

QCD Bound-State Problem via Dyson-Schwinger Equation

Si-xue Qin

(秦思学)

Department of Physics, Chongqing University (ANL, Frankfurt U, PKU)

2017-07-24 @ Nanjing University, Nanjing

 $E_{
m sys} < \sum E_i$

Si-xue Qin: 2017-07-24 @ Nanjing University, Nanjing

 $E_{
m sys} < \sum E_i$

 $E_{
m sys} < \sum E_i$

 $E_{
m sys} < \sum E_i$

1 Background: Why do we study bound-states?

1 Background: *Why* do we study bound-states?

1 Background: *Why* do we study bound-states?

1 Background: *How* do we study bound-states?

 $e^+ e^-$ hadronic annihilation

1 Background: *How* do we study bound-states?

 $e^+ e^-$ hadronic annihilation

Quantum Field Theory

Green functions

• Bethe-Salpeter equation

1 Background: Why is QCD bound-state problem difficult?

Relativistic bound states

"These problems are those involving bound states [...] such problems necessarily involve a breakdown of ordinary perturbation theory. [...] The pole therefore can only arise from a divergence of the sum of all diagrams [...]"

Strongly coupled systems

• Asymptotic freedom: Bonds between particles become asymptotically weaker as energy increases and distance decreases (Nobel Prize).

The QFT book vol1 p564 Weinberg

- Quark and Gluon Confinement: No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon.
- Dynamical Chiral Symmetry Breaking: Mystery of bound state masses, e.g., current quark mass (Higgs) is small, and no degeneracy between *parity partners*.

1 Background: Non-perturbative approaches of QCD

Si-xue Qin: 2017-07-24 @ Nanjing University, Nanjing

1 Background: Non-perturbative approaches of QCD

1 Background: Non-perturbative approaches of QCD

Lattice QCD, Dyson-Schwinger equations, chiral perturbation, AdS/QCD, NJL model, ...

G. Eichmann, arXiv:0909.0703

 Most equations are very complicated.

 Green functions of different orders couple together.

G. Eichmann, arXiv:0909.0703

CHONGQING UNIVERSI

 Most equations are very complicated.

□ Modeling

- Green functions of different orders couple together.
- **Truncation**

G. Eichmann, arXiv:0909.0703

2 DSE: Bound-states in terms of Green functions

✦ In QFT, bound-states are encoded in Green functions.

2 DSE: Bound-states in terms of Green functions

✦ In QFT, bound-states are encoded in Green functions.

The kernel can be decomposed by its orthogonal eigenbasis, which are classified by J^P quantum number and radial quantum number n_r

2 DSE: Bound-states in terms of Green functions

In QFT, bound-states are encoded in Green functions.

The kernel can be decomposed by its orthogonal eigenbasis, which are classified by J^P quantum number and radial quantum number n_r

Accordingly, the four-point Green function can be decomposed:

2 DSE: Most frequently used equations

One-body gap equation

Two-body Bethe-Salpeter equation

Three-body Faddeev equation

One-body gap equation

Two-body Bethe-Salpeter equation

Three-body Faddeev equation

One-body gap equation

- $T \xrightarrow{p^2 \to -M^2} \Psi = \overline{\Psi} = \overline{K} \xrightarrow{\circ} \Psi$
- Three-body Faddeev equation

One-body gap equation

Three-body Faddeev equation

One-body gap equation \bullet **Gluon propagator Two-body Bethe-Salpeter equation** ulletQuark-gluon vertex $\left(\begin{array}{c} T \end{array} \right) = \left| K \right| + \left| K \right|$ T $T \xrightarrow{P^2 \to -M^2} \Psi = \overline{\Psi} = K \xrightarrow{\bullet} \Psi$ **Scattering Kernel** Three-body Faddeev equation ++

2.1 DSE: Dynamically massive gluon

 In Landau gauge (Lorentz covariant and LQCD favored):

$$g^2 D_{\mu
u}(k) = \mathcal{G}(k^2) \left(\delta_{\mu
u} - rac{k_\mu k_
u}{k^2}
ight)$$

 Modeling the dress function: gluon mass scale + effective running coupling constant

$$\mathcal{G}(k^2) pprox rac{4\pi lpha_{RL}(k^2)}{k^2+m_g^2(k^2)}, \qquad m_g^2(k^2) = rac{M_g^4}{M_g^2+k^2}$$

The gluon propagator is modeled as two parts: Infrared + Ultraviolet. The former is an expansion of delta function; The latter is a form of one-loop perturbative calculation.

$$\delta^4(k) \stackrel{\omega \,\sim\, 0}{pprox} rac{1}{\pi^2} rac{1}{\omega^4} e^{-k^2/\omega^2} \qquad \qquad \mathcal{G}(s) = rac{8\pi^2}{\omega^4} D e^{-s/\omega^2} + rac{8\pi^2 \gamma_m \mathcal{F}(s)}{\ln \Big[au + (1+s/\Lambda_{
m QCD}^2)^2 \Big]}$$

2.1 DSE: Dynamically massive gluon

 In Landau gauge (Lorentz covariant and LQCD favored):

$$g^2 D_{\mu
u}(k) = \mathcal{G}(k^2) \left(\delta_{\mu
u} - rac{k_\mu k_
u}{k^2}
ight)$$

 Modeling the dress function: gluon mass scale + effective running coupling constant

$${\cal G}(k^2)pprox {4\pilpha_{RL}(k^2)\over k^2+m_g^2(k^2)}, \qquad m_g^2(k^2)={M_g^4\over M_g^2+k^2}$$

The gluon propagator is modeled as two parts: Infrared + Ultraviolet. The former is an expansion of delta function; The latter is a form of one-loop perturbative calculation.

$$\delta^4(k) \stackrel{\omega \,\sim\, 0}{pprox} rac{1}{\pi^2} rac{1}{\omega^4} e^{-k^2/\omega^2} \qquad \qquad \mathcal{G}(s) = rac{8\pi^2}{\omega^4} D e^{-s/\omega^2} + rac{8\pi^2 \gamma_m \mathcal{F}(s)}{\ln \Big[au + (1+s/\Lambda_{
m QCD}^2)^2 \Big]}$$

The gluon mass scale is *typical values of lattice QCD*: *Mg* in [0.6, 0.8] GeV.
 The gluon mass scale is inversely proportional to the confinement length.

