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1 Background: What are bound-states?

proton
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How is it constituted?



Si-xue Qin: 2017-07-24 @ Nanjing University, Nanjing / 233

1 Background: Why do we study bound-states?

“Easy” objects  
involving  

interactions 

Experiment

+ etc.



Si-xue Qin: 2017-07-24 @ Nanjing University, Nanjing / 233

1 Background: Why do we study bound-states?

“Easy” objects  
involving  

interactions 

Experiment

+ etc.

Newtonian Mechanics

“Simple” objects  
involving  
dynamics 

Theory

Quantum Mechanics

Quantum Field Theory  + etc.



Si-xue Qin: 2017-07-24 @ Nanjing University, Nanjing / 233

1 Background: Why do we study bound-states?

“Easy” objects  
involving  

interactions 

Experiment

+ etc.

Newtonian Mechanics

“Simple” objects  
involving  
dynamics 

Theory

Quantum Mechanics

Quantum Field Theory  + etc.



Si-xue Qin: 2017-07-24 @ Nanjing University, Nanjing / 234

1 Background: How do we study bound-states?

e+ e− hadronic annihilation



Si-xue Qin: 2017-07-24 @ Nanjing University, Nanjing / 234

1 Background: How do we study bound-states?

e+ e− hadronic annihilation

Quantum Field Theory

2.3 Bound-state equations 15
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Figure 2.2: Schematic derivation of a two-body bound-state equation. The first row
illustrates Dyson’s equation (2.18). The behavior at the mass pole defines the bound-
state amplitude and leads to the corresponding bound-state equation (second row).

permuted 2-body kernels K
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[65–67]. With the notation of (2.16), the kernel
eK(3) reads

eK(3) = eK
(3)

irr

+
3

X

i=1

eK
(2)

i

, (2.20)

where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via

T (n)

P

2!�M

2������! N   
P 2 + M2

, (2.21)

where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T (n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:

J = 0 :
1

P 2 + M2

, J = 1/2 :
�i/P + M

P 2 + M2

= 2M
⇤

+

(P )
P 2 + M2

. (2.22)

For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤

+

(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P 2 = �M2, cf.
Fig. 2.2. An examination of the relation T 0 = �T (T�1)0 T at the bound-state pole,
where 0 denotes the derivative d/dP 2, yields the associated canonical normalization
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• Green functions

• Bethe-Salpeter equation
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1 Background: Why is QCD bound-state problem difficult?

• Relativistic bound states

“These problems are those involving bound states [...] such problems necessarily involve a breakdown 
of ordinary perturbation theory. [...] The pole therefore can only arise from a divergence of the sum of 
all diagrams […]”

The QFT book vol1 p564 Weinberg

• Strongly coupled systems

•Asympto)c	freedom:	Bonds	between	par)cles	become	
asympto)cally	weaker	as	energy	increases	and	distance	
decreases	(Nobel	Prize).	

•Quark	and	Gluon	Confinement:	No	ma@er	how	hard	one	
strikes	the	proton,	one	cannot	liberate	an	individual	quark	
or	gluon.	

•Dynamical	Chiral	Symmetry	Breaking:	Mystery	of	bound	
state	masses,	e.g.,	current	quark	mass	(Higgs)	is	small,	
and	no	degeneracy	between	parity	partners.

QCD running coupling constant
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1 Background: Non-perturbative approaches of QCD

Full 
QCD ObservablesX

Lattice QCD, Dyson-Schwinger equations, chiral perturbation, AdS/QCD, NJL model, … 

33%

33%

33%Physics Simplicity

Power
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2 DSE: EoM of QCD’s Green functions

Quantum Field Theory

Principle of Least Action

Equations of Motion (EoM)

Euler-Lagrange Equation Dyson-Schwinger Equations

Generalized coord. Fields on spacetime

Degrees of freedom

Classical Mechanics
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G. Eichmann, arXiv:0909.0703

✦ Green functions of 
different orders 
couple together.

✦ Most equations are 
very complicated.

q Modeling

q Truncation

2 DSE: EoM of QCD’s Green functions
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2 DSE: Bound-states in terms of Green functions

✦ In QFT, bound-states are encoded in Green functions.

G(4) G(4)K(2)= +G(4)
0
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2 DSE: Bound-states in terms of Green functions

✦ In QFT, bound-states are encoded in Green functions.

G(4) G(4)K(2)= +G(4)
0

✦ The kernel can be decomposed by its orthogonal eigenbasis, which are classified 
by JP quantum number and radial quantum number nr,

G(4) G(4)K(2)= +G(4)
0

✦ Accordingly, the four-point Green function can be decomposed:
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2 DSE: Most frequently used equations

• Two-body Bethe-Salpeter equation

22 Mesons
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Figure 3.1: The quark DSE (3.2) in pictorial form.

The dressed quark-gluon vertex consists of 12 tensor structures and can be written as

�µ(l, k, µ) =
4

X

i=1

⇣

f
(1)

i

i�µ + f
(2)

i

lµ + f
(3)

i

kµ

⌘

⌧
i

(l, k) , (3.5)

where the f
(j)

i

(l2, l ·k, k2, µ2) are Lorentz-invariant dressing functions. A possible rep-
resentation of the Dirac basis elements is given by

⌧
i

(l, k) = {1, /k, l/, [ l/, /k]} . (3.6)

