The RHIC Spin Program

Jinlong Zhang (张金龙)

Lawrence Berkeley National Laboratory

9th Workshop on Hadron Physics in China and Opportunities Worldwide, NJU, July 24-29, 2017

Outline

- RHIC, polarized proton-proton collider
 - STAR and PHENIX
- Unique physics opportunities at RHIC and selected recent results
 - Helicity structure of proton: gluons and quarks
 - Studies on transverse dimensions
- Outlook and Summary

RHIC – Polarized Proton-Proton Collider

STAR Detector Overview

PHENIX Detector Overview

Polarized p+p Data Accumulation at RHIC

	Year	√s (GeV)	L (pb ⁻¹)	<p>(%)</p>	Polarized protons			
Long	2006	62.4 200	 6.8	48 57	$\frac{600}{100 \text{ GeV}} = 53\%$			
	2009	200 500	25 10	38 55	ବ୍ରି 500 T T ୟୁ			
	2011	500	12	48	$\frac{2017}{P} = 53\%$			
	2012	510	82	56	(1 experiment)			
	2013	510	256	56	b 300			
	2015	200	50	60	$\frac{1}{2}$			
Trans	2006	62.4 200	0.2 8.5	48 57	$\begin{array}{c} \mathbf{P} = 200 \\ \mathbf{P} = 34\% \\ 2012 \mathbf{P} = 59\% \\ 2012 \mathbf{P} = 59\% \\ \mathbf{P} = 50\% \\ \mathbf$			
	2008	200	7.8	45	$\frac{2011 P = 48\%}{2009 P = 56\%}$			
	2011	500	25	55	= 2005 P = 47% $= 2003 P = 34%$			
	2012	200	22	60	0 2 4 6 8 10 12 14 16 18 20			
	2015	200	50	60	Time [weeks in physics]			
	2017	510	356	55				

Probe Gluon Polarization via Hadron/Jet

Double-spin asymmetry:

$$A_{LL} = \frac{\sigma^{\uparrow\uparrow} - \sigma^{\uparrow\downarrow}}{\sigma^{\uparrow\uparrow} + \sigma^{\uparrow\downarrow}} \propto \frac{\Delta f_1}{f_1} \otimes \frac{\Delta f_2}{f_2} \otimes \hat{a}_{LL} \otimes D_f^h$$

.....

- Abundant yields of π^0 and jets at RHIC
- Sub-processes directly sensitive to gluon
- $\mathbf{X}_{\mathrm{g},\mathrm{q}} \sim p_T^{\pi^{0},\mathrm{jets}} / \sqrt{\mathrm{s}} \cdot \mathrm{e}^{-\eta}$
- Constrain gluon helicity-dependent PDFs

Inclusive Jet A_{LL} : first non-zero ΔG

- First evidence of non-zero contributions from gluon spin at Q²~10 GeV²
- Drive the constraints on ΔG

Inclusive Hadron/Jet A_{LL} Results

- PHENIX and STAR released higher statistics π^0 and jet results since then.
- Measurement at $\sqrt{s} = 510$ GeV access to lower x values
- Consistent descriptions from π^0 and jet at different energy

New Preliminary Inclusive Jet A_{LL}

A.Quintero, RHIC&AGS Users' Meeting 2017

- New preliminary results from STAR 2013 data (256pb⁻¹) just released last month.
- Good agreement with 2009 (200 GeV) and 2012 (510 GeV) results with much better precision.

Measurement of Di-jet Production

STAR, PRD 95 (2017) 71103

- Access initial partonic kinematics, $\frac{M}{\sqrt{s}} = \sqrt{x_1 x_2}$
- Initial di-jet A_{LL} data are consistent with DSSV and NNPDF expectations

Measurement of Di-jet Production

• Extending to $\sqrt{s} = 510$ GeV, new results from much larger data samples taken in 2012 and 2013 agree with the initial 2009 di-jet results, and with the DSSV and NNPDF expectations.

Measurement of Di-jet Production

- Extending to $\sqrt{s} = 510$ GeV, new results from much larger data samples taken in 2012 and 2013 agree with the initial 2009 di-jet results, and with the DSSV and NNPDF expectations.
- NNPDF reweighting included STAR 2012 Di-jet results together PHENIX π^0 results, further constraining gluon polarization distribution.

Probe Sea Quark via W Boson

- Great opportunity with W boson production in RHIC polarized proton-proton collisions at $\sqrt{s} = 500 \text{ GeV}$
 - Elegant process: $u\bar{d} \to W^+ \to e^+ \nu_e$ and $\bar{u}d \to W^- \to e^- \bar{\nu}_e$

(A...(...)

