Novel QCD Physics

Fixed $\tau=t+z / c$

Stan Brodsky

The Sixth Workshop on Hadron Physics in China and Opportunities in US
July 2 I－－July 24， 20 I4，
Lanzhou University

- Intrinsic Heary Quarks
- Charm at Threshold
- Novel Heavy Quark Resonances at Threshold
- Tetraquarks and Nuclear-Bound Quarkonium
- Exclusive and Inclusive Sivers Effect.
- Breakdown of PQCD Leading-Twist Factorization
- Non-universal antishadowing
- Color Transparency
- Hidden Color
- $\mathrm{J}=0$ Fixed pole in DVCS
- Diffractive DIS

QED:

Measure Lamb Shift of

Novel QCD Phenomena at JLab 12 GeV

Stan Brodsky SLAC

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Fixed $\tau=t+z / c$
Fixed LF time

$$
\sum_{i}^{n} x_{i}=1
$$

Structure functions and other distributions $\quad \sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}$ computed from the square of the LFWFs

Goal: Predict features from first principles in QCD

Dírac'sAmazing Idea:

The Front Form

Evolve in ordinary time

Instant Form light-front time!

Each element of flash photograph illuminated along the light front at a fixed

$$
\tau=t+z / c
$$

Evolve in LF time

$$
\begin{gathered}
P^{-}=i \frac{d}{d \tau} \\
\text { Eigenvalue } \\
P^{-}=\frac{\mathcal{M}^{2}+\vec{P}_{\perp}^{2}}{P^{+}}
\end{gathered}
$$

$H_{L F}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory
Eigenstate of LF Hamiltonian

$$
\begin{aligned}
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& \text { Fixed } \tau=t+z / c \\
& \text { Fixed LF time } \\
& P^{+}, \vec{P}_{\perp} \\
& \psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right) \\
& \left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i},{\overrightarrow{k^{\perp}}}_{\perp i}, \lambda_{i}> \\
& \sum_{i}^{n} x_{i}=1 \\
& \text { Invariant under boosts! Independent of }\left.P^{\mu}\right|^{\sum_{i}^{n}} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}
\end{aligned}
$$

Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

- Light Front Wavefunctions:

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

Momentum space

$$
\begin{aligned}
& \vec{k}_{\perp} \leftrightarrow \vec{z}_{\perp} \\
& \vec{\Delta}_{\mid} \leftrightarrow \vec{b}_{1}
\end{aligned}
$$

Position space

Transverse density in momentum space

Longitudinal

$\rightarrow \quad \int \mathrm{d} x$

+ Factorization-Breaking Lensing Corrections: Sivers, T-odd

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{aligned}
& L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
& H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
& H_{L F}^{i n t} \text { : Matrix in Fock Space } \\
& H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
& \left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}> \\
& \text { (b) } \\
& \text { (c) }
\end{aligned}
$$

LFWFs: Off-shell in P - and invariant mass

LIGHT-FRONT MATRIX EQUATION

Rigorous Method for Solving Non-Perturbative QCD!

$$
\begin{aligned}
& \left(M_{\pi}^{2}-\sum_{i} \frac{\vec{k}_{1 i}^{2}+m_{i}^{2}}{x_{i}}\right)\left[\begin{array}{c}
\psi_{q \bar{q} / \pi} \\
\psi_{q \bar{q} q / \pi} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccc}
\langle q \bar{q}| V|q \bar{q}\rangle & \langle q \bar{q}| V|q \bar{q} g\rangle & \cdots \\
\langle q \bar{q} g| V|q \bar{q}\rangle & \langle q \bar{q} g| V|q \bar{q} g\rangle & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\psi_{q \bar{q} / \pi} \\
\psi_{q \bar{q} q / \pi} \\
\vdots
\end{array}\right] \\
& A^{+}=0
\end{aligned}
$$

Minkowski space; frame-independent, no fermion doubling; no ghosts

- Light-Front Vacuum = vacuum offree Hamiltonian!

The Light-Front Vacuum
9

Stan Brodsky
SLAC

DLCQ: Solve QCD $(1+1)$ for any quark mass and flavors

Extrapolated masses for $N=2,3$ and 4 meson and baryon.

a-c) First three states in $N=3$ meson spectrum for $m / g=1.6,2 \mathrm{~K}=24$. d) Eleventh

a-c) First three states in $N=3$ baryon spectrum, $2 \mathrm{~K}=21$. d) First $B=2$ state.