The four longitudinal basis elements ⇠ kµ do not survive in the quark-DSE integral
because of the transversality of the gluon propagator. Likewise, only the transverse
projections of the remaining ones provide a non-vanishing contribution. In accordance
with the notation of the quark propagator’s dressing functions, the two covariants i�µ

and lµ are referred to as the vector and scalar components, respectively.
Using the STIs in Landau gauge, Z

1F

= Z
2

/Z̃
3

and Z
g

Z̃
3

Z
1/2

3

= 1, where Z̃
3

, Z
3

and Z
g

are ghost, gluon and charge renormalization constants, the quark self-energy
integral of Eq. (3.3) becomes

⌃(p, µ,⇤) = �16
3

Z2

2

⇤

Z

q

i�µS(q, µ)
Tµ⌫

k

k2

4

X

i=1

⇣

↵
(1)

i

i�⌫ + ↵
(2)

i

l⌫
⌘

⌧
i

(l, k), (3.7)

where we defined the coe�cients ↵
(j)

i

as combinations of the gluon dressing function
and the vertex dressings:

↵
(j)

i

(l2, l·k, k2) =
g2

4⇡

1
Z

2

Z̃
3

Z(k2, µ2) f
(j)

i

(l2, l·k, k2, µ2). (3.8)

They are independent of the renormalization point, as can be inferred from Z
g

Z̃
3

Z
1/2

3

=
1 and the renormalization-scale dependence of the quantities g ⇠ 1/Z

g

, Z ⇠ 1/Z
3

and
f

i

⇠ Z
2

/Z̃
3

.

Solution of a coupled DSE system. Both gluon propagator and quark-gluon vertex
satisfy their own DSEs. Progress on a consistent solution of this system of DSEs has

• Three-body Faddeev equation

• One-body gap equation
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Gluon propagator

• Three-body Faddeev equation

• One-body gap equation
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• Three-body Faddeev equation
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✦ Modeling the dress function: gluon	
mass	scale	+	effec-ve	running	
coupling	constant

11

2.1 DSE: Dynamically massive gluon

✦ In Landau gauge (Lorentz covariant 
and LQCD favored):

O.	Oliveira	et.	al.,	J.Phys.	G38,	045003	(2011)

The gluon propagator is modeled as two parts: Infrared + Ultraviolet. The former is an 
expansion of delta function; The latter is a form of one-loop perturbative calculation.
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✦ Modeling the dress function: gluon	
mass	scale	+	effec-ve	running	
coupling	constant

11

2.1 DSE: Dynamically massive gluon

✦ In Landau gauge (Lorentz covariant 
and LQCD favored):

❑ The gluon mass scale is typical values of lattice QCD: Mg in [0.6, 0.8] GeV. 

❑ The gluon mass scale is inversely proportional to the confinement length. 

O.	Oliveira	et.	al.,	J.Phys.	G38,	045003	(2011)

The gluon propagator is modeled as two parts: Infrared + Ultraviolet. The former is an 
expansion of delta function; The latter is a form of one-loop perturbative calculation.
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q Chiral symmetry: axial-vector WGTI

q Lorentz symmetry + : transverse WGTIs

He, PRD, 80, 016004 (2009)

q Gauge symmetry: vector WGTI

12

2.2 DSE: DCSB in quark-gluon vertex (Abelian)

✦ The WGTIs express the curls and 
divergences of the vertices. 

✦ The WGTIs of the vertices in 
different channels couple together. 

✦ The WGTIs involve contributions 
from high-order Green functions.

+  etc.
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✦ Defining proper projection tensors and 
contract them with the transverse WGTIs, 
one can decouple the WGTIs and obtain a 
group of equations for the vector vertex:
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3. Solution of the coupled identities

One may now use any reliable means to solve the system of
coupled linear equations. Irrespective of the presence and form of
the functions {Xi, i = 1, . . . ,8}, part of the complete solution has

λ1(k, p) = ΣA
(
k2, p2), λ2(k, p) = #A

(
k2, p2),

λ3(k, p) = #B
(
k2, p2), λ4(k, p) = 0, (16)

where (x = k2, y = p2)

Σφ(x, y) = 1
2

[
φ(x) + φ(y)

]
, #φ(x, y) = φ(x) − φ(y)

x − y
. (17)

Namely, a necessary consequence of solving Eqs. (1), (12), (13), is
the identification of Γ L

µ(k, p) with the result derived in Ref. [4];
i.e., the Ball–Chiu Ansatz. The system of equations is linear, so the
solution for Γ L

µ(k, p) is unique. Note that we made no attempt to
impose a particular kinematic structure on the solution. Irrespec-
tive of the tensor basis chosen, and we used a variety of forms,
not just those in Eqs. (A.1)–(A.9), this part of the solution is free of
kinematic singularities. The functional form of λ3(k, p) signals that
the coupling of a dressed-fermion to a gauge boson is necessarily
influenced heavily by DCSB.

The eight functions in Eq. (8) are also completely specified.
Their form depends on {Xi, i = 1, . . . ,8}; e.g., the simplest is

τ1(k, p) = 1
2

X1(k, p)

(k2 − p2)((k · p)2 − k2 p2)
. (18)

The expressions for {τ j, j = 2,4,6,7} are more complicated but,
in common with τ1, they do not explicitly involve the scalar func-
tions (A, B) which define the dressed-fermion propagator. This is
the material point. It means that any and all effects of (A, B) in
{τ j, j = 1,2,4,6,7} are only expressed implicitly through a solu-
tion of the vertex Bethe–Salpeter equation. (N.B. Our subsequent
discussion is independent of all other details about the forms of
{τ j, j = 2,4,6,7}.)

