

The specific charged hadron yield in electron semi-inclusive deep inelastic scattering off proton and deuteron

Xinglong Li

China Institute of Atomic Energy

Collaborators

- CIAE (China Institute of Atomic Energy)
 - Xiaomei Li
 - Benhao Sa
 - Yuliang Yan
 - Xinglong Li
 - Baoguo Dong
- CCNU (Central China Normal University)
 Daimei Zhou
 Yun Cheng
 Xu Cai

Outline

- Introduction
- Our work
- Results
- Summary

Outline

- Introduction
- Our work
- Results
- Summary

Semi-inclusive deep inelastic scattering (SIDIS)

SIDIS: the scattered lepton and one specific hadron are measured.

We simulate SIDIS with PACIAE 2.2, which has been extended for

l+p, l+n and l+A. (l: lepton, p: proton, n: neutron, A: nucleus)

HERMES e⁻⁺p & e⁻⁺D SIDIS experiments

e⁻ energy: 27.6 GeV. pure gas target: p, D.

At this low energy scale, HERMES provides the most precise results for multiplicities currently available.

Multiplicity: the normalized yield of specific hadron in the final state in SIDIS. A means of extracting FFs(fragmentation functions).

$$\frac{1}{N_{DIS}}\frac{dN^{h}}{dz} = \frac{1}{N_{DIS}}\int d^{5}N^{h}(x_{B}, Q^{2}, z, P_{h\perp}, \phi_{h})dx_{B}dQ^{2}dP_{h\perp}d\phi_{h}$$

 N_{DIS} : DIS yield (yield of scattered e⁻), N^{h} : yield of specific hadron (π^{\pm} , K^{\pm} ...)

(z: Fractional energy of hadron h)

Our recent work

- Extended PACIAE model for l+p , l+n and l+A
- Calculated σ_{DIS} of l+A.
- Simulated e⁻+p and e⁻+D with PACIAE model and calculated the multiplicities of π^{\pm} ,K[±]
- Compared the results with HERMES

Outline

- Introduction
- Our work
- Results
- Summary

• PACIAE is a parton and hadron cascade model based on PYTHIA.

Applications: e++e-, l+p, l+n, p+p, ..., l+A, p+A, A+A

• PYTHIA is a famous model for relativistic hadron-hadron collisions.

Applications: e++e-, l+p, l+n, p+p, ...

- The PACIAE model is composed of
 - (1) Parton initialization
 - (2) Parton rescattering
 - (3) Hadronization
 - (4) Hadron rescattering

(1) Parton Initialization (e.g. A+A)

- a) Initialization of nucleons in spatial phase space and momentum phase space.
- b) Nucleus-nucleus collision is decomposed into nucleonnucleon (NN) collisions.
- c) NN collision is described by the PYTHIA model, and the string fragmentation is switched-off.
- d) The diquarks (anti-diquarks) are broken into quarks (antiquarks)

so the consequence is a partonic final state (quarks, antiquarks, and gluons, beside a few remnants).

(2) Parton Rescattering

Only $2\rightarrow 2$ process are considered, $2\rightarrow 2$ Leading-Order (LO-) pQCD differential cross sections.

(3) Hadronization

Two options: String Fragmentation (SF) model from PYTHIA; Coalescence model by us.

The SF model is used here.

(4) Hadron Rescattering

Only $p, n, \pi, k, \Lambda, \Sigma, \Delta, \rho(\omega), J / \Psi$ and their antiparticles are considered, and the usual two-body collision model is used.

We have updated PACIAE 2.0 to PACIAE 2.2 with extension for $\,l{+}p$, $\,l{+}n$ and $\,l{+}A$.

l+p and l+n are based on PYTHIA 6.4 directly.

As for l+A, we decomposed it into l+nucleon. So we need σ_{DIS} of l+A to decide whether l+nucleon will occur more than once. (We set that DIS occurs in each event).