Hornbostel, Pauli, sjb

Prediction from AdS/CFT: Meson LFWF

de Teramond, sib

 "Soft Wall"

 "Soft Wall" model

 model}

$$
\kappa=0.375 \mathrm{GeV}
$$ massless quarks

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x})} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}}
$$

$$
\phi_{M}\left(x, Q_{0}\right) \propto \sqrt{x(1-x)}
$$

Connection of Confinement to TADs

Pion Form Factor from AdS/QCD and Light-Front Holography

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

J. R. Forshaw*
Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manchester,
Oxford Road, Manchester M13 9PL, United Kingdom
R. Sandapen ${ }^{\dagger}$
Département de Physique et d'Astronomie, Université de Moncton, Moncton, New Brunswick E1A3E9, Canada (Received 5 April 2012; published 20 August 2012)

We show that anti-de Sitter/quantum chromodynamics generates predictions for the rate of diffractive ρ-meson electroproduction that are in agreement with data collected at the Hadron Electron Ring Accelerator electron-proton collider.

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}}
$$

AdS/QCD Holographic Wave Function for the ρ Meson

 and Diffractive ρ Meson Electroproduction
(a) H
J. R. Forshaw, R. Sandapen
$\gamma^{*} p \rightarrow \rho^{0} p^{\prime}$

(b) ZEUS

$$
\tilde{\phi}(x, k) \propto \frac{1}{\sqrt{x(1-x)}} \exp \left(-\frac{M_{q \bar{q}}^{2}}{2 k^{2}}\right) .
$$

Angular Momentum on the Light-Front

$$
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z} . \quad \begin{array}{cc}
\text { LC gauge } \\
\text { Conserved } \\
\text { LF Fock state by Fock State } \\
\text { All scales }
\end{array}
$$

Gluon orbital angular momentum defined in physical lc gauge

$$
\begin{aligned}
& l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right) \\
& \mathrm{n} \text {-ı orbital angular momenta } \\
& \text { Orbital Angular Momentum is a property of LFWFS } \\
& \text { Nonzero-Anomalous Moment -.> } \\
& \text { Nonzero quark orbital angular momentum! } \\
& \text { Lanzhou } \\
& \text { July 21, } 2014 \\
& \text { Novel QCD Physics }
\end{aligned}
$$

Light-Front Wave Function Overlap Representation

DVCS/GPD
Diehl, Hwang, sjb, NPB596, 200I
See also: Diehl, Feldmann, Jakob, Kroll

ERBL region

DGLAP region

Bakker \& JI
Lorce

July 21, 2014

Stan Brodsky S는슬

Leading Twist Sivers Effect

Hwang, Schmidt, sjb

DIS
Attractive, opposite-sign rescattering potential

DY
Repulsive, same-sign scattering potential

Single-spin

 asymmetries in exclusive channels e^{-}Exclusive
Sivers Effect connects to Inclusive Effect
$i \vec{S}_{p} \cdot \vec{q} \times \vec{p}_{K}$

Psendo-T-Odd quark

Lanzhou
July 21, 2014

Stan Brodsky
SLAC

Example of Leading-Twist Lensing Correction

DY $\cos 2 \phi$ correlation at leading twist from double ISI $\begin{aligned} & \text { Product of Boer } \\ & \text { Mulders Functions }\end{aligned} \quad h_{1}^{\perp}\left(x_{1}, \boldsymbol{p}_{\perp}^{2}\right) \times \bar{h}_{1}^{\perp}\left(x_{2}, \boldsymbol{k}_{\perp}^{2}\right)$

July 21, 2014

Stan Brodsky
SLAC

Dynamic

- Square of Target LFWFs
- NoWilson Line
- Probability Distributions
- Process-Independent
- T-even Observables
- No Shadowing, Anti-Shadowing
- Sum Rules: Momentum and J
- DGLAP Evolution; mod. at large x
- No Diffractive DIS

Modified by Rescattering: ISI \& FSI
Contains Wilson Line, Phases
No Probabilistic Interpretation
Process-Dependent - From Collision
T-Odd (Sivers, Boer-Mulders, etc.)
Shadowing, Anti-Shadowing, Saturation
Sum Rules Not Proven
DGLAP Evolution
Hard Pomeron and Odderon Diffractive DIS