In contrast, the expressions for {τ j, j = 3,5,8} explicitly in-
volve combinations of A(k2), A(p2), B(k2), B(p2) and {Xi, i =
1, . . . ,8}. If one supposes that {Xi ≡ 0, i = 1, . . . ,8}, then simple
results are obtained:

2τ3(k, p) = #A
(
k2, p2), (19)

τ5(k, p) = −#B
(
k2, p2), (20)

τ8(k, p) = −#A
(
k2, p2). (21)

The following features of the transverse part of the solution to
Eqs. (1), (12), (13) are particularly noteworthy.

A T 3
µ(k, p) term generally appears in the solution and, with

{Xi ≡ 0, i = 1, . . . ,8}, its coefficient is (1/2)#A(k2, p2), Eq. (19).
The functional form is a prediction of the transverse WGT identity
because, apart from our choice of tensor bases in Eqs. (A.1)–(A.9),
we implemented no other constraints. Based upon considerations
of multiplicative renormalisability and one-loop perturbation the-
ory, a vertex Ansatz was proposed in Ref. [24]. It involves a
T 3
µ(k, p) term whose coefficient is a3#A(k2, p2), with a3 + a6 =

1/2, where a6 is associated with the T 6
µ(k, p) term in Eq. (8). The

agreement between the coefficients’ functional forms is remark-
able. The choice (a3 = 0, a6 = 1/2) produces the Curtis–Pennington
Ansatz [33]. The system of equations we have solved prefers the al-
ternative (a3 = 1/2, a6 = 0). Corrections to Eq. (19) involve {Xi, i =
2,3,5}. They will depend on the gauge parameter and can affect
the balance between a3 and a6 on that domain within which it is
meaningful to think in these terms. Curiously, then, the existence

and strength of a Curtis–Pennington-like term in the vertex is de-
termined by the nonlocal quantity V A

µν(k, p) in Eq. (5).
The solution contains an explicit anomalous magnetic moment

term for the dressed-fermion; viz., a T 5
µ(k, p) term. We find that

its appearance is a straightforward consequence of Lagrangian-
based symmetries but its necessary existence has been argued by
other authors using very different reasoning [34–37]. With {Xi ≡ 0,
i = 1, . . . ,8}, the coefficient of T 5

µ(k, p) is “= −1 × #B(k2, p2);”
i.e., Eq. (20). We reiterate that the functional form is a predic-
tion. It signals the intimate connection of this term with DCSB.
In Ref. [24], following a line of argument based upon multiplica-
tive renormalisability and leading-order perturbation theory, a ver-
tex Ansatz was proposed in which the coefficient of this term is
“−4/3 × #B(k2, p2).” The latter analysis was performed in Landau
gauge whereas, herein, we have not needed to specify a gauge-
parameter value. The perfect agreement between the functional
forms is striking and the near agreement between the coefficients
is interesting. Corrections to Eq. (20) involve {Xi, i = 1,4,6}. They
will depend on the gauge parameter, and on that domain within
which it is meaningful to characterise the vertex Ansatz in the
manner of Ref. [24] they may be seen as modifications to the
coefficient of T 5

µ(k, p) therein. Thus, the strength of the explicit
anomalous magnetic moment term in the vertex is finally deter-
mined by the nonlocal quantity V A

µν(k, p) in Eq. (5).
It was explained in Ref. [37] that in the presence of an ex-

plicit anomalous magnetic moment term, agreement with per-
turbation theory requires the appearance of τ8(k, p) ≠ 0. (N.B.
τ8 herein corresponds to τ4 in the notation of Refs. [37,38].)
This was confirmed in Ref. [24], wherein the analysis yields a
vertex Ansatz that includes τ8 = a8#A(k2, p2), whose functional
form is precisely the same as that predicted herein, Eq. (21). We
find a8 = −1. The asymptotic analysis in Ref. [24] indicates that
1 + a2 + 2(a3 − a6 + a8) = 0, where a2 is associated with the τ2
term. If {Xi ≡ 0, i = 1, . . . ,8}, then (a2 = 0, a3 = 1/2, a6 = 0) and
hence the solution to Eqs. (1), (12), (13) is consistent with the
known constraint. Corrections to Eq. (21) involve {Xi, i = 2,3,8}.
They will depend on the gauge parameter and can modify the co-
efficient in Eq. (21) on that domain within which it is meaningful
to describe the vertex Ansatz in this way.

The preceding considerations lead us to a minimal Ansatz for
the vertex that describes the interaction between an Abelian gauge
boson and a dressed-fermion:

Γ M
µ (k, p) = Γ BC

µ (k, p) + Γ TM
µ (k, p), (22)

where Γ BC
µ (k, p) is constructed from Eqs. (7), (16), (A.1) and

Γ TM
µ (k, p) is built from Eqs. (8), (19)–(21), (A.2)–(A.9) plus the

results {τ j ≡ 0, j = 1,2,4,6,7}. We describe the Ansatz as min-
imal because it is the simplest structure that is simultaneously
compatible with the constraints expressed in Ref. [24] and all
known Ward–Green–Takahashi identities, both longitudinal and
transverse.