 $[\,\Gamma_{oldsymbol{\mu}}(p,q)\,]_{lphaeta}=\{\gamma_{oldsymbol{\mu}},p_{oldsymbol{\mu}},q_{oldsymbol{\mu}}\} imes\{\mathbf{1},\ \gamma\cdot p,\ \gamma\cdot q,\ \sigma_{p,q}\}$

□ Gauge symmetry: vector WGTI

$$iq_{\mu}\Gamma_{\mu}(k,q)=S^{-1}(k)-S^{-1}(p)$$

$$[\Gamma_{\mu}(p,q)]_{lphaeta} = \{\gamma_{\mu}, p_{\mu}, q_{\mu}\} imes \{\mathbf{1}, \ \gamma \cdot p, \ \gamma \cdot q, \ \sigma_{p,q}\}$$

Chiral symmetry: axial-vector WGTI $q_{\mu}\Gamma^{A}_{\mu}(k,q) = S^{-1}(k)i\gamma_{5} + i\gamma_{5}S^{-1}(p) - 2im\Gamma_{5}(k,p)$

□ Lorentz symmetry + : transverse WGTIs

$$egin{aligned} q_{\mu}\Gamma_{
u}(k,p) - q_{
u}\Gamma_{\mu}(k,p) &= S^{-1}(p)\sigma_{\mu
u} + \sigma_{\mu
u}S^{-1}(k) \ &+ 2im\Gamma_{\mu
u}(k,p) + t_{\lambda}\epsilon_{\lambda\mu
u
ho}\Gamma_{
ho}^{A}(k,p) \ &+ A^{V}_{\mu
u}(k,p)\,, \end{aligned}$$
 $egin{aligned} q_{\mu}\Gamma_{
u}^{A}(k,p) - q_{
u}\Gamma_{\mu}^{A}(k,p) &= S^{-1}(p)\sigma_{\mu
u}^{5} - \sigma_{\mu
u}^{5}S^{-1}(k) \ &+ t_{\lambda}\epsilon_{\lambda\mu
u
ho}\Gamma_{
ho}(k,p) \ &+ V^{A}_{\mu
u}(k,p)\,, \qquad \sigma_{\mu
u}^{5} &= \sigma_{\mu
u}\gamma_{5} \end{aligned}$

He, PRD, 80, 016004 (2009)

$$[\Gamma_{\mu}(p,q)]_{lphaeta}=\{\gamma_{\mu},p_{\mu},q_{\mu}\} imes\{\mathbf{1},\ \gamma\cdot p,\ \gamma\cdot q,\ \sigma_{p,q}\}$$

$$egin{aligned} q_{\mu}\Gamma_{
u}(k,p) &= q_{
u}\Gamma_{\mu}(k,p) = S^{-1}(p)\sigma_{\mu
u} + \sigma_{\mu
u}S^{-1}(k) & V imes \Phi \ &+ 2im\Gamma_{\mu
u}(k,p) + t_{\lambda}\epsilon_{\lambda\mu
u
ho}\Gamma^{A}_{
ho}(k,p) & + A^{V}_{\mu
u}(k,p) \,, \ &+ A^{V}_{\mu
u}(k,p) \,, \ &+ A^{V}_{\mu
u}(k,p) \,, \ &+ t_{\lambda}\epsilon_{\lambda\mu
u
ho}\Gamma_{
ho}(k,p) & + t_{\lambda}\epsilon_{\lambda\mu
u
ho}\Gamma_{
ho}(k,p) & + V^{A}_{\mu
u}(k,p) \,, \ &+ \sigma^{5}_{\mu
u} = \sigma_{\mu
u}\gamma_{5} \end{aligned}$$

He, PRD, 80, 016004 (2009)

Defining proper projection tensors and contract them with the transverse WGTIs, one can decouple the WGTIs and obtain a group of equations for the vector vertex:

$$T^1_{\mu
u} = rac{1}{2}arepsilon_{lpha\mu
ueta} t_lpha q_eta {f I}_{
m D}, \qquad T^2_{\mu
u} = rac{1}{2}arepsilon_{lpha\mu
ueta} \gamma_lpha q_eta \,.$$

$$\begin{split} q_{\mu}i\Gamma_{\mu}(k,p) &= S^{-1}(k) - S^{-1}(p), \\ q \cdot tt \cdot \Gamma(k,p) &= T^{1}_{\mu\nu} \Big[S^{-1}(p)\sigma^{5}_{\mu\nu} - \sigma^{5}_{\mu\nu}S^{-1}(k) \Big] \\ &+ t^{2}q \cdot \Gamma(k,p) + T^{1}_{\mu\nu}V^{A}_{\mu\nu}(k,p), \\ q \cdot t\gamma \cdot \Gamma(k,p) &= T^{2}_{\mu\nu} \Big[S^{-1}(p)\sigma^{5}_{\mu\nu} - \sigma^{5}_{\mu\nu}S^{-1}(k) \Big] \\ &+ \gamma \cdot tq \cdot \Gamma(k,p) + T^{2}_{\mu\nu}V^{A}_{\mu\nu}(k,p). \end{split}$$

Defining proper projection tensors and contract them with the transverse WGTIs, one can decouple the WGTIs and obtain a group of equations for the vector vertex:

$$T^1_{\mu
u} = rac{1}{2}arepsilon_{lpha\mu
ueta} t_lpha q_eta {f I}_{
m D}, \qquad T^2_{\mu
u} = rac{1}{2}arepsilon_{lpha\mu
ueta} \gamma_lpha q_eta \,.$$

$$\begin{split} q_{\mu}i\Gamma_{\mu}(k,p) &= S^{-1}(k) - S^{-1}(p), \\ q \cdot tt \cdot \Gamma(k,p) &= T^{1}_{\mu\nu} \big[S^{-1}(p)\sigma^{5}_{\mu\nu} - \sigma^{5}_{\mu\nu}S^{-1}(k) \big] \\ &+ t^{2}q \cdot \Gamma(k,p) + T^{1}_{\mu\nu}V^{A}_{\mu\nu}(k,p), \\ q \cdot t\gamma \cdot \Gamma(k,p) &= T^{2}_{\mu\nu} \big[S^{-1}(p)\sigma^{5}_{\mu\nu} - \sigma^{5}_{\mu\nu}S^{-1}(k) \big] \\ &+ \gamma \cdot tq \cdot \Gamma(k,p) + T^{2}_{\mu\nu}V^{A}_{\mu\nu}(k,p). \end{split}$$