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

> Intrinsic heavy quarks $\boldsymbol{s}(\boldsymbol{x}), \boldsymbol{c}(\boldsymbol{x}), \boldsymbol{b}(\boldsymbol{x})$ at high $\boldsymbol{x}!\bar{u}(x) \neq \bar{d}(x)$
> $\bar{s}(x) \neq s(x)$
$\bar{u}(x) \neq \bar{d}(x)$

\qquad

$$
\bar{d}(x) / \bar{u}(x) \text { for } 0.015 \leq x \leq 0.35
$$

■ E866/NuSea (Drell-Yan)

$$
\bar{d}(x) \neq \bar{u}(x)
$$

Intrinsic glue, sea, heavy quarks

Do heavy quarks exist in the proton at high x ?

Conventional wisdom: impossible!

Standard Assumption: Heavy quarks are generated via DGLAP evolution from gluon splitting

$$
s\left(x, \mu_{F}^{2}\right)=c\left(x, \mu_{F}^{2}\right)=b\left(x, \mu_{F}^{2}\right) \equiv 0
$$

at starting scale μ_{F}^{2}
Conventional wisdom is wrong even in QED!

HERMES: Two components to $s\left(x, Q^{2}\right)$!

W. C. Chang and J.-C. Peng arXiv:IIO5.238ı

Hoyer, Peterson, Sakai, sjb strangeness!

Comparison of the HERMES $x(s(x)+\bar{s}(x))$ data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^{2}=2.5 \mathrm{GeV}^{2}$ using $\mu=0.5 \mathrm{GeV}$ and $\mu=0.3 \mathrm{GeV}$, respectively. The normalizations of the calculations are adjusted to fit the data at $x>0.1$ with statistical errors only, denoted by solid circles.

$$
s\left(x, Q^{2}\right)=s\left(x, Q^{2}\right)_{\text {extrinsic }}+s\left(x, Q^{2}\right)_{\text {intrinsic }}
$$

W. C. Chang and J.-C. Peng

Comparison of the $x(\bar{d}(x)+\bar{u}(x)-s(x)-\bar{s}(x))$ data with the calculations based on the BHPS model. The values of $x(s(x)+\bar{s}(x))$ are from the HERMES experiment [6], and those of $x(\bar{d}(x)+\bar{u}(x))$ are obtained from the PDF set CTEQ6.6 [11]. The solid and dashed curves are obtained by evolving the BHPS result to $Q^{2}=2.5 \mathrm{GeV}^{2}$ using $\mu=0.5 \mathrm{GeV}$ and $\mu=0.3 \mathrm{GeV}$, respectively. The normalization of the calculations are adjusted to fit the data.

Proton Self Energy from g g to gg scattering QCD predicts Intrinsic Heavy Quarks!

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}}$
Probability $(\mathrm{QCD})^{\propto} \propto \frac{1}{M_{Q}^{2}}$
Collins, Ellis, Gunion, Mueller, sjb
M. Polyakov, et al.

Fixed LF time

Proton 5-quark Fock State : Intrinsic Heavy Quarks

QCD predicts Intrinsic Heavy Quarks at high x

Minimal offshellness

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}} \quad$ Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$
Collins, Ellis, Gunion, Mueller, sjb M. Polyakov

Proton's 5-quark Fock State from gluon splitting "Extrinsic" Heavy Quarks
$s\left(x, Q^{2}\right)_{\text {extrinsic }} \sim(1-x) g\left(x, Q^{2}\right) \sim(1-x)^{5}$

INTRINSIC CHEVROHETS AT THE SSC

Stanley J. Brodsky

Stanford Linear Accelerator Genter, Stanford University, Stanford CA 94305
Iohn C. Collins
Department of Physics, Illinois Institute of Technology, Chicago IL bugit and
High Energy Physics Division, Argonne National Laboratory, Argonne IL 60439
Stepher D. Ellis
Department of Physics, FM-I5, University of Washington, Seattle WA 98195
John F. Gunion
Department of Physics, University of Galifornia, Davis CA 95816
Alfred II. Mueller
Department of Physics, Columbia University, New York NY 10027
$\mathcal{L}_{Q C D}^{e f f}=-\frac{1}{4} F_{\mu \nu a} F^{\mu \nu a}-\frac{g^{2} N_{C}}{120 \pi^{2} M_{Q}^{2}} D_{\alpha} F_{\mu \nu a} D^{\alpha} F^{\mu \nu a}+C \frac{g^{2} N_{C}}{120 \pi^{2} M_{Q}^{2}} F_{\mu}^{a \nu} F_{\nu}^{b \tau} F_{\tau}^{c \mu} f_{a b c}+\mathcal{O}\left(\frac{1}{M_{Q}^{4}}\right)$