Employed to express the electromagnetic coupling of a dressed-
fermion described by a spinor that satisfies

ū(p,M )(iγ · p + M ) = 0 = (iγ · p + M )u(p,M ), (23)

the vertex produces a renormalisation-point-invariant anomalous
magnetic moment [24]

κ = 2M
2M δA − 2δB

σA − 2M 2δA + 2M δB
= −2MδM

1 + 2MδM
, (24)

where σA = ΣA(M 2,M 2), δA,B,M = #A,B,M(M 2,M 2). In the chi-
ral limit and absent DCSB, M = 0 and hence κ vanishes. In con-
trast, using the DCSB-improved gap equation kernel in Ref. [39],
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]
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Namely, a necessary consequence of solving Eqs. (1), (12), (13), is
the identification of Γ L

µ(k, p) with the result derived in Ref. [4];
i.e., the Ball–Chiu Ansatz. The system of equations is linear, so the
solution for Γ L

µ(k, p) is unique. Note that we made no attempt to
impose a particular kinematic structure on the solution. Irrespec-
tive of the tensor basis chosen, and we used a variety of forms,
not just those in Eqs. (A.1)–(A.9), this part of the solution is free of
kinematic singularities. The functional form of λ3(k, p) signals that
the coupling of a dressed-fermion to a gauge boson is necessarily
influenced heavily by DCSB.

The eight functions in Eq. (8) are also completely specified.
Their form depends on {Xi, i = 1, . . . ,8}; e.g., the simplest is

τ1(k, p) = 1
2

X1(k, p)

(k2 − p2)((k · p)2 − k2 p2)
. (18)

The expressions for {τ j, j = 2,4,6,7} are more complicated but,
in common with τ1, they do not explicitly involve the scalar func-
tions (A, B) which define the dressed-fermion propagator. This is
the material point. It means that any and all effects of (A, B) in
{τ j, j = 1,2,4,6,7} are only expressed implicitly through a solu-
tion of the vertex Bethe–Salpeter equation. (N.B. Our subsequent
discussion is independent of all other details about the forms of
{τ j, j = 2,4,6,7}.)

In contrast, the expressions for {τ j, j = 3,5,8} explicitly in-
volve combinations of A(k2), A(p2), B(k2), B(p2) and {Xi, i =
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results are obtained:

2τ3(k, p) = #A
(
k2, p2), (19)

τ5(k, p) = −#B
(
k2, p2), (20)
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The following features of the transverse part of the solution to
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A T 3
µ(k, p) term generally appears in the solution and, with

{Xi ≡ 0, i = 1, . . . ,8}, its coefficient is (1/2)#A(k2, p2), Eq. (19).
The functional form is a prediction of the transverse WGT identity
because, apart from our choice of tensor bases in Eqs. (A.1)–(A.9),
we implemented no other constraints. Based upon considerations
of multiplicative renormalisability and one-loop perturbation the-
ory, a vertex Ansatz was proposed in Ref. [24]. It involves a
T 3
µ(k, p) term whose coefficient is a3#A(k2, p2), with a3 + a6 =

1/2, where a6 is associated with the T 6
µ(k, p) term in Eq. (8). The

agreement between the coefficients’ functional forms is remark-
able. The choice (a3 = 0, a6 = 1/2) produces the Curtis–Pennington
Ansatz [33]. The system of equations we have solved prefers the al-
ternative (a3 = 1/2, a6 = 0). Corrections to Eq. (19) involve {Xi, i =
2,3,5}. They will depend on the gauge parameter and can affect
the balance between a3 and a6 on that domain within which it is
meaningful to think in these terms. Curiously, then, the existence

and strength of a Curtis–Pennington-like term in the vertex is de-
termined by the nonlocal quantity V A

µν(k, p) in Eq. (5).
The solution contains an explicit anomalous magnetic moment

term for the dressed-fermion; viz., a T 5
µ(k, p) term. We find that

its appearance is a straightforward consequence of Lagrangian-
based symmetries but its necessary existence has been argued by
other authors using very different reasoning [34–37]. With {Xi ≡ 0,
i = 1, . . . ,8}, the coefficient of T 5

µ(k, p) is “= −1 × #B(k2, p2);”
i.e., Eq. (20). We reiterate that the functional form is a predic-
tion. It signals the intimate connection of this term with DCSB.
In Ref. [24], following a line of argument based upon multiplica-
tive renormalisability and leading-order perturbation theory, a ver-
tex Ansatz was proposed in which the coefficient of this term is
“−4/3 × #B(k2, p2).” The latter analysis was performed in Landau
gauge whereas, herein, we have not needed to specify a gauge-
parameter value. The perfect agreement between the functional
forms is striking and the near agreement between the coefficients
is interesting. Corrections to Eq. (20) involve {Xi, i = 1,4,6}. They
will depend on the gauge parameter, and on that domain within
which it is meaningful to characterise the vertex Ansatz in the
manner of Ref. [24] they may be seen as modifications to the
coefficient of T 5

µ(k, p) therein. Thus, the strength of the explicit
anomalous magnetic moment term in the vertex is finally deter-
mined by the nonlocal quantity V A

µν(k, p) in Eq. (5).
It was explained in Ref. [37] that in the presence of an ex-

plicit anomalous magnetic moment term, agreement with per-
turbation theory requires the appearance of τ8(k, p) ≠ 0. (N.B.
τ8 herein corresponds to τ4 in the notation of Refs. [37,38].)
This was confirmed in Ref. [24], wherein the analysis yields a
vertex Ansatz that includes τ8 = a8#A(k2, p2), whose functional
form is precisely the same as that predicted herein, Eq. (21). We
find a8 = −1. The asymptotic analysis in Ref. [24] indicates that
1 + a2 + 2(a3 − a6 + a8) = 0, where a2 is associated with the τ2
term. If {Xi ≡ 0, i = 1, . . . ,8}, then (a2 = 0, a3 = 1/2, a6 = 0) and
hence the solution to Eqs. (1), (12), (13) is consistent with the
known constraint. Corrections to Eq. (21) involve {Xi, i = 2,3,8}.
They will depend on the gauge parameter and can modify the co-
efficient in Eq. (21) on that domain within which it is meaningful
to describe the vertex Ansatz in this way.