It is a group of full-determinant linear equations and a unique solution:

$$\Gamma^{\mathrm{Full}}_{\mu}(k,p) = \Gamma^{\mathrm{BC}}_{\mu}(k,p) + \Gamma^{\mathrm{T}}_{\mu}(k,p) + \Gamma^{\mathrm{FP}}_{\mu}(k,p)$$

Defining proper projection tensors and contract them with the transverse WGTIs, one can decouple the WGTIs and obtain a group of equations for the vector vertex:

$$T^1_{\mu
u} = rac{1}{2}arepsilon_{lpha\mu
ueta} t_lpha q_eta {f I}_{
m D}, \qquad T^2_{\mu
u} = rac{1}{2}arepsilon_{lpha\mu
ueta} \gamma_lpha q_eta \,.$$

$$\begin{split} q_{\mu} i \Gamma_{\mu}(k, p) &= S^{-1}(k) - S^{-1}(p), \\ q \cdot tt \cdot \Gamma(k, p) &= T^{1}_{\mu\nu} \big[S^{-1}(p) \sigma^{5}_{\mu\nu} - \sigma^{5}_{\mu\nu} S^{-1}(k) \big] \\ &+ t^{2} q \cdot \Gamma(k, p) + T^{1}_{\mu\nu} V^{A}_{\mu\nu}(k, p), \\ q \cdot t\gamma \cdot \Gamma(k, p) &= T^{2}_{\mu\nu} \big[S^{-1}(p) \sigma^{5}_{\mu\nu} - \sigma^{5}_{\mu\nu} S^{-1}(k) \big] \\ &+ \gamma \cdot tq \cdot \Gamma(k, p) + T^{2}_{\mu\nu} V^{A}_{\mu\nu}(k, p). \end{split}$$

- ★ It is a group of full-determinant linear equations and a unique solution: $\Gamma_{\mu}^{\text{Full}}(k,p) = \Gamma_{\mu}^{\text{BC}}(k,p) + \Gamma_{\mu}^{\text{T}}(k,p) + \Gamma_{\mu}^{\text{FP}}(k,p)$
- The unknown high-order terms contribute to the transverse part, i.e., the longitudinal part has been completely determined by the quark propagator.
- The quark propagator contributes to the longitudinal and transverse parts. The DCSB terms are highlighted.
 S(w) = ____1

$$egin{aligned} \Gamma^{ ext{BC}}_{\mu}(k,p) &= \gamma_{\mu}\Sigma_{A} + t_{\mu}\, t rac{\Delta_{A}}{2} - it_{\mu}\Delta_{B} \ \Gamma^{ ext{T}}_{\mu}(k,p) &= -\sigma_{\mu
u}\Delta_{B} + \gamma^{T}_{\mu}q^{2}rac{\Delta_{A}}{2} - \left(\gamma^{T}_{\mu}[q',t] - 2t^{T}_{\mu}q'
ight)rac{\Delta_{A}}{4} \end{aligned}$$

$$\begin{split} S(p) &= \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)} \\ \Sigma_{\phi}(x, y) &= \frac{1}{2} \big[\phi(x) + \phi(y) \big], \\ \Delta_{\phi}(x, y) &= \frac{\phi(x) - \phi(y)}{x - y}. \\ X_{\mu}^T &= X_{\mu} - \frac{q \cdot X q_{\mu}}{a^2} \end{split}$$

 $\blacklozenge \text{Permutation:} \qquad \mathscr{P}\mathcal{K}(q_{\pm},k_{\pm}) = \mathcal{K}^*(q_{\pm},k_{\pm}) = C \, K^{\mu}_R(-q_{\mp},-k_{\mp}) \, C^{-1} \otimes C \, K^{\mu}_L(-q_{\mp},-k_{\mp}) \, C^{-1}$

• Charge-conjugation: $C\mathcal{K}(q_{\pm},k_{\pm}) = \overline{\mathcal{K}}(q_{\pm},k_{\pm}) = C K_L^{\mu} (-k_{\pm},-q_{\pm})^T C^{-1} \otimes C K_R^{\mu} (-k_{\pm},-q_{\pm})^T C^{-1}$

$$\langle \chi_i | K | \chi_j
angle = ar{\chi}_i = ar{\chi}_i = \delta_{ij}$$

 $\blacklozenge \text{Permutation:} \qquad \mathscr{P}\mathcal{K}(q_{\pm},k_{\pm}) = \mathcal{K}^*(q_{\pm},k_{\pm}) = C \, K^{\mu}_R(-q_{\mp},-k_{\mp}) \, C^{-1} \otimes C \, K^{\mu}_L(-q_{\mp},-k_{\mp}) \, C^{-1}$

 $\blacklozenge Charge-conjugation: \quad C\mathcal{K}(q_{\pm},k_{\pm}) = \overline{\mathcal{K}}(q_{\pm},k_{\pm}) = C K_L^{\mu}(-k_{\pm},-q_{\pm})^T C^{-1} \otimes C K_R^{\mu}(-k_{\pm},-q_{\pm})^T C^{-1}$

$$\langle \chi_i | K | \chi_j
angle = ar{\chi}_i = ar{\chi}_i = \delta_{ij}$$

♦ P and T symmetries: $P \mathcal{K}(q_{\pm}, k_{\pm}) = \widehat{\mathcal{K}}(q_{\pm}, k_{\pm}) = P K_L^{\mu}(q_{\pm}, k_{\pm}) P^{-1} \otimes P K_R^{\mu}(q_{\pm}, k_{\pm}) P^{-1}$

$$K = \mathbf{1} \otimes \mathbf{1} + \gamma_5 \otimes \gamma_5 + \mathbf{1} \otimes \gamma_5 + \gamma_5 \otimes \mathbf{1}$$

