The low-energy physics frontier **@Mami**: **Results and** Perspectives

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

William Briscoe, Director The George Washington University Institute for Nuclear Studies

Concettina Sfienti, Director

Johannes Gutenberg-Universität - Institut für Kernphysik, Mainz

Image: SFB ≥

Johannes Gutenberg-Universität Mainz Institut für Kernphysik

MAMI

Medium Energy Region

What is it all about?

Scales and Phases of Nuclear Matter

Connecting

with the

Courtesy R.F.Carsten (WNSL)

Dense Stars Astrophysics Nuclear Hypernuclei r Matter

First Constraint

QCD in the non-perturbative regime

F. Wilczek "QCD made *simple*" (<u>http://www.frankwilczek.com/</u>)

"If the Lord Almighty had consulted me before embarking upon creation, I would have recommended something *simpler*." King Alphonse X. of Castille and Léon (1221-1284), on having the Ptolemaic system of epicycles explained to him

First Constraint

Modern nuclear physics is about...

→Linking QCD to many body systems

Universal Nuclear Energy Density Functional

The Beauty of the Electromagnetic Probe

Clean probe of hadron structure

- > Electron-vertex wellknown from QED
- > One-photon exchange dominates
- > Higher-order exchange diagrams are suppressed

> Vary the wavelength of the probe to view deeper inside the hadron

One Millennium Quest Generation of Mass

Not the elementary mass of the fermions \rightarrow Higgs Sector

But the actual mass of the "Macroscopic" Hadron and its Composites

Nuclear Physics @ A=1 = Nucleon Properties

mass

 $m_{
m p} = 938.272046(21)\,{
m MeV/c^2}$ Discovered by E. Rutherford (1919)

 $m_n = 939.565379(21) \,\mathrm{MeV/c^2}$

Discovered by J. Chadwick (1939)

size

moments of electric charge and magnetization distribution derived from **form factor** measurements

Form Factors are Ethernal

http://hyperphysics.phy-astr.gsu.edu/

Form Factors from Elastic ep scattering

form factor:
$$G(q^2) = \frac{1}{e} \int_0^\infty \rho(r) \frac{\sin qr}{qr} 4\pi r^2 dr$$

The latest MAMI measurement

The experiment designed for ... high precision by redundancy

PRE 105, 242001 (2010) PHYSICAL REVIEW LETTERS 10 DECEMBER 2010 Figh-Precision Determination of the Electric and Magnetic Form Factors of the Proton J.C. Bernauer,^{1,*} P. Achenbach,¹ C. Ayerbe Gayoso,¹ R. Böhm,¹ D. Bosnar,² L. Debenjak,³ M.O. Distler,^{1,*} L. Doria,¹ A. Esser,¹ H. Fonvieille,⁴ J. M. Friedrich,⁵ J. Friedrich,¹ M. Gómez Rodríguez de la Paz,^{*} M. Makek,² H. Merkel,¹ D.G. Middleton,¹ U. Müller,¹ L. Nungesser,¹ J. Pochodzalla,^{*} M. Potokar,⁵ S. Sánchez Majos,^{*} B.S. Schlimme,¹ S. Širca,^{6,5} Th. Walcher,¹ and M. Weinriefer¹

- Statistical precision $\sigma < 0.1\%$
- $\delta\theta < 0.5$ mrad vertical and horizontal
- Control of luminosity and systematic errors

All quantities measured by more than one method

Rosenbluth with a twist

"Super-Rosenbluth Separation": fit of form factor models **DIRECTLY to cross sections**

- All Q² and ε data are used in one fit
- No projection to constant Q²
 no limit of kinematics
- One "estimator"
 - → stat. theory "robust estimator"

The Low Energy Frontier

→ Radius of proton is dominant uncertainty in many QED processes

0.8

0.85

0.9

0.95

proton charge radius (fm)

muonic and electronic measurements (atomic)

6

Delayed / prompt events (10-4)

3

0

49.75

Discrepancy is between muonic and electronic measurements (scattering)

Novel beyond SM physics? Novel hadron physics?

already excluded: missing atomic physics, structures in FF, anomalous 3rd Zemach radius

Discrepancy is between muonic and electronic measurements (both types)

New data are needed and they are coming ...

Improvements on Proton Radius

Possible experiments include:

Redoing atomic hydrogen

Light muonic atoms for radius comparison in heavier systems

Second constraint

© Jens Rydén

Second constraint

It's always 50 just nuclear matter

Second constraint

Modern nuclear physics is about...

→Unravelling the phases of nuclear matter

LRP Nuclear Science Advisory Committee(2008)

The Equation of State of Nuclear Matter

A heavy nucleus (like ²⁰⁸Pb) is 18 orders of magnitude smaller and 55 orders of magnitude lighter than a neutron star

Yet bounded by the same **EOS**

The Low Energy Frontier

Strong Interactions Hadron Structure Hadron Spectroscopy

N_{skin} Heavy Nucleus

...the Astrophysics frontier

High-Energy Physics

Precision Physics

Atomic Physics

Astrophysics

Neutron Skin Measurements

Where do the neutrons go?

Pressure forces neutrons out against surface tension

Neutron Skin Measurements

Where do the neutrons go?

Pressure forces neutrons out against surface tension

PV: the view in the mirror

Electron scattering γ exchange provides R_p through nucleus FFs

PV e-scattering

Electron also exchange Z, which is parity violating

Primarily couples to neutron

		•••
electric charge	1	0
weak charge	≈0.07	1

PV: the view in the mirror

Electron scattering γ exchange provides R_p through nucleus FFs

PV e-scattering Electron also exchange Z, which is parity violating Primarily couples to neutron

Detectable in PV asymmetry of electrons with different helicity

Hard, harder, PV Experiments

Neutron skin Radii: Where are we?