The preceding considerations lead us to a minimal Ansatz for
the vertex that describes the interaction between an Abelian gauge
boson and a dressed-fermion:

Γ M
µ (k, p) = Γ BC

µ (k, p) + Γ TM
µ (k, p), (22)

where Γ BC
µ (k, p) is constructed from Eqs. (7), (16), (A.1) and

Γ TM
µ (k, p) is built from Eqs. (8), (19)–(21), (A.2)–(A.9) plus the

results {τ j ≡ 0, j = 1,2,4,6,7}. We describe the Ansatz as min-
imal because it is the simplest structure that is simultaneously
compatible with the constraints expressed in Ref. [24] and all
known Ward–Green–Takahashi identities, both longitudinal and
transverse.

Employed to express the electromagnetic coupling of a dressed-
fermion described by a spinor that satisfies

ū(p,M )(iγ · p + M ) = 0 = (iγ · p + M )u(p,M ), (23)

the vertex produces a renormalisation-point-invariant anomalous
magnetic moment [24]

κ = 2M
2M δA − 2δB

σA − 2M 2δA + 2M δB
= −2MδM

1 + 2MδM
, (24)

where σA = ΣA(M 2,M 2), δA,B,M = #A,B,M(M 2,M 2). In the chi-
ral limit and absent DCSB, M = 0 and hence κ vanishes. In con-
trast, using the DCSB-improved gap equation kernel in Ref. [39],

S(p) =
1

i� · pA(p2) +B(p2)

❖ The quark propagator contributes to the longitudinal and transverse parts. The 
DCSB terms are highlighted.

❖ The unknown high-order terms contribute to the transverse part, i.e., the 
longitudinal part has been completely determined by the quark propagator.

✦ Defining proper projection tensors and 
contract them with the transverse WGTIs, 
one can decouple the WGTIs and obtain a 
group of equations for the vector vertex:
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2.3 DSE: Symmetries of kernel (discrete)

✦ Permutation:

+ +  etc.

✦ P and T symmetries:

+ + +

Lorentz covariance guarantees CPT-symmetry; T-symmetry is obtained for free.

✦ Charge-conjugation:

+  etc.
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✦ In the chiral limit, the color-singlet av-WGTI (chiral symmetry) is written as
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✦ Assuming DCSB, i.e., the mass function is nonzero, we have the following identity

✦ The axial-vector vertex must involve a pseudo scalar pole (Goldstone theorem)
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✦ In the chiral limit, the color-singlet av-WGTI (chiral symmetry) is written as

✦ Assuming DCSB, i.e., the mass function is nonzero, we have the following identity

✦ The axial-vector vertex must involve a pseudo scalar pole (Goldstone theorem)

✦ Assuming there is a radially excited pion, its leptonic decay constant vanishes



Si-xue Qin: 2017-07-24 @ Nanjing University, Nanjing / 2315

2.3 DSE: Symmetries of kernel (continuous)

✦ In the chiral limit, the color-singlet av-WGTI (chiral symmetry) is written as

✦ Assuming DCSB, i.e., the mass function is nonzero, we have the following identity

✦ The axial-vector vertex must involve a pseudo scalar pole (Goldstone theorem)

DCSB means much more than massless pseudo-scalar meson.

✦ Assuming there is a radially excited pion, its leptonic decay constant vanishes
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2.3 DSE: Symmetries of kernel (continuous)

2

I. NEW KERNEL

At the first place, I tried all existed Bethe-Salpeter kernels. I found that none of them is perfect. Their significant
flaw is that in the timelike region where bound-states exist they have artificial singularities. Because of the singularities,
bound-states can be not properly described. After analyzing numerous schemes to remove the singularities, I eventually
realize that we have to consider the color-singlet vector and axial-vector WGTIs, simultaneously, to construct a
kinematic-singularity-free kernel.

Let us start the story at the very beginning. The color-singlet vector and axial-vector WGTIs read, respectively,

Pµ�5µ(k, P ) + 2im�5(k, P ) = S�1(k+)i�5 + i�5S
�1(k�), (1)

iPµ�µ(k, P ) = S�1(k+)� S�1(k�). (2)

As we known, the quark propagator depends on the quark-gluon vertex while the vertices depend on the quark–anti-
quark scattering kernel. Can we build a relation between the vertex and the kernel? In order to answer the question,
we insert the following equations into the WGTIs,

�H
↵�(k, P ) = �H

↵� +

Z

q

K(k±, q±)↵↵0,�0� [S(q+)�
H(q, P )S(q�)]↵0�0 , (3)

S�1(k) = S�1
0 (k) +

Z

q

Dµ⌫(k � q)�µS(q)�⌫(q, k), (4)

where the color structure is suppressed because it just contributes a factor to the integral. We obtain
Z

q

K↵↵0,�0�{S(q+)[S�1(q+)� S�1(q�)]S(q�)}↵0�0 =

Z

q

Dµ⌫(k � q)�µ[S(q+)�⌫(q+, k+)� S(q�)�⌫(q�, k�)],

Z

q

K↵↵0,�0�{S(q+)[S�1(q+)�5 + �5S
�1(q�)]S(q�)}↵0�0 =

Z

q

Dµ⌫(k � q)�µ[S(q+)�⌫(q+, k+)�5 � �5S(q�)�⌫(q�, k�)].