- No uncertainties from fragmentation
- Perfect spin selection in V-A structure of weak interaction
- Flavor-ID from final lepton charge-ID

Single-spin asymmetry:

$$A_L = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

$$A_{L}^{W^{+}} \propto \frac{-\Delta u(x_{1})\bar{d}(x_{2}) + \Delta \bar{d}(x_{1})u(x_{2})}{u(x_{1})\bar{d}(x_{2}) + \bar{d}(x_{1})u(x_{2})} \approx \begin{cases} -\frac{\Delta u(x_{1})}{u(x_{1})}, x_{1} \gg x_{2} \\ \frac{\Delta \bar{d}(x_{1})}{\bar{d}(x_{1})}, x_{1} \ll x_{2} \end{cases}$$
$$A_{L}^{W^{-}} \propto \frac{-\Delta d(x_{1})\bar{u}(x_{2}) + \Delta \bar{u}(x_{1})d(x_{2})}{d(x_{1})\bar{u}(x_{2}) + \bar{u}(x_{1})d(x_{2})} \approx \begin{cases} -\frac{\Delta d(x_{1})}{\bar{d}(x_{1})}, x_{1} \ll x_{2} \\ \frac{\Delta \bar{u}(x_{1})}{d(x_{1})}, x_{1} \ll x_{2} \end{cases}$$

W Cross Section

- PHENIX and STAR both successfully selected W leptonic decay signals.
- Cross section results consistent with theoretical predictions.

W Cross Section Ratio

M. Posik, S. Fazio, et al. (STAR Collaboration), DIS 2015.

- Unpolarized sea symmetry: Complementary to NA51, E866, and SeaQuest
- Preliminary 2011+2012 results from data of 102 pb⁻¹
- 256 pb⁻¹ and 360 pb⁻¹ recorded during 2013 and 2017
- W kinematics reconstructed from its recoil, key for W A_N measurement.

WA_L Results

- PHENIX measured W A_L with central
 arms (e[±] channel) and forward muon arms
 (u[±] channel), consistent with theoretical
 predictions within uncertainties
- STAR published W A_L results as a function of lepton η .
- W⁻A_L for negative η_e are at the upper band of the DIS-based expectations. This implies that Δū is larger than expected.

WA_L Results

WA_L Results

WA_L New Preliminary Results

 Most precise measurements of W A_L, with STAR 2013 data (256 pb⁻¹)

WA_L New Preliminary Results

- Most precise measurements of W A_L , with STAR 2013 data (256 pb⁻¹).
- Overall, consistent with the published STAR 2011+2012 results and PHENIX mid-rapidity W/Z A_L measurements
- The tendency that W⁻ A_L for negative η_e are at the upper band of the DIS-based expectations is confirmed with better precision.

WA_L New Preliminary Results

Probe Quark Transversity via Interference Fragmentation

- First non-zero transversity signal observed in $p^{\uparrow}+p$ collisions
- Complementary kinematic regions to SIDIS; important test of factorization and universality

7/25/2017

Jinlong Zhang, LBNL

Probe Quark Transversity via Interference Fragmentation

- First non-zero transversity signal observed in $p^{\uparrow}+p$ collisions.
- Similar results from $\sqrt{s} = 200$ and 510 GeV. Small TMD evolution in IFF ?

Probe Quark Transversity via Collins Asymmetry

- First statistically significant non-zero Collins asymmetries measured in hadronic collisions
- Similar results from $\sqrt{s} = 200$ and 510 GeV. Small TMD evolution in FF?

Probe Quark Transversity via Collins Asymmetry

- First statistically significant non-zero Collins asymmetries measured in hadronic collisions
- Similar results from $\sqrt{s} = 200$ and 510 GeV. Small TMD evolution in FF?

Forward A_N – remains mystery

see also J. Huang's talk

- Surprisingly large transverse single-spin asymmetries
- Nearly independent of \sqrt{s} over a very wide range (\sqrt{s} : 4.9 GeV to 500 GeV).

Forward A_N – remains mystery

- Asymmetry decrease as "jettiness" (no. of photons)
- How much of the large A_N is due to diffractive events ?
- Looking forward to STAR Roman Pot results

Forward A_N: Heavy Flavor

PHENIX, PRD95, 112001(2017)

- Dominated by gluon-gluon interactions, and sensitive to gluon Sivers' function
- Main contribution to single muons: D-meson decay
- Consistent with zero within uncertainties

Sivers' Sign-change

Sivers (DIS) = - Sivers (DY or W/Z)

- DIS: γq scattering attractive final-state interaction
- p+p: quark anti-quark annihilation repulsive initial-state interaction
- Experimental test is critical for our understanding of TMDs and TMD factorization

First WA_N results

see also B. Mueller's talk

• Initial transverse W A_N results prefer to the Sivers' sign-change from an integrated luminosity of ~25 pb⁻¹

Potential of 2017: WA_N

- Very successful Run-2017, STAR recorded **356** pb⁻¹ with 55% polarization,
- Anticipate: Access TMD evolution,

first constraints on sea quark Sivers' function,

precise data to test for the Sivers' sign change.