 $\blacklozenge \text{Permutation:} \qquad \mathscr{P}\mathcal{K}(q_{\pm},k_{\pm}) = \mathcal{K}^*(q_{\pm},k_{\pm}) = C \, K^{\mu}_R(-q_{\mp},-k_{\mp}) \, C^{-1} \otimes C \, K^{\mu}_L(-q_{\mp},-k_{\mp}) \, C^{-1}$

 $\blacklozenge Charge-conjugation: \quad C\mathcal{K}(q_{\pm},k_{\pm}) = \overline{\mathcal{K}}(q_{\pm},k_{\pm}) = C K_L^{\mu}(-k_{\pm},-q_{\pm})^T C^{-1} \otimes C K_R^{\mu}(-k_{\pm},-q_{\pm})^T C^{-1}$

$$\langle \chi_i | K | \chi_j
angle = ar{\chi}_i = \delta_{ij}$$

♦ P and T symmetries: $P \mathcal{K}(q_{\pm}, k_{\pm}) = \widehat{\mathcal{K}}(q_{\pm}, k_{\pm}) = P K_L^{\mu}(q_{\pm}, k_{\pm}) P^{-1} \otimes P K_R^{\mu}(q_{\pm}, k_{\pm}) P^{-1}$

$$K = \mathbf{1} \otimes \mathbf{1} + \gamma_5 \otimes \gamma_5 + \mathbf{1} \otimes \gamma_5 + \gamma_5 \otimes \mathbf{1}$$

 $\blacklozenge \text{Permutation:} \qquad \mathscr{P}\mathcal{K}(q_{\pm},k_{\pm}) = \mathcal{K}^*(q_{\pm},k_{\pm}) = C \, K^{\mu}_R(-q_{\mp},-k_{\mp}) \, C^{-1} \otimes C \, K^{\mu}_L(-q_{\mp},-k_{\mp}) \, C^{-1}$

 $\blacklozenge Charge-conjugation: \quad C \mathcal{K}(q_{\pm},k_{\pm}) = \overline{\mathcal{K}}(q_{\pm},k_{\pm}) = C K_L^{\mu} (-k_{\pm},-q_{\pm})^T C^{-1} \otimes C K_R^{\mu} (-k_{\pm},-q_{\pm})^T C^{-1}$

$$\langle \chi_i | K | \chi_j
angle = ar{\chi}_i = \delta_{ij}$$

♦ P and T symmetries: $P \mathcal{K}(q_{\pm}, k_{\pm}) = \widehat{\mathcal{K}}(q_{\pm}, k_{\pm}) = P K_L^{\mu}(q_{\pm}, k_{\pm}) P^{-1} \otimes P K_R^{\mu}(q_{\pm}, k_{\pm}) P^{-1}$

$$K = \mathbf{1} \otimes \mathbf{1} + \gamma_5 \otimes \gamma_5 + \mathbf{1} \otimes \gamma_5 + \gamma_5 \otimes \mathbf{1}$$

Lorentz covariance guarantees CPT-symmetry; T-symmetry is obtained for free.

✤ In the chiral limit, the color-singlet av-WGTI (chiral symmetry) is written as

$$P_{\mu}\Gamma_{5\mu}(k,P)=S^{-1}\left(k+rac{P}{2}
ight)i\gamma_{5}+i\gamma_{5}S^{-1}\left(k-rac{P}{2}
ight)$$

✦ In the chiral limit, the color-singlet av-WGTI (chiral symmetry) is written as

$$P_{\mu}\Gamma_{5\mu}(k,P)=S^{-1}\left(k+rac{P}{2}
ight)i\gamma_{5}+i\gamma_{5}S^{-1}\left(k-rac{P}{2}
ight)$$

✦ Assuming DCSB, i.e., the mass function is nonzero, we have the following identity

 $\lim_{P
ightarrow 0}P_{\mu}\Gamma_{5\mu}(k,P)=2i\gamma_5B(k^2)
eq 0$

✤ In the chiral limit, the color-singlet av-WGTI (chiral symmetry) is written as

$$P_\mu \Gamma_{5\mu}(k,P) = S^{-1}\left(k+rac{P}{2}
ight)i\gamma_5 + i\gamma_5 S^{-1}\left(k-rac{P}{2}
ight)$$

✦ Assuming DCSB, i.e., the mass function is nonzero, we have the following identity

$$\lim_{P
ightarrow 0}P_{\mu}\Gamma_{5\mu}(k,P)=2i\gamma_5B(k^2)
eq 0$$

The axial-vector vertex must involve a pseudo scalar pole (Goldstone theorem)

$$\Gamma_{5\mu}(k,0) \sim rac{2i \gamma_5 f_\pi E_\pi(k^2) P_\mu}{P^2} \propto rac{P_\mu}{P^2} \qquad \qquad f_\pi E_\pi(k^2) = B(k^2) \,.$$

✦ In the chiral limit, the color-singlet av-WGTI (chiral symmetry) is written as

$$P_{\mu}\Gamma_{5\mu}(k,P)=S^{-1}\left(k+rac{P}{2}
ight)i\gamma_{5}+i\gamma_{5}S^{-1}\left(k-rac{P}{2}
ight)$$

✦ Assuming DCSB, i.e., the mass function is nonzero, we have the following identity

$$\lim_{P
ightarrow 0}P_{\mu}\Gamma_{5\mu}(k,P)=2i\gamma_5B(k^2)
eq 0$$

The axial-vector vertex must involve a pseudo scalar pole (Goldstone theorem)

$$\Gamma_{5\mu}(k,0) \sim rac{2i \gamma_5 f_\pi E_\pi(k^2) P_\mu}{P^2} \propto rac{P_\mu}{P^2} \qquad \qquad f_\pi E_\pi(k^2) = B(k^2)$$

Assuming there is a radially excited pion, its leptonic decay constant vanishes

$$\lim_{P^2 o M_{\pi_n}^2} \Gamma_{5\mu}(k,P) \sim rac{2i \gamma_5 f_{\pi_n} E_{\pi_n}(k,P) P_\mu}{P^2 + M_{\pi_n}^2} < \infty \qquad \qquad f_{\pi_n} \, = 0$$