Now we have two equations in hand to constrain the kernel. Plainly, two unknowns can be solved by the two equations.
That is to say, the kernel has two structures to be exposed by the WGTIs. In previous works, the vector and axial-
vector WGTIs were considered separately and the vertices in di↵erent channels were solved with di↵erent forms of the
kernel. If one enforces the vertices to share the same kernel, the WGTIs then can not be compatible with each other.
Here, we assume that all vertices share the same kernel which has two unknown structures to be determined by the
WGTIs. The “two” is perfect because there is neither incomplete nor overdetermined constraints for the kernel.
Explicitly, the kernel has the following structure,

K↵↵0,�0�(q±, k±)[S(q+) � S(q�)]↵0�0 = �Dµ⌫(k � q)�µS(q+) � S(q�)�⌫(q�, k�)

+Dµ⌫(k � q)�µS(q+) � K+
⌫ (q±, k±)

+Dµ⌫(k � q)�µS(q+) �5 � �5 K�
⌫ (q±, k±), (5)

where � denotes the inserted vertex. In the above expression, the first term in the right hand side is a one-
gluon exchange form with the dressed quark-gluon vertex, which is a straightforward improvement of the ladder
approximation. Obviously, this single term violates the WGTIs. The K± terms rescue the symmetries and can be
determined by the WGTIs. The �5 in the last term indicates that K± act on the vertex in two di↵erent ways.
Namely, K± have a sort of “chiral” relation as the vector and axial-vector WGTIs do. It should be pointed out that
the appearance of �5 is crucial because the kernel degenerates to the traditional one if �5 are simply removed.

For simplicity, suppressing the momentum dependences (Dµ⌫ = Dµ⌫(k � q), S+ ⌘ S(q+), S� ⌘ S(q�), �+
⌫ ⌘

�⌫(q+, k+), and ��
⌫ ⌘ �⌫(q�, k�)), we have

Z

q

Dµ⌫�µS+(�
+
⌫ � ��

⌫ ) =

Z

q

Dµ⌫�µS+(S
�1
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flaw is that in the timelike region where bound-states exist they have artificial singularities. Because of the singularities,
bound-states can be not properly described. After analyzing numerous schemes to remove the singularities, I eventually
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Now we have two equations in hand to constrain the kernel. Plainly, two unknowns can be solved by the two equations.
That is to say, the kernel has two structures to be exposed by the WGTIs. In previous works, the vector and axial-
vector WGTIs were considered separately and the vertices in di↵erent channels were solved with di↵erent forms of the
kernel. If one enforces the vertices to share the same kernel, the WGTIs then can not be compatible with each other.
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The Bethe-Salpeter equation and the quark gap equation are written as

The color-singlet axial-vector and vector WGTIs are written as
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vector WGTIs were considered separately and the vertices in di↵erent channels were solved with di↵erent forms of the
kernel. If one enforces the vertices to share the same kernel, the WGTIs then can not be compatible with each other.
Here, we assume that all vertices share the same kernel which has two unknown structures to be determined by the
WGTIs. The “two” is perfect because there is neither incomplete nor overdetermined constraints for the kernel.
Explicitly, the kernel has the following structure,
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where � denotes the inserted vertex. In the above expression, the first term in the right hand side is a one-
gluon exchange form with the dressed quark-gluon vertex, which is a straightforward improvement of the ladder
approximation. Obviously, this single term violates the WGTIs. The K± terms rescue the symmetries and can be
determined by the WGTIs. The �5 in the last term indicates that K± act on the vertex in two di↵erent ways.
Namely, K± have a sort of “chiral” relation as the vector and axial-vector WGTIs do. It should be pointed out that
the appearance of �5 is crucial because the kernel degenerates to the traditional one if �5 are simply removed.
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I. NEW KERNEL

At the first place, I tried all existed Bethe-Salpeter kernels. I found that none of them is perfect. Their significant
flaw is that in the timelike region where bound-states exist they have artificial singularities. Because of the singularities,
bound-states can be not properly described. After analyzing numerous schemes to remove the singularities, I eventually
realize that we have to consider the color-singlet vector and axial-vector WGTIs, simultaneously, to construct a
kinematic-singularity-free kernel.