Probability of Intrinsic Heavy Quarks ~ 1/M M_{Q}

HERMES: Two components to $s\left(x, Q^{2}\right)$!

W. C. Chang and J.-C. Peng arXiv:IIO5.238ı

Hoyer, Peterson, Sakai, sjb strangeness!

Comparison of the HERMES $x(s(x)+\bar{s}(x))$ data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^{2}=2.5 \mathrm{GeV}^{2}$ using $\mu=0.5 \mathrm{GeV}$ and $\mu=0.3 \mathrm{GeV}$, respectively. The normalizations of the calculations are adjusted to fit the data at $x>0.1$ with statistical errors only, denoted by solid circles.

$$
s\left(x, Q^{2}\right)=s\left(x, Q^{2}\right)_{\text {extrinsic }}+s\left(x, Q^{2}\right)_{\text {intrinsic }}
$$

Measure strangeness distribution in Semi-Inclusive DIS at JLab

$$
\text { Is } s(x)=\bar{s}(x) ?
$$

- Non-symmetric strange and antistrange sea?
- Non-perturbative physics; e.g $|u u d s \bar{s}>\simeq| \wedge(u d s) K^{+}(\bar{s} u)>$
- Important for interpreting NuTeV anomaly B. Q. Ma, sjb

Tag struck quark flavor in semi-inclusive DIS $e p \rightarrow e^{\prime} K^{+} X$

Figure 1: Comparison of the $\bar{d}(x)-\bar{u}(x)$ data from Fermilab E866 and HERMES with the calculations based on the BHPS model. Eq. $1 \mathbf{X}$ and Eq. 3 were used to calculate the $\bar{d}(x)-\bar{u}(x)$ distribution at the initial scale. The distribution was then evolved to the Q^{2} of the experiments and shown as various curves. Two different initial scales, $\mu=0.5$ and 0.3 GeV , were used for the E866 calculations in order to illustrate the dependence on the choice of the initial scale.

Calculations of the $\bar{c}(x)$ distributions based on the BHPS model. The solid curve corresponds to the calculation using Eq. 1 and the dashed and dotted curves are obtained by evolving the BHPS result to $Q^{2}=75 \mathrm{GeV}^{2}$ using $\mu=3.0 \mathrm{GeV}$, and $\mu=0.5 \mathrm{GeV}$, respectively. The normalization is set at $\mathcal{P}_{5}^{c \bar{c}}=0.01$.

Consistent with EMC

DGLAP / Photon-Gluon Fusion: factor of 30 too small
Two Components (separate evolution):
$c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\text {intrinsic }}$

Measurement of $\gamma+\boldsymbol{b}+\boldsymbol{X}$ and $\gamma+\boldsymbol{c}+X$ Production Cross Sections in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

$\frac{\Delta \sigma(\bar{p} p \rightarrow \gamma c X)}{\Delta \sigma(\bar{p} p \rightarrow \gamma b X)}$
Ratio insensitive to gluon PDF, scales

Signal for

 significant IC at $x>0.1$
Need COMPASS

Measurement of $c\left(x, Q^{2}\right)$!

Leading Hadron Production

 from Intrinsic Charm

Spectator counting rules

Coalescence of Comoving Charm and Valence Quarks Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

Leading Hadron Production

 from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

Barger, Halzen, Keung

Evidence for charm at largex

Maximum fraction of projectile momentum carried by charm quarks!

$$
\left(1-x_{F}\right)^{p}, p=n_{s}-1
$$

- EMC data: $c\left(x, Q^{2}\right)>30 \times$ DGLAP $Q^{2}=75 \mathrm{GeV}^{2}, x=0.42$
- High $x_{F} p p \rightarrow J / \psi X$
- High $x_{F} p p \rightarrow J / \psi J / \psi X$
- High $x_{F} p p \rightarrow \wedge_{c} X$
- High $x_{F} p p \rightarrow \wedge_{b} X$
- High $x_{F} p p \rightarrow$ 三(ccd) X (SELEX)

Critical Measurements at threshold for JLab, PANDA Interesting spin, charge asymmetry, threshold, spectator effects Important corrections to B decays, Quarkonium decays

Also: intrinsic strangeness, bottom, top
Higgs can have $>80 \%$ of Proton Momentum!
New production mechanism for Higgs at the LHC AFTER: Higgs production at threshold!