✦ In the chiral limit, the color-singlet av-WGTI (chiral symmetry) is written as

$$P_{\mu}\Gamma_{5\mu}(k,P)=S^{-1}\left(k+rac{P}{2}
ight)i\gamma_{5}+i\gamma_{5}S^{-1}\left(k-rac{P}{2}
ight)$$

✦ Assuming DCSB, i.e., the mass function is nonzero, we have the following identity

$$\lim_{P
ightarrow 0}P_{\mu}\Gamma_{5\mu}(k,P)=2i\gamma_5B(k^2)
eq 0$$

The axial-vector vertex must involve a pseudo scalar pole (Goldstone theorem)

$$\Gamma_{5\mu}(k,0)\sim rac{2i\gamma_5 f_\pi E_\pi(k^2) P_\mu}{P^2}\propto rac{P_\mu}{P^2} \qquad f_\pi E_\pi(k^2)=B(k^2)$$

Assuming there is a radially excited pion, its leptonic decay constant vanishes

$$\lim_{P^2 o M_{\pi_n}^2} \Gamma_{5\mu}(k,P) \sim rac{2i \gamma_5 f_{\pi_n} E_{\pi_n}(k,P) P_\mu}{P^2 + M_{\pi_n}^2} < \infty \qquad \qquad f_{\pi_n} = 0$$

DCSB means **much more** than massless pseudo-scalar meson.

The Bethe-Salpeter equation and the quark gap equation are written as

$$\Gamma^{H}_{\alpha\beta}(k,P) = \gamma^{H}_{\alpha\beta} + \int_{q} \mathcal{K}(k_{\pm},q_{\pm})_{\alpha\alpha',\beta'\beta} [S(q_{\pm})\Gamma^{H}(q,P)S(q_{\pm})]_{\alpha'\beta'},$$
$$S^{-1}(k) = S^{-1}_{0}(k) + \int_{q} D_{\mu\nu}(k-q)\gamma_{\mu}S(q)\Gamma_{\nu}(q,k),$$

The color-singlet axial-vector and vector WGTIs are written as

$$P_{\mu}\Gamma_{5\mu}(k,P) + 2im\Gamma_{5}(k,P) = S^{-1}(k_{+})i\gamma_{5} + i\gamma_{5}S^{-1}(k_{-}),$$
$$iP_{\mu}\Gamma_{\mu}(k,P) = S^{-1}(k_{+}) - S^{-1}(k_{-}).$$

The Bethe-Salpeter equation and the quark gap equation are written as

$$\Gamma^{H}_{\alpha\beta}(k,P) = \gamma^{H}_{\alpha\beta} + \int_{q} \mathcal{K}(k_{\pm},q_{\pm})_{\alpha\alpha',\beta'\beta} [S(q_{\pm})\Gamma^{H}(q,P)S(q_{\pm})]_{\alpha'\beta'},$$
$$S^{-1}(k) = S^{-1}_{0}(k) + \int_{q} D_{\mu\nu}(k-q)\gamma_{\mu}S(q)\Gamma_{\nu}(q,k),$$

The color-singlet axial-vector and vector WGTIs are written as

$$P_{\mu}\Gamma_{5\mu}(k,P) + 2im\Gamma_{5}(k,P) = S^{-1}(k_{+})i\gamma_{5} + i\gamma_{5}S^{-1}(k_{-}),$$
$$iP_{\mu}\Gamma_{\mu}(k,P) = S^{-1}(k_{+}) - S^{-1}(k_{-}).$$

The Bethe-Salpeter equation and the quark gap equation are written as

$$\Gamma^{H}_{\alpha\beta}(k,P) = \gamma^{H}_{\alpha\beta} + \int_{q} \mathcal{K}(k_{\pm},q_{\pm})_{\alpha\alpha',\beta'\beta} [S(q_{\pm})\Gamma^{H}(q,P)S(q_{\pm})]_{\alpha'\beta'},$$
$$S^{-1}(k) = S^{-1}_{0}(k) + \int_{q} D_{\mu\nu}(k-q)\gamma_{\mu}S(q)\Gamma_{\nu}(q,k),$$

The color-singlet axial-vector and vector WGTIs are written as

$$P_{\mu}\Gamma_{5\mu}(k,P) + 2im\Gamma_{5}(k,P) = S^{-1}(k_{+})i\gamma_{5} + i\gamma_{5}S^{-1}(k_{-}),$$
$$iP_{\mu}\Gamma_{\mu}(k,P) = S^{-1}(k_{+}) - S^{-1}(k_{-}).$$

The Bethe-Salpeter equation and the quark gap equation are written as

$$\Gamma^{H}_{\alpha\beta}(k,P) = \gamma^{H}_{\alpha\beta} + \int_{q} \mathcal{K}(k_{\pm},q_{\pm})_{\alpha\alpha',\beta'\beta} [S(q_{\pm})\Gamma^{H}(q,P)S(q_{\pm})]_{\alpha'\beta'},$$
$$S^{-1}(k) = S^{-1}_{0}(k) + \int_{q} D_{\mu\nu}(k-q)\gamma_{\mu}S(q)\Gamma_{\nu}(q,k),$$

The color-singlet axial-vector and vector WGTIs are written as

$$P_{\mu}\Gamma_{5\mu}(k,P) + 2im\Gamma_{5}(k,P) = S^{-1}(k_{+})i\gamma_{5} + i\gamma_{5}S^{-1}(k_{-}),$$
$$iP_{\mu}\Gamma_{\mu}(k,P) = S^{-1}(k_{+}) - S^{-1}(k_{-}).$$