Let us start the story at the very beginning. The color-singlet vector and axial-vector WGTIs read, respectively,

Pµ�5µ(k, P ) + 2im�5(k, P ) = S�1(k+)i�5 + i�5S
�1(k�), (1)

iPµ�µ(k, P ) = S�1(k+)� S�1(k�). (2)

As we known, the quark propagator depends on the quark-gluon vertex while the vertices depend on the quark–anti-
quark scattering kernel. Can we build a relation between the vertex and the kernel? In order to answer the question,
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Now we have two equations in hand to constrain the kernel. Plainly, two unknowns can be solved by the two equations.
That is to say, the kernel has two structures to be exposed by the WGTIs. In previous works, the vector and axial-
vector WGTIs were considered separately and the vertices in di↵erent channels were solved with di↵erent forms of the
kernel. If one enforces the vertices to share the same kernel, the WGTIs then can not be compatible with each other.
Here, we assume that all vertices share the same kernel which has two unknown structures to be determined by the
WGTIs. The “two” is perfect because there is neither incomplete nor overdetermined constraints for the kernel.
Explicitly, the kernel has the following structure,
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⌫ (q±, k±)

+Dµ⌫(k � q)�µS(q+) �5 � �5 K�
⌫ (q±, k±), (5)

where � denotes the inserted vertex. In the above expression, the first term in the right hand side is a one-
gluon exchange form with the dressed quark-gluon vertex, which is a straightforward improvement of the ladder
approximation. Obviously, this single term violates the WGTIs. The K± terms rescue the symmetries and can be
determined by the WGTIs. The �5 in the last term indicates that K± act on the vertex in two di↵erent ways.
Namely, K± have a sort of “chiral” relation as the vector and axial-vector WGTIs do. It should be pointed out that
the appearance of �5 is crucial because the kernel degenerates to the traditional one if �5 are simply removed.
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Here, we assume that all vertices share the same kernel which has two unknown structures to be determined by the
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where � denotes the inserted vertex. In the above expression, the first term in the right hand side is a one-
gluon exchange form with the dressed quark-gluon vertex, which is a straightforward improvement of the ladder
approximation. Obviously, this single term violates the WGTIs. The K± terms rescue the symmetries and can be
determined by the WGTIs. The �5 in the last term indicates that K± act on the vertex in two di↵erent ways.
Namely, K± have a sort of “chiral” relation as the vector and axial-vector WGTIs do. It should be pointed out that
the appearance of �5 is crucial because the kernel degenerates to the traditional one if �5 are simply removed.
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flaw is that in the timelike region where bound-states exist they have artificial singularities. Because of the singularities,
bound-states can be not properly described. After analyzing numerous schemes to remove the singularities, I eventually
realize that we have to consider the color-singlet vector and axial-vector WGTIs, simultaneously, to construct a
kinematic-singularity-free kernel.

Let us start the story at the very beginning. The color-singlet vector and axial-vector WGTIs read, respectively,

Pµ�5µ(k, P ) + 2im�5(k, P ) = S�1(k+)i�5 + i�5S
�1(k�), (1)

iPµ�µ(k, P ) = S�1(k+)� S�1(k�). (2)

As we known, the quark propagator depends on the quark-gluon vertex while the vertices depend on the quark–anti-
quark scattering kernel. Can we build a relation between the vertex and the kernel? In order to answer the question,
we insert the following equations into the WGTIs,
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Now we have two equations in hand to constrain the kernel. Plainly, two unknowns can be solved by the two equations.
That is to say, the kernel has two structures to be exposed by the WGTIs. In previous works, the vector and axial-
vector WGTIs were considered separately and the vertices in di↵erent channels were solved with di↵erent forms of the
kernel. If one enforces the vertices to share the same kernel, the WGTIs then can not be compatible with each other.
Here, we assume that all vertices share the same kernel which has two unknown structures to be determined by the
WGTIs. The “two” is perfect because there is neither incomplete nor overdetermined constraints for the kernel.
Explicitly, the kernel has the following structure,
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⌫ (q±, k±), (5)

where � denotes the inserted vertex. In the above expression, the first term in the right hand side is a one-
gluon exchange form with the dressed quark-gluon vertex, which is a straightforward improvement of the ladder
approximation. Obviously, this single term violates the WGTIs. The K± terms rescue the symmetries and can be
determined by the WGTIs. The �5 in the last term indicates that K± act on the vertex in two di↵erent ways.
Namely, K± have a sort of “chiral” relation as the vector and axial-vector WGTIs do. It should be pointed out that
the appearance of �5 is crucial because the kernel degenerates to the traditional one if �5 are simply removed.
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The kernel satisfies the following WGTIs:  quark propagator + quark-gluon vertex
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Assuming that the above identities are fulfilled with any gluon propagator model, one has to require their integral
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Inserting the ansatz for the kernel into its WGTIs, we have
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2.3 DSE: Symmetries of kernel (continuous)

Assuming the scattering kernel has the following structure:
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⌫ K�

⌫

Symmetry-rescuing termLadder-like term

2

I. NEW KERNEL

At the first place, I tried all existed Bethe-Salpeter kernels. I found that none of them is perfect. Their significant
flaw is that in the timelike region where bound-states exist they have artificial singularities. Because of the singularities,
bound-states can be not properly described. After analyzing numerous schemes to remove the singularities, I eventually
realize that we have to consider the color-singlet vector and axial-vector WGTIs, simultaneously, to construct a
kinematic-singularity-free kernel.