Need High XF Acceptance
Most practical: Higgs to 4 mwons

Goldhaber, Kopeliovich, Schmidt, Soffer, sjb

Hoyer, Peterson, Sakai, sjb

 M. Polyakov, et. al
Intrinsic Heavy-Quark Fock States

- Rigorous prediction of QCD, OPE
- Color-Octet Color-Octet Fock State!

- Probability $\quad P_{Q \bar{Q}} \propto \frac{1}{M_{Q}^{2}} \quad P_{Q \bar{Q} Q \bar{Q}} \sim \alpha_{s}^{2} P_{Q \bar{Q}} \quad P_{c \bar{c} / p} \simeq 1 \%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production at high x_{F} (Kopeliovich, Schmidt, Soffer, Goldhaber, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin, Tung)
- Many empirical tests (Gardener, Karliner, ..)

PRL 84, 3256 (2000); PRL 72, 2542 (1994)

Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.) , U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp. Published in Phys.Lett.B246:217-220,1990
IC Explains large excess of quarkonia at large $\mathrm{x}_{\mathrm{F}}, \mathbf{A}$-dependence

Kopeliovich,
Color-Opaque IC Fock state schmidt, Soffer, sib interacts on nuclear front surface

Scattering on front-face nucleon produces color-singlet c \bar{c} pair

$$
\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X)=A^{2 / 3} \times \frac{d \sigma}{d x_{F}}(p N \rightarrow J / \psi X)
$$

J. Badier et al, NA3

$$
\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X)=A^{1} \frac{d \sigma_{1}}{d x_{F}}+A^{2 / 3} \frac{d \sigma_{2 / 3}}{d x_{F}}
$$

$A^{2 / 3}$ contribution at high x_{F} !

Consistent with intrinsic charm!

color -octet

Energy loss effects?: Check $\gamma^{*} A \rightarrow J / \psi X$
$\gamma p \rightarrow J / \psi p$
Chudakov, Hoyer, Laget, sjb

Phase space factor β cancelled by gluonic final-state interactions
Sommerfeld-Schwinger-Sakharov Effect

JLab 12 GeV: An Exotic Charm Factory!

$$
\begin{gathered}
\gamma^{*} p \rightarrow J / \psi+p \text { threshold } \\
\text { at } \sqrt{s} \simeq 4 \mathrm{GeV}, E_{\text {lab }}^{\gamma^{*}} \simeq 7.5 \mathrm{GeV} . \\
\gamma^{*} p \rightarrow X(3872)+p^{\prime} \\
\mid c \bar{c} q \bar{q}>\quad \text { tetraquark }
\end{gathered}
$$

Produce $[J / \psi+p]$ bound state $\mid u u d c \bar{c}>$ pentaquark $\gamma^{*} d \rightarrow J / \psi+d$ threshold at $\sqrt{s} \simeq 5 \mathrm{GeV}, E_{\mathrm{lab}}^{\gamma^{*}} \simeq 6 \mathrm{GeV}$.
Produce $[J / \psi+d]$ nuclear-bound quarkonium state $\mid u u d d d u c \bar{c}>$ octoquark!

Tetraquark Production at Threshold

$$
\begin{aligned}
& E_{\text {lab }}^{\gamma}>11.9 \mathrm{GeV} \\
& \gamma^{*} \\
& \mathrm{P} \longrightarrow \frac{\mathrm{u} \quad u}{\frac{u}{d}} \xrightarrow{ } \\
& \text { vs Molecular State? } \\
& \gamma^{*} p \rightarrow X(3872)+p^{\prime} \\
& \mid c \bar{c} q \bar{q}> \\
& \text { New approach } \\
& \text { to hadronic decays } \\
& \text { Lebed, Hwang, sjb }
\end{aligned}
$$

Open Charm Production at Threshold

c and u quark interchange

Charmonium Production at Threshold

Formproton-charmonium bound state! |uudc $\bar{c}>$

July 21, 2014

Stan Brodsky
SLAC

Charmonium Production at Threshold

Form nuclear bound-charmonium bound state!