DIS cross section (my work)

In leading order L+A differential DIS cross section: (m_l is ignored)

$$\frac{d^2 \sigma_{NC}}{dxdy} = \frac{4\pi \alpha^2 M E_i}{Q^4} \Big[\Big(2 - 2y + y^2 \Big) F_2^{NC} - \lambda y \Big(2 - y \Big) x F_3^{NC} \Big]$$

$$\frac{d^2 \sigma_{CC}}{dxdy} = \frac{G_F^2 M E_i}{8\pi} \Big(\frac{M_W^2}{Q^2 + M_W^2} \Big)^2 \Big(1 + e\lambda \Big)^2 \Big[\Big(2 - 2y + y^2 \Big) W_2 - \lambda y \Big(2 - y \Big) x W_3 \Big]$$

Structure functions ($F_2 NC$, $xF_3 NC$, W_2 , xW_3) can be calculated by PDFs of the nucleus.

Then we can get σ_{DIS} :

$$\sigma_{NC(CC)} = \iint \frac{d^2 \sigma_{NC(CC)}}{dx dy} dx dy , \quad \sigma_{DIS} = \sigma_{NC} + \sigma_{CC}$$

The scope of x,y is determined by $\cos^2\theta \le 1$ and Q_{\min}^2, W_{\min}^2

(x: Bjorken scaling variable. y: Fractional energy of the exchanged boson PDFs: pardon distribution functions . θ : scattering angle of the lepton)

DIS cross section

(s^{1/2}: center-of-mass energy)

Simulation of e⁻⁺p and e⁻⁺D

- Approximation that σ_{DIS} of l+A is equal to that of e⁻+p was adopted according to the DIS cross section results.
- 500 000 events were simulated. We set that DIS occurs in each event, so the DIS yield (N_{DIS}) was also 500 000.

Outline

- Introduction
- Our work
- Results
- Summary

Comparison with data and other theories

The PACIAE reproduced HERMES data nearly as well as HLMC (HERMES Lund Monte Carlo).

The differences between HLMC and PACIAE

	HLMC	PACIAE (default)
base	JETSET 7.4 & PYTHIA 5.7	PYTHIA 6.4
parton rescattering	no	yes
hadron rescattering	no	yes
detector simulation & reconstruction process	yes	no
fragmentation parameters	tuned for HERMES kinematic conditions	default

(HLMC: HERMES Lund Monte Carlo)

Outline

- Introduction
- Our work
- Results
- Summary

Summary

- PACIAE model has been extended for l+p , l+n and l+A.
- Default PACIAE model reproduced HERMES data of multiplicities nearly as well as HLMC.

Thanks for your attention!

|--|

 $\overline{k = \left(E, \vec{k}\right), k' = \left(E', \vec{k}'\right)}$ 4-momenta of incident and scattered lepton l' $P \stackrel{\text{lab}}{=} \left(M, \vec{0} \right)$ 4-momentum of the target nucleon q = k - k'4-momentum of the virtual photon γ^* $\nu = \frac{P \cdot q}{M} \stackrel{\text{lab}}{=} E - E'$ Energy transfer to the target $Q^2 = -q^2 \stackrel{\text{lab}}{\approx} 4EE' \sin^2\left(\frac{\theta}{2}\right)$ Negative squared 4-momentum transfer $W^2 = (P+q)^2$ Squared invariant mass of the photon-nucleon system $x_{\rm B} = \frac{Q^2}{2P \cdot q} \stackrel{\rm lab}{=} \frac{Q^2}{2M \cdot q}$ Bjorken scaling variable $y = \frac{P \cdot q}{P \cdot k} \stackrel{\text{lab}}{=} \frac{v}{E}$ Fractional energy of the virtual photon Azimuthal angle between the lepton scattering plane and the hadron production plane
$$\begin{split} z &= \frac{P \cdot P_h}{P \cdot q} \stackrel{\text{lab}}{=} \frac{E_h}{\nu} \\ P_{h\perp} \stackrel{\text{lab}}{=} \frac{\left| \vec{q} \times \vec{P_h} \right|}{|\vec{a}|} \end{split}$$
Fractional energy of hadron hComponent of the hadron momentum, P_h , transverse to q