Let us start the story at the very beginning. The color-singlet vector and axial-vector WGTIs read, respectively,

Pµ�5µ(k, P ) + 2im�5(k, P ) = S�1(k+)i�5 + i�5S
�1(k�), (1)

iPµ�µ(k, P ) = S�1(k+)� S�1(k�). (2)

As we known, the quark propagator depends on the quark-gluon vertex while the vertices depend on the quark–anti-
quark scattering kernel. Can we build a relation between the vertex and the kernel? In order to answer the question,
we insert the following equations into the WGTIs,

�H
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↵� +
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q

K(k±, q±)↵↵0,�0� [S(q+)�
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S�1(k) = S�1
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Z

q

Dµ⌫(k � q)�µS(q)�⌫(q, k), (4)

where the color structure is suppressed because it just contributes a factor to the integral. We obtain
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Now we have two equations in hand to constrain the kernel. Plainly, two unknowns can be solved by the two equations.
That is to say, the kernel has two structures to be exposed by the WGTIs. In previous works, the vector and axial-
vector WGTIs were considered separately and the vertices in di↵erent channels were solved with di↵erent forms of the
kernel. If one enforces the vertices to share the same kernel, the WGTIs then can not be compatible with each other.
Here, we assume that all vertices share the same kernel which has two unknown structures to be determined by the
WGTIs. The “two” is perfect because there is neither incomplete nor overdetermined constraints for the kernel.
Explicitly, the kernel has the following structure,
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gluon exchange form with the dressed quark-gluon vertex, which is a straightforward improvement of the ladder
approximation. Obviously, this single term violates the WGTIs. The K± terms rescue the symmetries and can be
determined by the WGTIs. The �5 in the last term indicates that K± act on the vertex in two di↵erent ways.
Namely, K± have a sort of “chiral” relation as the vector and axial-vector WGTIs do. It should be pointed out that
the appearance of �5 is crucial because the kernel degenerates to the traditional one if �5 are simply removed.
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gluon exchange form with the dressed quark-gluon vertex, which is a straightforward improvement of the ladder
approximation. Obviously, this single term violates the WGTIs. The K± terms rescue the symmetries and can be
determined by the WGTIs. The �5 in the last term indicates that K± act on the vertex in two di↵erent ways.
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kernels to be identical, i.e.,
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Inserting the ansatz for the kernel into its WGTIs, we have

Eventually, the solution is straightforward:
✦ The form of scattering kernel is simple. 
✦ The kernel has no kinetic singularities. 
✦ All channels share the same kernel.

K±
⌫ = (2B⌃A�)

�1[(A� ⌥B�)�
⌃
⌫ ±B⌃�

�
⌫ ].

�⌃
⌫ = �+

⌫ + �5�
+
⌫ �5 ��

⌫ = �+
⌫ � ��

⌫

A� = i(� · q+)A+ � i(� · q�)A�

B� = B+ �B�B⌃ = 2B+

S(p) =
1

i� · pA(p2) +B(p2)
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2 DSE: Summary

Gluon propagator: Solve the gluon DSE or extract information from lattice QCD. The 
dressing function of gluon has a mass scale as that of quark.

Quark-gluon vertex: Solve the WGTIs resulting from the fundamental symmetries 
(gauge, chiral, and Lorentz symmetries). The vertex is significantly modified by DCSB.

Scattering kernel: Analyze continuous (color-singlet WGTIs) and discrete symmetries. 
The kernel preserves the chiral symmetry which makes pion to play a twofold role: 
Bound-state and Goldstone boson.
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3 Application: Simplest approximation of DSEs

I. Gluon propagator

II. Quark-gluon vertex

III. Scattering kernel
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3 Application: Simplest approximation of DSEs
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3 Application: Realization of DCSB & Confinement

✦ DCSB: 
1. The quark's effective mass 

runs with its momentum. 
2. The most of constituent 

quark mass comes from a 
cloud of gluons.

✦ Confinement: 
Although we exactly know 
few knowledge about 
confinement, the positivity 
violation of quark spectral 
density supports a fact that a 
asymptotically free quark is 
unphysical. In this sense, we 
say that quarks are confined.

Hadron Physics from DSEs of QCD

 

7

7Monday, October 25, 2010



Si-xue Qin: 2017-07-24 @ Nanjing University, Nanjing / 2321

3 Application: Rainbow-Ladder spectrum

✦ Light ground mesons

Tandy @ Beijing Lectures 2010



Si-xue Qin: 2017-07-24 @ Nanjing University, Nanjing / 2321

3 Application: Rainbow-Ladder spectrum

✦ Light ground mesons

Tandy @ Beijing Lectures 2010
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Hadron spectrum: systematically 
wrong ordering and magnitudes.
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3 Application: Sophisticated spectrum

Let the quark-gluon vertex includes both longitudinal and transverse parts:
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Summary

Based on LQCD and QCD’s symmetries, a systematic method to construct the gluon 
propagator, quark-gluon vertex, and scattering kernel, is proposed.

A spectrum of ground and (radially) excited states of light-flavor mesons is produced by 
the sophisticated method.

Bound-states are ideal objects connecting experiments and theories. QCD bound-state 
problems are difficult because of its relativistic and strongly-couple properties.
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Summary

Based on LQCD and QCD’s symmetries, a systematic method to construct the gluon 
propagator, quark-gluon vertex, and scattering kernel, is proposed.

A spectrum of ground and (radially) excited states of light-flavor mesons is produced by 
the sophisticated method.

Outlook

With the sophisticated method to solve the DSEs, we can push the approach to a wide 
range of applications in QCD bound-state problems, e.g., baryons and structures.

Hopefully, after more and more successful applications are presented, the DSEs may 
provide a faithful path to understand QCD and a powerful tool for general physics.

Bound-states are ideal objects connecting experiments and theories. QCD bound-state 
problems are difficult because of its relativistic and strongly-couple properties.