Stan Brodsky SLAC

Open Charm Production at Threshold

Create pentaquark at low relative velocity

Open Charm Production at Threshold

Nuclear binding at low relative velocity

$\gamma^{*} d \rightarrow \bar{D}^{0}(\bar{c} u)\left[\Lambda_{c} n\right](c u d u d d)$
Possible charmed $\mathbf{B}=2$ nucleus

Octoquark Production at Threshold

$$
M_{\text {octoquark }} \sim 5 \mathrm{GeV}
$$

$\gamma^{*} D \rightarrow \mid u u d u u d c \bar{c}>$
Explains Krisch Effect!

"Exclusive

Transversity"

Spin-dependence at large- $\mathrm{P}_{\mathrm{T}}\left(90^{\circ}{ }_{\mathrm{cm}}\right)$: Hard scattering takes place only with spins $\uparrow \uparrow$

Charm and Strangeness Thresholds
Heppelmann et at: Quenching of Color
Transparency
A. Krisch, Sci. Am. 257 (1987)
"The results challenge the prevailing theory that describes the proton's structure and forces"

Krisch, Crabb, et al

Unexpected

spin-spin correlation in pp elastic scattering

polarizations normal to scattering plane

$A_{n n}=1!$

QCD

Schwinger-Sommerfeld Enhancement at Heavy Quark Threshold

Production of und č c und octoquark resonance

$$
J=L=S=1, C=-, P=- \text { state }
$$

8 quarks in S-wave: odd parity

Hebecker, Kuhn, sjb
S. J. Brodsky and G. F. de Teramond, "Spin Correlations, QCD Color Transparency And Heavy Quark Thresholds In Proton Proton Scattering," Phys. Rev. Lett. 60, 1924 (1988).

$$
\sigma(p p \rightarrow c \bar{c} X) \simeq 1 \mu b \text { at threshold } \quad \sigma(\gamma p \rightarrow c \bar{c} X) \simeq 1 n b \text { at threshold }
$$

- New QCD physics in proton-proton elastic scattering at the charm threshold
- Anomalously large charm production at threshold!!?
- Octoquark resonances?
- Color Transparency disappears at charm threshold
- Key physics at GSI: second charm threshold

$$
\begin{aligned}
& \bar{p} p \rightarrow \bar{p} p J / \psi \\
& \bar{p} p \rightarrow \bar{p} \wedge_{c} D
\end{aligned}
$$

Dramatic Spin Effects Possible at Threshold!

JLab 12 GeV : An Exotic Charm Factory!

Electroproduce open charm at threshold

$$
\gamma^{*} p \rightarrow D^{0}(u \bar{c}) \Lambda_{c}(u d c)
$$

Use deuteron or light nuclear target

$$
\begin{array}{lc}
\gamma^{*} d \rightarrow D+\left[\Lambda_{c} n\right] & \text { Newe baryonic state } \\
\gamma^{*} d \rightarrow \Lambda_{c}+\left[D^{0} n\right] & \text { Pentaquark }
\end{array}
$$

Binding at threshold: covalent bonds from quark interchange Also: Dramatic Spin Effects Possible at Threshold!

JLab 12 GeV: An Exotic Charm Factory!

- Charm quarks at high $\mathbf{x - -}$ allows charm states to be produced with minimal energy
- Charm produced at low velocities in the target -- the target rapidity domain $\quad x_{F} \sim-1$
- Charm at threshold -- maximal domain for producing exotic states containing charm quarks
- Attractive QCD Van der Waals interaction --"nuclear-bound quarkonium" Miller, sjb; de Teramond,sjb
- Dramatic Spin Correlations in the threshold Domain $\quad \sigma_{L}$ VS. $\sigma_{T}, A_{N N}$
- Strong SSS Threshold Enhancement

Why is IQ Important for Flavor Physics?