The kernel satisfies the following WGTIs: quark propagator + quark-gluon vertex

$$\int_{q} \mathcal{K}_{\alpha\alpha',\beta'\beta} \{ S(q_{+})[S^{-1}(q_{+}) - S^{-1}(q_{-})]S(q_{-}) \}_{\alpha'\beta'} = \int_{q} D_{\mu\nu}(k-q)\gamma_{\mu}[S(q_{+})\Gamma_{\nu}(q_{+},k_{+}) - S(q_{-})\Gamma_{\nu}(q_{-},k_{-})],$$

$$\int_{q} \mathcal{K}_{\alpha\alpha',\beta'\beta} \{ S(q_{+})[S^{-1}(q_{+})\gamma_{5} + \gamma_{5}S^{-1}(q_{-})]S(q_{-}) \}_{\alpha'\beta'} = \int_{q} D_{\mu\nu}(k-q)\gamma_{\mu}[S(q_{+})\Gamma_{\nu}(q_{+},k_{+})\gamma_{5} - \gamma_{5}S(q_{-})\Gamma_{\nu}(q_{-},k_{-})].$$

Assuming the scattering kernel has the following structure:

Assuming the scattering kernel has the following structure:

Assuming the scattering kernel has the following structure:

Inserting the ansatz for the kernel into its WGTIs, we have

$$\int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (\Gamma_{\nu}^{+} - \Gamma_{\nu}^{-}) = \int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (S_{+}^{-1} - S_{-}^{-1}) \mathcal{K}_{\nu}^{+} + \int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} \gamma_{5} (S_{+}^{-1} - S_{-}^{-1}) \gamma_{5} \mathcal{K}_{\nu}^{-},$$

$$\int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (\Gamma_{\nu}^{+} \gamma_{5} + \gamma_{5} \Gamma_{\nu}^{-}) = \int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (S_{+}^{-1} \gamma_{5} + \gamma_{5} S_{-}^{-1}) \mathcal{K}_{\nu}^{+} + \int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (\gamma_{5} S_{+}^{-1} + S_{-}^{-1} \gamma_{5}) \mathcal{K}_{\nu}^{-}.$$

Assuming the scattering kernel has the following structure:

Inserting the ansatz for the kernel into its WGTIs, we have

$$\int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (\Gamma_{\nu}^{+} - \Gamma_{\nu}^{-}) = \int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (S_{+}^{-1} - S_{-}^{-1}) \mathcal{K}_{\nu}^{+} + \int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} \gamma_{5} (S_{+}^{-1} - S_{-}^{-1}) \gamma_{5} \mathcal{K}_{\nu}^{-}$$

$$\int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (\Gamma_{\nu}^{+} \gamma_{5} + \gamma_{5} \Gamma_{\nu}^{-}) = \int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (S_{+}^{-1} \gamma_{5} + \gamma_{5} S_{-}^{-1}) \mathcal{K}_{\nu}^{+} + \int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (\gamma_{5} S_{+}^{-1} + S_{-}^{-1} \gamma_{5}) \mathcal{K}_{\nu}^{-}$$

Assuming the scattering kernel has the following structure:

$$S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)}$$
$$\Gamma_{\nu}^{\Sigma} = \Gamma_{\nu}^{+} + \gamma_5 \Gamma_{\nu}^{+} \gamma_5 \quad \Gamma_{\nu}^{\Delta} = \Gamma_{\nu}^{+} - \Gamma_{\nu}^{-}$$
$$B_{\Sigma} = 2B_{+} \qquad B_{\Delta} = B_{+} - B_{-}$$
$$A_{\Delta} = i(\gamma \cdot q_{+})A_{+} - i(\gamma \cdot q_{-})A_{-}$$

Inserting the ansatz for the kernel into its WGTIs, we have

$$\int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (\Gamma_{\nu}^{+} - \Gamma_{\nu}^{-}) = \int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (S_{+}^{-1} - S_{-}^{-1}) \mathcal{K}_{\nu}^{+} + \int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} \gamma_{5} (S_{+}^{-1} - S_{-}^{-1}) \gamma_{5} \mathcal{K}_{\nu}^{-}$$

$$\int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (\Gamma_{\nu}^{+} \gamma_{5} + \gamma_{5} \Gamma_{\nu}^{-}) = \int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (S_{+}^{-1} \gamma_{5} + \gamma_{5} S_{-}^{-1}) \mathcal{K}_{\nu}^{+} + \int_{q} D_{\mu\nu} \gamma_{\mu} S_{+} (\gamma_{5} S_{+}^{-1} + S_{-}^{-1} \gamma_{5}) \mathcal{K}_{\nu}^{-}$$

Eventually, the solution is straightforward:

 $\mathcal{K}_{\nu}^{\pm} = (2B_{\Sigma}A_{\Delta})^{-1} [(A_{\Delta} \mp B_{\Delta})\Gamma_{\nu}^{\Sigma} \pm B_{\Sigma}\Gamma_{\nu}^{\Delta}].$

The form of scattering kernel is simple.

- The kernel has no kinetic singularities.
- ✦ All channels share the same kernel.

2 DSE: Summary

 Gluon propagator: Solve the gluon DSE or extract information from lattice QCD. The dressing function of gluon has a mass scale as that of quark.

 Quark-gluon vertex: Solve the WGTIs resulting from the fundamental symmetries (gauge, chiral, and Lorentz symmetries). The vertex is significantly modified by DCSB.

 Scattering kernel: Analyze continuous (color-singlet WGTIs) and discrete symmetries. The kernel preserves the chiral symmetry which makes pion to play a twofold role: Bound-state and Goldstone boson.

I. Gluon propagator

II. Quark-gluon vertex

II. Quark-gluon vertex

3 Application: Realization of DCSB & Confinement

DCSB:

- 1. The quark's **effective mass** runs with its momentum.
- 2. The most of **constituent quark mass** comes from a cloud of gluons.