Potential of 2017: Drell-Yan and Direct- γ

- In 2017, STAR operated FMS pre-shower and post-shower detectors to select DY and direct-γ events.
- Anticipate DY A_N to ± 0.008 in with a delivered luminosity of 400 pb⁻¹
- Direct- γ A_N will provide important complementary constraints.

RHIC Cold QCD Plan – a Portal to the EIC

arXiv:1602.03922

see also J. Huang's talk

	Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade
Scheduled RHIC running	2017	p [†] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism	A_N for γ , W^{\pm} , Z^0 , DY	A_N^{DY} : Postshower to FMS@STAR
				Transversity, Collins FF, linearly pol. Gluons, Gluon Sivers in Twist-3	$A_{UT}^{\sin(\phi_s-2\phi_h)} A_{UT}^{\sin(\phi_s-\phi_h)}$ modula- tions of h^{\pm} in jets, $A_{UT}^{\sin(\phi_s)}$ for jets	None
				First look at GPD Eg	A_{UT} for J/ Ψ in UPC	None
	2023	p [†] p @ 200	300 pb ⁻¹ 8 weeks	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Yes Forward instrum.
				evolution of ETQS fct. properties and nature of the diffractive exchange in p+p collisions.	A_N for γ A_N for diffractive events	None None
	2023	p [†] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY	$R_{pAu}(DY)$:Yes Forward instrum.
				Nuclear dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None
				Clear signatures for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.
	2023	p [†] Al @ 200	12.6 pb ⁻¹	A-dependence of nPDF,	R_{pAl} : direct photons and DY	$R_{pAl}(DY)$: Yes
			o weeks	A-dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None
				A-dependence for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.
Potential futt running	202X	p [†] p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high x	A_{UT} for Collins observables, i.e. hadron in jet modulations at $\eta > 1$	Yes Forward instrum.
				quantitative comparisons of the validity and the limits of factorization and universality in lepton-proton and proton- proton collisions	mid-rapidity observables as in 2017 run	None
ıre	202X	$\vec{p}\vec{p}$ @ 510	1.1 fb ⁻¹ 10 weeks	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets at $n \ge 1$	Yes Forward instrum.

Table 1-2: Summary of the Cold QCD physics program propsed in the years 2017 and 2023 and if an additional 500 GeV run would become possible.

RHIC Cold QCD Plan – a Portal to the EIC

arXiv:1602.03922

see also J. Huang's talk

	Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Ungrade
	2017	p [†] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism	A_N for γ , W^{\pm} , Z^0 , DY	A_N^{DY} : Postshower to FMS@STAR
	31	icces	STUI	Gluon Sivers in Twist-3	tions of h^{\pm} in jets, $A_{UT}^{\sin(\phi_s)}$ for jets	actes
				First look at GPD Eg		None
Scheduled RHIC running	2023	p [™] p @ 200	300 pb ⁻¹ 8 weeks	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Yes Forward instrum.
				evolution of ETQS fct. properties and nature of the diffractive exchange in p+p collisions.	A_N for γ A_N for diffractive events	None None
	2023	p [†] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY	$R_{pAu}(DY)$:Yes Forward instrum.
		D	urin	g sPHEENEX 2023	$\begin{array}{c} 4^{\sin(\phi_s-\phi_h)} \text{ in explations of } h^{\pm} \text{ in } \\ \text{UIII Jets in clear FF} \end{array}$	None
				Clear signatures for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.
	2023	$p^{\uparrow}Al @ 200$	12.6 pb ⁻¹	A-dependence of nPDF,	R_{pAl} : direct photons and DY	<i>R_{pAl}</i> (DY): Yes
			8 weeks	A-dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	Forward instrum. None
				A-dependence for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.
Pot	202X	p [†] p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high x	A_{UT} for Collins observables, i.e. hadron in jet modulations at $\eta > 1$	Yes Forward instrum.
ential futi running	Hig	h-im	pact	mantitative comparisons of the validity and the limits of fictorizationany universitive in lepton proton and proton proton collisions	populate and the president of the presid	rises
ure	202X	$\vec{p}\vec{p}$ @ 510	1.1 fb ⁻¹ 10 weeks	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets at $n > 1$	Yes Forward instrum.

Table 1-2: Summary of the Cold QCD physics program propsed in the years 2017 and 2023 and if an additional 500 GeV run would become possible.

Summary

- Jet and neutral pion longitudinal double-spin asymmetry measurements have provided first evidence for and unique constraints on non-zero gluon polarization.
- Longitudinal W measurements have provided first evidence of symmetry breaking in the polarized sea, $\Delta \bar{u} > \Delta \bar{d}$
- Non-zero transverse asymmetries have been observed at mid-rapidity and provide sensitivity to quark transversity.
- Initial transverse W measurements are consistent with Sivers' sign change.
- The Cold QCD Plan:
 - Look forward to data analysis of the just concluded Run 2017, successful first stage!
 - Proposes modest forward upgrades for a second stage of Sivers,
 Collins, and gluon polarization measurements in 2023+