

The Test of APV25 Readout System for GEM Detector at CIAE

Siyu Jian(蹇司玉)

China Institute of Atomic Energy (中国原子能科学研究院)

outline

Brief introduction about GEM and APV readout system.

Our work in calculating spatial resolution and energy resolution.

- ✤X ray imaging
- summary and plan

Brief introduction about GEM

- A type of gaseous ionization detector.
- used in nuclear and particle physics and radiation detection.
- invented in 1997 by Fabio Sauli.
- high rate capability;
- sod localization accuracy;
- ✤ robustness of operation.

Reading out method

- Parallel strips;
- ●CCD;
- •Pads array;

•CMOS

•....

Parallel strips:

simple cheap less channels

Still need large quantities of readout channels

100mm/400um=256 channels (each dimension)

Parallel strips CCD 铝窗 石英窗 Pads array 'MOS X射线源 Drift Volume

Gem Foils

(Medinix)

✓ Working at 40MHz frequency.

Reduce the possibility of Event cascade

- 128 channel per chip;
- Analog readout better performance;

Long latency

160 pipeline locations allow for a trigger latency of up to 4 μ s;

The structure of APV readout system

Spatial resolution and energy resolution.

$$\sigma_{tot}^2 = \sigma_{GEM}^2 + c_1 \sigma_{geometry}^2$$

When: $\sigma_{geometry} \ll \sigma_{GEM}$

 $\sigma_{tot}^2 \cong \sigma_{GEM}^2$

- Slit(um): 20;
- Ar: CO₂=70% : 30%;

Spatial resolution and energy resolution.

$$\sigma_{tot}^2 = \sigma_{GEM}^2 + c_1 \sigma_{geometry}^2$$

When: $\sigma_{geometry} \ll \sigma_{GEM}$

 $\sigma_{tot}^2 \cong \sigma_{GEM}^2$

- Slit(um): 20;
- Ar: CO₂=70% : 30%;
- HV: 3600V;

Spatial resolution and energy resolution.

Spatial resolution and energy resolution.

 Spatial resolution≈76um(sigma)

Spatial resolution and energy resolution.

 Slit did not parallel to the readout strip strictly;

information

2

•Detector did not vertical to the beam strictly

1400

- cut the baseline from the raw signal
- integral of the x axis and y axis
- add the result of x axis and y axis

CIAE imaging @ about 1k sample rate

X ray Energy: 10KeV;
256 channels for each dimension(512 channel in total);
4 APV FECs were used (2 for each dimension)

•Sample rate

The maximum sample rate is several KHz. The sample rate is very low.

APV: 277KHz*141(1 frame)*12bit(12bit

ADC)=60MB/s

V2718: 70MB/s (v2718 manual)

VME crate:

80Mb/s(VME64) 80Mb/(8*128)=78KHz

✓ improve Firmware;

✓ Data compression;

•The connection between APV and detector is not very reliable.

More reliable connector should be introduced

Summary and Plan

•The connection between GEM and APV is very poor.

- The sample rate is not very high.
 - ✓ VME crate and V2718 VME controller is not suitable for high rate application

When event rate is 200KHz 200KHz X 12bit(ADC) X 128=37.5MB/s 37.5MB/s X 16 =225MB/s

Increase the sample rate;
 Test our system in BSRF (Beijing Synchrotron Radiation Facility);
 Neutron imaging;
 Cosmic ray imaging;

Thank you for your attention!