_2)$$

Only the valence-quark term remain!

Only very low statistics data for $\sigma_{DY}(\pi^+ + D)$ are available!

See Londergan et al., PL B361 (1995) 110

How to determine the valence quark distribution in kaon?

Compare $(K^- + D)$ with $(K^+ + D)$ Drell-Yan cross sections

$$\sigma_{DY}(K^{-}+D) \propto 4V_{K}^{u}(x_{1})V_{N}(x_{2}) + 4V_{K}^{u}(x_{1})S_{N}(x_{2}) + V_{K}^{s}(x_{1})\overline{s}_{N}(x_{2}) + 5S_{K}(x_{1})V_{N}(x_{2}) + 10S_{K}(x_{1})S_{N}(x_{2}) + 2S_{K}(x_{1})\overline{s}_{N}(x_{2})$$

$$\sigma_{DY}(K^+ + D) \propto 4V_K^u(x_1)S_N(x_2) + V_K^s(x_1)\overline{S}_N(x_2) + 5S_K(x_1)V_N(x_2) + 10S_K(x_1)S_N(x_2) + 2S_K(x_1)\overline{S}_N(x_2) + 2S_K(x_1)\overline{S}_N(x_1)\overline{S}_N(x_2) + 2S_K(x_1)\overline{S}_N(x_1)\overline{S}_N(x_1) + 2S_K(x_1)\overline{S}_N(x_1)\overline{S}_N(x_1) + 2S_K(x_1)\overline{S}_N(x_1)\overline{S}_N(x_1) + 2S_K(x_1)\overline{S}_N(x_1)\overline{S}_N(x_1) + 2S_K(x_1)\overline{S}_N(x_1)\overline{S}_N(x_1) + 2S_K(x_1)\overline{S}_N(x_1)\overline{S}_N(x_1) + 2S_K(x_1)\overline{S}_N(x_1)\overline$$

$$\sigma_{DY}(K^- + D) - \sigma_{DY}(K^+ + D) \propto 4V_K^u(x_1)V_N(x_2)$$

Only the valence-quark term remain!

 $\sigma_{DY}(K^+ + D)$ is more sensitive to kaon's sea-quark content than $\sigma_{DY}(K^- + D)$ (especially data at low x_1 and large x_2 (negative x_F) region!)

See Londergan al., PL B380 (1996) 393

Attemps to extract the pion valence quark distribution

13

Attemps to extract the pion valence quark distribution

A global fit to all data is needed

Four pion PDF sets available at LHAPDF library

- OW-P (PRD 30, 943 (1984))
 - LO QCD
 - J/Ψ data from NA3 and WA39; D-Y data from E537 and NA3

Four pion PDF sets available at LHAPDF library

- SMRS (PR D45, 2349 (1992))
 NLO QCD
 - NA10 and E615 D-Y data,
 WA70 direct photon data

- Need new global fits to all existing data
- Need new experimental data with pion and kaon beams

 $R \simeq (1-x)^{0.18 \pm 0.07} \Longrightarrow$ softer *u*-valence in kaon than in pion $_{17}$

Comparison between data and theory

Nambu-Jona-Lasinio model

Hauturuk, Cloët and Thomas, Phys. Rev. C 94, 035201 (2016).

Dyson-Schwinger Equation

Comparison between data and CEM calculations

 $(K^- + \text{Pt}) / (\pi^- + \text{Pt})$ ratios for J/ Ψ production

Modified kaon PDF has the ubar valence quark distribution multiplied by $(1-x)^{0.18}$ and the strange quark distribution divided by $(1-x)^{0.18}$

The *K* / π ratios of J/ Ψ production at large x_F might indicate a softer \overline{u} in K^- than in the pion, similar to the D-Y data?

Dilepton data with meson beams at COMPASS

See talks of M. Perdekamp and W.C. Chang

• Prospect of RF-separated kaon and antiproton beams in the future

Three proton parton distributions describing transverse momentum and/or transverse spin

Three transverse quantities:

1) Nucleon transverse spin

 $ec{S}_{ot}^{\,\scriptscriptstyle N}$

2) Quark transverse spin

 \vec{s}_{\perp}^{q}

3) Quark transverse momentum

 k^{q}_{\perp}

 \Rightarrow Three different correlations

Correlation between \vec{s}_{\perp}^{q} and \vec{S}_{\perp}^{N}

2) Sivers function
$$f_{1T}^{\perp} = \mathbf{O} - \mathbf{O}$$

Correlation between \vec{S}_{\perp}^{N} and \vec{k}_{\perp}^{q}

3) Boer-Mulders function $h_1^{\perp} = \bigcirc - \bigcirc$

Correlation between \vec{s}_{\perp}^{q} and \vec{k}_{\perp}^{q}

One pion parton distribution describing transverse momentum and transverse spin

Two transverse quantities:

1) Quark transverse spin

 $\vec{s}_{\perp}^{\,q}$

2) Quark transverse

momentum

$ec{k}_{ot}^{\,q}$

 \Rightarrow One correlation

1) Boer-Mulders function $h_1^{\perp} = \bigcirc - \bigcirc$

Correlation between \vec{s}_{\perp}^{q} and \vec{k}_{\perp}^{q}

It can be measured in Drell-Yan process

Boer-Mulders functions:

- Unpolarized Drell-Yan:

 $d\sigma_{DY} \propto h_1^{\perp}(x_q)h_1^{\perp}(x_{\overline{q}})\cos(2\phi)$

- Drell-Yan does not require knowledge of the fragmentation functions
- T-odd TMDs are predicted to change sign from DIS to DY

(Boer-Mulders and Sivers functions)

Remains to be tested experimentally!