- New perspective on fundamental nonperturbative hadron structure
- Charm structure function at high x
- Dominates high x_{F} charm and charmonium production
- Hadroproduction of new heavy quark states such as ccu, ccd, bcc, bbb, at high \mathbf{x}_{F}
- Intrinsic charm -- long distance contribution to penguin mechanisms for weak decay Gardner, sjb
- $J / \psi \rightarrow \rho \pi \quad$ BES puzzle explained Karliner, sjb
- Novel Nuclear Effects from color structure of IC, Heavy Ion Collisions
- New mechanisms for high \mathbf{x}_{F} Higgs hadroproduction
- Dynamics of \mathbf{b} production: LHCb
- AFTER: Fixed target program at LHC: produce bbb states

Fixed $\tau=t+z / c$

$$
P^{+}=P^{0}+P^{z}
$$

Two color-singlet combinations of three $3_{C} \sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}$

Lanzhou July 21, 2014

Novel QCD Physics

Stan Brodsky SLAE

Evolution of 5 color-singlet Fock states

5×5 Matrix Evolution Equation for deuteron distribution amplitude

Define "Reduced" Form Factor

Elastic electron-deuteron scattering

Lanzhou
July 21, 2014

Stan Brodsky
SLAC

QCD Prediction for Deuteron Form Factor

Lepage, Ji, sjb

$$
F_{d}\left(Q^{2}\right)=\left[\frac{\alpha_{s}\left(Q^{2}\right)}{Q^{2}}\right]^{5} \sum_{m, n} d_{m n}\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{-\gamma_{n}^{d}-\gamma_{m}^{d}}\left[1+O\left(\alpha_{s}\left(Q^{2}\right), \frac{m}{Q}\right)\right]
$$

Define "Reduced" Form Factor

$f_{d}\left(Q^{2}\right) \equiv \frac{F_{d}\left(Q^{2}\right)}{F_{N}^{2}\left(Q^{2} / 4\right)}$.
Same large momentum transfer behavior as pion form factor

$$
f_{d}\left(Q^{2}\right) \sim \frac{\alpha_{s}\left(Q^{2}\right)}{Q^{2}}\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{-\{2 / 5\rangle c_{F} / \beta}
$$

FIG. 2. (a) Comparison of the asymptotic QCD predietion $f_{d}\left(Q^{2}\right) \propto\left(1 / Q^{2}\right)\left[\ln \left(Q^{2} / \Lambda^{2}\right)\right]^{-1-(2 / 5) C_{F} / B}$ with final data of Ref. 10 for the redueod deutoron form factor,
 tion is fixed at tho $Q^{2}=4 \mathrm{GeV}^{2}$ data point. (b) Comparison of the prediction $\left[1+\left(Q^{2} / m_{0}^{2}\right)\right] f_{d}\left(Q^{2}\right) \propto\left\{\operatorname{In}\left(Q^{2}\right)\right.$ $\left.A^{2}\right)^{-1-(2 / 5)} C_{F} /{ }^{\prime}$ with the above data. The value $m_{0}{ }^{2}$ $=0.28 \mathrm{GeV}^{2}$ is used (Ref. 8) .

Chertok, sjb

Lanzhou
July 21, 2014

Test of Hidden Color in Deuteron Photodisintegration

$$
R=\frac{\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{--}\right)}{\frac{d \sigma}{d t}(\gamma d \rightarrow p n)}
$$

Ratio predicted to approach 2:5

Ratio should grow with transverse momentum as the hidden color component of the deuteron grows in strength.

Possible contribution from pion charge exchange at small t.

Lanzhou
July 21, 2014

Deuteron Photodisintegration

Hidden Color in QCD

Study the Deuteron as a QCD Object

- Deuteron six-quark wavefunction
- 5 color-singlet combinations of 6 color-triplets -only one state is |n p>
- Components evolve towards equality at short distances
- Hidden color states dominate deuteron form factor and photodisintegration at high momentum transfer
- Predict

$$
\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{-}\right) \simeq \frac{d \sigma}{d t}(\gamma d \rightarrow p n) \text { at high } Q^{2}
$$

Hidden Color of Deuteron

Deuteron six-quark state has five color - singlet configurations, only one of which is $n-p$.