$$\begin{split} [F_{2}^{\gamma}, F_{2}^{\gamma Z}, F_{2}^{Z}] &= x \sum_{q} [e_{q}^{2}, 2e_{q}g_{V}^{q}, g_{V}^{q^{2}} + g_{A}^{q^{2}}](q + \overline{q}), \\ [xF_{3}^{\gamma}, xF_{3}^{\gamma Z}, xF_{3}^{Z}] &= x \sum_{q} [0, 2e_{q}g_{A}^{q}, 2g_{V}^{q}g_{A}^{q}](q - \overline{q}) \\ \\ &\equiv \text{#a.c. xf-ccita}, \lambda \text{free}, \lambda \text{free}, \mu^{-}, \tau^{-} \vec{x}_{V_{e}}, \overline{\nu}_{\mu}, \overline{\nu}_{\tau} \text{ free}. \end{split}$$

$$F_2^W = 2x\left(u + \overline{d} + c + \overline{s} + t + \overline{b}\right),$$

$$xF_3^W = 2x\left(u - \overline{d} + c - \overline{s} + t - \overline{b}\right)$$

入射轻子为 e^+, μ^+, τ^+ 或 v_e, v_μ, v_τ 时:

$$F_2^W = 2x\left(\overline{u} + d + \overline{c} + s + \overline{t} + b\right),$$
$$xF_3^W = 2x\left(-\overline{u} + d - \overline{c} + s - \overline{t} + b\right)$$

$$\begin{aligned} \frac{d^2 \sigma_I}{dxdy} &= \frac{8\pi \alpha^2 M E_i}{Q^4} \left(c_1 F_1^I + c_2 F_2^I + c_3 x F_3^I \right) \\ c_1 &= xy^2 - \frac{\left(m_i^2 - m_o^2\right)^2}{8xM^2 E_i} - \frac{y \left(5m_i^2 - m_o^2\right)}{4M E_i} \\ c_2 &= 1 - y + \frac{\left(m_i^2 - m_o^2\right) \left(4x^2M^2 + m_i^2 - m_o^2\right)}{16x^2M^2 E_i^2} - \frac{\left(m_i^2 - m_o^2\right) (y - 4) + 4M^2 x^2 y}{8xM E_i} \\ c_3 &= \frac{\lambda y(y - 2)}{2} - \frac{\lambda y \left(m_i^2 - m_o^2\right)}{4xM E_i} \\ I &= clNC, nuNC, clCC, nuCC \\ I &= clNC, nuNC, clCC, nuCC \\ xF_3^{clNC} &= -\left(g_V^{cl} + e\lambda g_A^{cl}\right) \eta_{yZ} x F_3^{YZ} + \left(g_V^{cl} + e\lambda g_A^{cl}\right)^2 \eta_Z x F_3^Z \\ F_2^{clCC} &= (1 + e\lambda)^2 \eta_W F_2^W, \\ xF_3^{clCC} &= (1 + e\lambda)^2 \eta_W F_2^W, \\ xF_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_2^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_2^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nuNC} &= \left(g_V^{nu} + g_A^{nu}\right)^2 \eta_Z x F_3^Z \\ F_3^{nu} &= \left(g_V^{nu} + g_A$$

DIS cross section

For $d\sigma_{NC}/dx$, the calculated results agree with the experimental data.

$$E_e = 27.6 \,\text{GeV} \rightarrow S^{1/2} = 7.3 \,\text{GeV}$$

then $\sigma_{DIS} = \begin{cases} 1.6 \times 10^{-4} \,\text{mb e}^- + \text{p} \\ 1.3 \times 10^{-4} \,\text{mb e}^- + \text{D} \end{cases}$

PACIAE20b

no

Lund string fragmentation function

$$f(\hat{z}) \propto \frac{1}{\hat{z}} (1 - \hat{z})^{\alpha} \exp(-\frac{\beta m_T^2}{\hat{z}})$$

FIG. 4: (color online) The effect of parameter α (left panels) and β (right panels) in the Lund string fragmentation function on $\frac{1}{N_{DIS}} \frac{dN^h}{dz}$ in $e^- + p$ (upper panels) and $e^- + D$ (lower panels) DIS at 2.76 beam energy.

FIG. 5: (color online) The effect of PRS and HRS on $\frac{1}{N_{DIS}} \frac{dN^{h}}{dz}$ in the e^{-} +D DIS.

FIG. 6: (color online) The effect of strange suppression factor on the $\frac{1}{N_{DIS}} \frac{dN^h}{dz}$ in e^-+p (left panel) and e^-+D (right panel) DIS at 27.6 GeV/c beam momentum.