Confinement:

Although we exactly know few knowledge about confinement, the positivity violation of quark spectral density supports a fact that a asymptotically free quark is unphysical. In this sense, we say that quarks are confined.

$$S(p) = \frac{1}{i\gamma \cdot pA(p^2) + B(p^2)} = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)}$$

3 Application: Rainbow-Ladder spectrum

Light ground mesons

Summary of light meson results $u_{u=d} = 5.5 \text{ MeV}, m_s = 125 \text{ MeV}$ at $\mu = 1 \text{ GeV}$				
Pseudoscalar (PM, Roberts, PRC56, 3369)				
	expt.	calc.		
$-\langle \bar{q}q \rangle^{0}_{\mu}$	(0.236 GeV) ³	(0.241 [†]) ³		
m_{π}	0.1385 GeV	0.138 [†]		
fπ	0.0924 GeV	0.093 [†]		
m_K	0.496 GeV	0.497 [†]		
fк	0.113 GeV	0.109		
Charge radii (PM, Tandy, PRC62, 055204)				
r_{π}^2	0.44 fm ²	0.45		
$r_{K^{+}}^{2}$	0.34 fm ²	0.38		
$r_{K^{0}}^{2}$	-0.054 fm ²	-0.086		
γπγ transition (PM, Tandy, PRC65, 045211)				
8πγγ	0.50	0.50		
$r_{\pi\gamma\gamma}^2$	0.42 fm ²	0.41		
Weak Kla	3 decay (PM, Ji	, PRD64, 014032)		
$\lambda_+(e3)$	0.028	0.027		
$\Gamma(K_{e3})$	7.6 ⋅10 ⁶ s ⁻¹	7.38		
$\Gamma(K_{\mu 3})$	5.2 ·10 ⁶ s ⁻¹	4.90		

Vector mesons	(PM, Tandy, PRC60, 055214)			
$m_{ ho/\omega}$	0.770 GeV	0.742		
$f_{ ho/\omega}$	0.216 GeV	0.207		
$m_{K^{\star}}$	0.892 GeV	0.936		
<i>f</i> _{K*}	0.225 GeV	0.241		
m _φ	1.020 GeV	1.072		
f _φ	0.236 GeV	0.259		
Strong decay (Jarecke, PM, Tandy, PRC67, 035202)				
β ρππ	6.02	5.4		
8 _{¢KK}	4.64	4.3		
<i>8K</i> * <i>K</i> π	4.60	4.1		
8K*Kπ Radiative decay	4.60	4.1 (PM, nucl-th/0112022)		
$g_{K^*K\pi}$ Radiative decay $g_{\rho\pi\gamma}/m_{\rho}$	4.60 0.74	4.1 (PM, nucl-th/0112022) 0.69		
$g_{K^*K\pi}$ Radiative decay $g_{\rho\pi\gamma}/m_{\rho}$ $g_{\omega\pi\gamma}/m_{\omega}$	4.60 0.74 2.31	4.1 (PM, nucl-th/0112022) 0.69 2.07		
$g_{K^*K\pi}$ Radiative decay $g_{\rho\pi\gamma}/m_{\rho}$ $g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^*K\gamma}/m_K)^+$	4.60 0.74 2.31 0.83	4.1 (PM, nucl-th/0112022) 0.69 2.07 0.99		
$g_{K^*K\pi}$ Radiative decay $g_{\rho\pi\gamma}/m_{\rho}$ $g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^*K\gamma}/m_K)^+$ $(g_{K^*K\gamma}/m_K)^0$	4.60 0.74 2.31 0.83 1.28	4.1 (PM, nucl-th/0112022) 0.69 2.07 0.99 1.19		
$g_{K^*K\pi}$ Radiative decay $g_{p\pi\gamma}/m_p$ $g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^*K\gamma}/m_K)^+$ $(g_{K^*K\gamma}/m_K)^0$ Scattering lengti	4.60 0.74 2.31 0.83 1.28 h (PM, Cota	4.1 (PM, nucl-th/0112022) 0.69 2.07 0.99 1.19 anch, PRD66, 116010)		
$g_{K^*K\pi}$ Radiative decay $g_{\rho\pi\gamma}/m_{\rho}$ $g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^*K\gamma}/m_K)^+$ $(g_{K^*K\gamma}/m_K)^0$ Scattering lengti a_0^0	4.60 0.74 2.31 0.83 1.28 h (PM, Cota 0.220	4.1 (PM, nucl-th/0112022) 0.69 2.07 0.99 1.19 anch, PRD66, 116010) 0.170		
$g_{K^*K\pi}$ Radiative decay $g_{\rho\pi\gamma}/m_{\rho}$ $g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^*K\gamma}/m_K)^+$ $(g_{K^*K\gamma}/m_K)^0$ Scattering lengt a_0^0 a_0^2	4.60 0.74 2.31 0.83 1.28 h (PM, Cota 0.220 0.044	4.1 (PM, nucl-th/0112022) 0.69 2.07 0.99 1.19 anch, PRD66, 116010) 0.170 0.045		

Tandy @ Beijing Lectures 2010

3 Application: Rainbow-Ladder spectrum

Light ground mesons

Pseudoscalar (PM, Roberts, PRC56, 3369) expt. calc. $-\langle \bar{q}q \rangle^0_\mu$ (0.236 GeV)^3 (0.241 [†])^3 m 0.1385 CeV 0.129 [†]				
expt. calc. $-\langle \bar{q}q \rangle^0_\mu$ (0.236 GeV)^3 (0.241 [†])^3 m 0.1385 GeV 0.128 [†]				
$-\langle \bar{q}q \rangle^{0}_{\mu}$ (0.236 GeV) ³ (0.241 [†]) ³				
m 0.1395 CoV 0.139				
m_{π} 0.1305 GeV 0.130				
f_{π} 0.0924 GeV 0.093 [†]				
<i>m</i> _K 0.496 GeV 0.497 [†]				
<i>f_K</i> 0.113 GeV 0.109				
Charge radii (PM, Tandy, PRC62, 055204)				
r_{π}^2 0.44 fm ² 0.45				
$r_{K^+}^2$ 0.34 fm ² 0.38				
$r_{K^0}^2$ -0.054 fm ² -0.086				
γπγ transition (PM, Tandy, PRC65, 045211)				
<i>β</i> πγγ 0.50 0.50				
$r_{\pi\gamma\gamma}^2$ 0.42 fm ² 0.41				
Weak <i>K</i> ₁₃ decay (PM, Ji, PRD64, 014032)				
λ ₊ (e3) 0.028 0.027				
$\Gamma(K_{c3})$ 7.6 ·10 ⁶ s ⁻¹ 7.38				
$\Gamma(K_{\mu3})$ 5.2 ·10 ⁶ s ⁻¹ 4.90				