Diverse experiments but consistent results

Solution Too many model dependent observables

Precise determination of N_{Skin} in ²⁰⁸Pb set a basic constraint on the nuclear symmetry energy

X. Roca-Maza, at al. Phys. Rev. Lett. 106, 252501 (2011)

At A2 we shine light on the nucleus!

coherent π^0 photoproduction @ A2

$$\begin{array}{c} & \overbrace{} & \overbrace{} & \overbrace{} & \overbrace{} & \overbrace{} & \overbrace{} & \gamma \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

π^0 produced with equal probability on protons 0 and neutrons 0

Most simple - **P**lane Wave Impulse Approximation:

$$\frac{d\sigma}{d\Omega}(\mathbf{PWIA}) = \frac{s}{m_N^2} \times \frac{1}{2} \frac{q_\pi^*}{k^*} \left| F_2\left(E_\gamma^*, \theta_\pi^*\right) \right|^2 \sin^2\left(\theta_\pi^*\right) \times A^2 F^2\left(q\right)$$

Matter Form Factor \rightarrow r.m.s. matter radius

^{208}Pb neutron skin from Coherent π^{o}

D. Watts, et al, EPJ Web of Conferences 37, 01027 (2012)

New experimental campaign@A2 (October 2012) 116,120,124Sn, ⁵⁸Ni, ²⁰⁸Pb

The Low Energy Frontier

Conventional strategies for DM searches

A **bottom up** approach: Looking for interacting particles

SM X SM X

Direct Production:

Tevatron, LHC

Direct Search:

CDMS, DAMA/LIBRA, XENON, CRESST, LUX, COUPP, KIMS, ...

Indirect Search:

PAMELA, Fermi, HESS, ATIC, WMAP, ...

Conventional strategies for DM searches

A **bottom up** approach: Looking for interacting particles

Assumptions:

X

χ

X

SM

SM

SM

SM

SM

χ

SM

χ

χ

There is dark matter (SUSY or something else) Dark matter interacts with Standard Model matter (besides gravity) Dark matter interacts via a "dark force"

Question:

What is the character of this "dark force"? Scalar, pseudo-scalar, vector bosons? Massive or mass-less? Mass range? Size of the coupling constant?

A top down motivation

- Extra U(1) gauge bosons ubiquitous in extension of SM
- U(1) gauge bosons may be hidden (no interaction with SM)
- No reason for U(1) boson to be heavy
- Dark matter couples to U(1) bosons y and y'

- Mixing parameter ϵ of γ/γ' mixing
- Boson mass $m_{Y'} > 0 \Rightarrow$ decay suppressed, macroscopic lifetime

 \Rightarrow Look for χ at high energies OR for γ' at low energies!

B. Holdom Phys. Lett. B 166 (1986) 196

Probing Dark Forces @ GeV Scale

Dark Photon

Light weakly coupled U(1) gauge boson

N. Arkani-Hamed, et al., Phys. Rev. D 79 (2009) 015014

...it explains ... terrestrial anomalies (DAMA, CDMS, XENON) satellite anomalies (PAMELA, FERMI)

(g-2)_µ anomaly M. Pospelov, Phys. Rev. D80 (2009) 095002

Proton Radius Puzzle

D. Tucker-Smith and I. Yavin Phys. Rev. D83 (2011) 101702

PHYSICAL REVIEW D 80, 075018 (2009)

New fixed-target experiments to search for dark gauge forces

James D. Bjorken,¹ Rouven Essig,¹ Philip Schuster,¹ and Natalia Toro² ¹Theory Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA ²Theory Group, Stanford University, Stanford, California 94305, USA (Received 20 July 2009; published 28 October 2009)

World wide effort (CERN, DESY, JLAB, MAMI, all e⁺e⁻ colliders, ...)

Prediction are testable: Large cross section in leptons

Search for the Dark Photon @ MAMI

H. Merkel et al., Phys. Rev. Lett. 106 (2011) 251802

Bump Hunt: Quasi-photoproduction off ¹⁸¹Ta target

Beam current: 100µA Luminosity: L = 1.7.10³⁵ (s.cm²)⁻¹ Minimal angles for spectrometers Geometry as symmetric as possible (background reduction)

Search for the Dark Photon @ MAMI

H. Merkel et al., Phys. Rev. Lett. 106 (2011) 251802

Bump Hunt: Quasi-photoproduction off ¹⁸¹Ta target

New E/my scan

Future: Low mass region <50 MeV/ c^2 and small dark photon coupling ϵ^2

... MESA beyond MAMI ...

Mainz Energy recovering Superconducting Accelerator

- Superconducting LINAC
- Three recirculation arcs for external beam high external current for "next generation" parity violation experiments
- Energy recovery mode (half wave-length recirculation) for *internal target* experiments

	Current	Energy	Luminosity
External Beam Mode:	150 <i>μ</i> Α	200 MeV	$10^{39}{ m cm}^{-2}{ m s}^{-1}$
Energy Recovery Mode:	10 mA	150 MeV	$10^{36}{ m cm}^{-2}{ m s}^{-1}$

The Low Energy Frontier @ Mainz: Results and ...

... perspective are excellent!

Neutron form factor: new neutron detector Nucleon polarizabilities with real photons High resolution pion spectroscopy of light hypernuclei