Boer-Mulders function h_1^{\perp} \bigcirc – \bigcirc

- h_1^{\perp} represents a correlation between quark's k_T and transverse spin in an unpolarized hadron (analogous to Collins function)
- h_1^{\perp} is a time-reversal odd, chiral-odd TMD parton distribution

v>0 implies valence BM functions for pion and nucleon have same signs ²⁵

Can one test the predicted sign-change from DIS to D-Y for pion's B-M function?

1) From NA10 pion Drell-Yan data, one deduces that the product of the pion valence quark B-M function and the proton valence quark B-M function is positive. Using *u*-quark dominance, we have: $h_{1u}^{\perp,DY}(p) * h_{1u}^{\perp,DY}(\pi) > 0$

Therefore, either a) $h_{1,u}^{\perp,DY}(p) > 0$; $h_{1,u}^{\perp,DY}(\pi) > 0$ (sign – change) or b) $h_{1,u}^{\perp,DY}(p) < 0$; $h_{1,u}^{\perp,DY}(\pi) < 0$ (no sign – change) 2) In polarized $\pi - p$ D-Y, the sin($\phi + \phi_s$) modulation is sensitive to the sign of $h_{1,u}^{\perp,DY}(\pi)$ (being measured at COMPASS) 3) Need to measure the sign of pion's B-M function in DIS

HOW?

SIDIS on the meson cloud of proton at EIC

TSIDIS (Tagged Semi-Inclusive DIS)

TSIDIS

 $e^- + p \rightarrow e^{-\prime} + n + \pi^{\pm} + x$

underlying process:

 $e^- + \pi^+ \rightarrow e^{-\prime} + \pi^{\pm} + x$

An independent check of pion's PDF
 Could allow valence-sea flavor separation
 Detected π⁻ is most likely from ū (or d) sea in π⁺
 Detected π⁺ is most likely from valence u (or d̄) in π⁺

 Pion B-M function is extracted from cos 2φ modulation

Exclusive dilepton production in πN interaction $\pi^- p \rightarrow \gamma^* n \rightarrow \mu^+ \mu^- n$ E. Berger, M. Diehl, B. Pire, Phys. Lett. B523 (2001) 265 Probe pion distribution amplitude (ϕ_{π}) and nucleon GPD (\tilde{H}, \tilde{E}) $\gamma^*(q')$ $\pi(q)$ Bjorken variable $\tau = \frac{Q'^2}{s-M^2}$ *x*+η skewness $\eta = \frac{(p-p')^+}{(p+p')^+} = \frac{\tau}{2-\tau}$ $\widetilde{H}, \widetilde{E}$ N(p)N(p')(b) $\frac{d\sigma}{dQ'^2 dt \, d(\cos \theta) \, d\varphi} = \frac{\alpha_{\rm em}}{256 \, \pi^3} \frac{\tau^2}{Q'^6} \sum_{\lambda',\lambda} |M^{0\lambda',\lambda}|^2 \sin^2 \theta$ $M^{0\lambda',\lambda}(\pi^- p \to \gamma^* n) = -ie \frac{4\pi}{3} \frac{f_{\pi}}{Q'} \frac{1}{(p+p')^+} \bar{u}(p',\lambda') \left[\gamma^+ \gamma_5 \, \tilde{\mathcal{H}}^{du}(\eta,t) + \gamma_5 \frac{(p'-p)^+}{2M} \, \tilde{\mathcal{E}}^{du}(\eta,t) \right] u(p,\lambda)$ $\tilde{\mathcal{H}}^{du}(\eta,t) = \frac{8\alpha_S}{3} \int_{-1}^{1} dz \, \frac{\phi_{\pi}(z)}{1-z^2} \int_{-1}^{1} dx \, \left[\frac{e_d}{-n-x-i\epsilon} - \frac{e_u}{-n+x-i\epsilon} \right] \left[\tilde{H}^d(x,\eta,t) - \tilde{H}^u(x,\eta,t) \right]$

28

PHYSICAL REVIEW D 93, 114034 (2016)

Accessing proton generalized parton distributions and pion distribution amplitudes with the exclusive pion-induced Drell-Yan process at J-PARC

Summary

- Meson and Kaon parton distributions
 - * New territory for theory and experiment
 - * Unique opportunity at COMPASS
 - * Complementary to JLab/EIC tagged DIS programs
- Pion's TMD (Boer-Mulders function)
 - * Test sign-change prediction for pion B-M function
- Exclusive Drell-Yan with π^- and K^- beams
 - * Probe pion and kaon distribution amplitudes
 - * First measurement seems feasible at J-PARC