Vector mesons	(PM, Tandy, PRC60, 055214)			
m _{ρ/ω}	0.770 GeV	0.742		
f _{ρ/ω}	0.216 GeV	0.207		
$m_{K^{\star}}$	0.892 GeV	0.936		
<i>f</i> _{K*}	0.225 GeV	0.241		
m _o	1.020 GeV	1.072		
f _φ	0.236 GeV	0.259		
Strong decay (Jarecke, PM, Tandy, PRC67, 035202)				
8рлл	6.02	5.4		
8 _{¢KK}	4.64	4.3		
<i>8K* K</i> π	4.60	4.1		
Radiative decay (PM, nucl-th/0112022)				
8 m	0.74	0.60		
Sprt/ mp	0.74	0.09		
8ρπγ/ <i>m</i> ρ 8ωπγ/ <i>m</i> ω	0.74 2.31	2.07		
$g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^{\star}K\gamma}/m_{K})^{+}$	0.74 2.31 0.83	0.89 2.07 0.99		
$g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^{\star}K\gamma}/m_{K})^{+}$ $(g_{K^{\star}K\gamma}/m_{K})^{0}$	0.74 2.31 0.83 1.28	0.89 2.07 0.99 1.19		
$g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^{\star}K\gamma}/m_{K})^{+}$ $(g_{K^{\star}K\gamma}/m_{K})^{0}$ Scattering lengti	0.74 2.31 0.83 1.28 h (PM, Cota	2.07 0.99 1.19 anch, PRD66, 116010)		
$g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^*K\gamma}/m_K)^+$ $(g_{K^*K\gamma}/m_K)^0$ Scattering lengti a_0^0	0.74 2.31 0.83 1.28 h (PM, Coti 0.220	2.07 0.99 1.19 anch, PRD66, 116010) 0.170		
$s_{\mu \pi \gamma}/m_{\omega}$ $(g_{K^{\star}K\gamma}/m_{K})^{+}$ $(g_{K^{\star}K\gamma}/m_{K})^{0}$ Scattering length a_{0}^{0}	0.74 2.31 0.83 1.28 h (PM, Cota 0.220 0.044	2.07 0.99 1.19 anch, PRD66, 116010) 0.170 0.045		
$\begin{array}{c} {}_{SPR\gamma} (m_{P}) \\ {}_{g_{00}\pi\gamma}/m_{\omega} \\ (g_{K^{\star}K\gamma}/m_{K})^{+} \\ (g_{K^{\star}K\gamma}/m_{K})^{0} \\ \hline \\ {}_{Scattering lengtl} \\ a_{0}^{0} \\ a_{0}^{2} \\ a_{1}^{1} \end{array}$	0.74 2.31 0.83 1.28 h (PM, Coti 0.220 0.044 0.038	0.69 2.07 0.99 1.19 anch, PRD66, 116010) 0.170 0.045 0.036		

Tandy @ Beijing Lectures 2010

Heavy ground and radially excited states

3 Application: Rainbow-Ladder spectrum

Light ground mesons

Heavy ground and radially excited states

Si-xue Qin: 2017-07-24 @ Nanjing University, Nanjing

3 Application: Sophisticated spectrum

Let the quark-gluon vertex includes both longitudinal and transverse parts:

$$\Gamma_\mu(p,q) = \Gamma^{
m BC}_\mu(p,q) + \eta\,\Gamma^{
m T}_\mu(p,q) \qquad \Gamma^{
m T}_\mu(p,q) = \Delta_B au_\mu^8 + \Delta_A au_\mu^4 \qquad \qquad rac{ au_\mu^4 = l_\mu^1 \gamma \cdot k + i \gamma_\mu^1 \sigma_{
u
ho} l_
u k_
ho}{ au_\mu^8 = 3 \, l_\mu^{
m T} \sigma_{
u
ho} l_
u k_
ho} / (l^{
m T} \cdot l^{
m T}).$$

TABLE I: The meson spectrum (Full vertex, $(D\omega)^{1/3} = 0.637$ GeV, $\omega = 0.60$ GeV, $\eta = 1.00$ and $m_q = 3.0$ MeV).

3 Application: Sophisticated spectrum

Let the quark-gluon vertex includes both longitudinal and transverse parts:

$$\Gamma_\mu(p,q) = \Gamma^{
m BC}_\mu(p,q) + \eta \Gamma^{
m T}_\mu(p,q) \qquad \Gamma^{
m T}_\mu(p,q) = \Delta_B au_\mu^8 + \Delta_A au_\mu^4 \qquad \qquad rac{ au_\mu^4 = l_\mu^1 \gamma \cdot k + i \gamma_\mu^1 \sigma_{
u
ho} l_
u k_
ho}{ au_\mu^8 = 3 \, l_\mu^{
m T} \sigma_{
u
ho} l_
u k_
ho} / (l^{
m T} \cdot l^{
m T}).$$

TABLE I: The meson spectrum (Full vertex, $(D\omega)^{1/3} = 0.637$ GeV, $\omega = 0.60$ GeV, $\eta = 1.00$ and $m_q = 3.0$ MeV).

Summary

- Bound-states are ideal objects connecting experiments and theories. QCD bound-state problems are difficult because of its relativistic and strongly-couple properties.
- Based on LQCD and QCD's symmetries, a systematic method to construct the gluon propagator, quark-gluon vertex, and scattering kernel, is proposed.
- A spectrum of ground and (radially) excited states of light-flavor mesons is produced by the sophisticated method.

Summary

- Bound-states are ideal objects connecting experiments and theories. QCD bound-state problems are difficult because of its relativistic and strongly-couple properties.
- Based on LQCD and QCD's symmetries, a systematic method to construct the gluon propagator, quark-gluon vertex, and scattering kernel, is proposed.
- A spectrum of ground and (radially) excited states of light-flavor mesons is produced by the sophisticated method.

Outlook

With the sophisticated method to solve the DSEs, we can push the approach to a wide range of applications in QCD bound-state problems, e.g., baryons and structures.

 Hopefully, after more and more successful applications are presented, the DSEs may provide a faithful path to understand QCD and a powerful tool for general physics.