Asymptotic Solution has Expansion
$\psi_{[6]\{33\}}=\left(\frac{1}{9}\right)^{1 / 2} \psi_{N N}+\left(\frac{4}{45}\right)^{1 / 2} \psi_{\triangle \Delta}+\left(\frac{4}{5}\right)^{1 / 2} \psi_{C C}$

Look for transition to Delta-Delta

$J=0$ Fixed pole in real and virtual compton scattering

Effective two-photon contact term

Seagull for scalar quarks

Real phase

$$
M=s^{0} \sum e_{q}^{2} F_{q}(t)
$$

Independent of Q^{2} at fixed t

Damashek, Gilman;
Close, Gunion, sjb Llanes-Estrada, Szczepaniak, sjb
< $\mathrm{I} / \mathrm{x}>$ Moment: Related to Feynman-Hellman Theorem
Fundamental test of local gauge theory No ambiguity in D-term!
Q^{2}-independent contribution to Real DVCS amplitude

$$
s^{2} \frac{d \sigma}{d t}\left(\gamma_{\substack{* \\ \text { Novel QCD Physics }}}^{\rightarrow} \gamma p\right)=F^{2}(t)
$$

Stan Brodsky
Stinc

$$
Q^{2}=5 \mathrm{GeV}^{2}
$$

Is antishadowing Non-Universal, Flavor-Dependent?

Nuclear Shadowing in QCD

Shadowing depends on understanding leading twist-diffraction in DIS
Nuclear Shadowing not included in nuclear LFWF !
Dynamical effect due to virtual photon interacting in nucleus

QCD Mechanism for Rapidity Gaps

Reproduces lab-frame color dipole approach

July 21, 2014

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} : $1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

If the scattering on nucleon N_{1} is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \bar{q} flux reaching N_{2}.
\rightarrow Shadowing of the DIS nuclear structure functions.

Observed HERA DDIS produces nuclear shadowing

$$
F_{2 p}(x)-F_{2 n}(x) \propto x^{1 / 2}
$$

Antiquark interacts with target nucleus at energy $\hat{s} \propto \frac{1}{x_{b j}}$

Regge contribution: $\sigma_{\bar{q} N} \sim \widehat{s}^{\alpha_{R}-1}$

Nonsinglet Kuti-Weisskoff $F_{2 p}-F_{2 n} \propto \sqrt{x}_{b j}$
 at small $x_{b j}$.

Shadowing of $\sigma_{\bar{q} M}$ produces shadowing of nuclear structure function.

Landshoff,
Polkinghorne, Short
Close, Gunion, sjb
Schmidt, Yang, Lu, stailh Brodsky Stinc

$\begin{array}{ccc}\begin{array}{c}\text { Now-singlet } 10^{-2} \\ \text { Reggeon }\end{array} & 10^{-1} & \times\end{array} \begin{gathered}\text { Kuti-Weisskopf } \\ \text { behavior }\end{gathered}$ Exchange

July 21, 2014

Stan Brodsky SLAC

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

Regge

If the scattering on nucleon N_{1} is via exchange, the one-step and two-step amplitudes are oppesite in phase, thus diminishing the \bar{q} flum roaching $\frac{N}{2}$.
constructive in phase
thus increasing the flux reaching N_{2}

Kuti-Weisskopf in DDIS produces nuclear anti-shadowing

July 21, 2014

Reggeon
 Exchange

Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$
Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$

Criticaltest: Tagged Drell-Yan

Shadowing and Antishadowing of DIS Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

Modifies NuTeV extraction of $\sin ^{2} \theta_{W}$

Test in flavor-tagged lepton-nucleus collisions

Lanzhou
July 21, 2014

Novel QCD Physics

Stan Brodsky

SLAC

Schmidt, Yang; sjb

Nuclear Antishadowing not universal!
Lanzhou
July 21, 2014
Novel QCD Physics
Stan Brodsky
S는슬

Odderon-Pomeron Interference leads to $\mathrm{K}^{+} \mathrm{K}^{-}$, $\mathrm{D}^{+} \mathrm{D}^{-}$and $\mathrm{B}^{+} \mathrm{B}^{-}$ charge and angular asymmetries

Odderon at amplitude level

Strong enhancement at heavy-quark pair threshold from QCD Sakharov-Schwinger-Sommerfeld effect

Merino, Rathsman, sjb

$$
\frac{\pi \alpha_{s}\left(\beta^{2} s\right)}{\beta}
$$

Hoang, Kuhn, sjb

Properties of Hard Exclusive Reactions

- Dimensional Counting Rules at fixed CM angle
- Hadron Helicity Conservation
- Color Transparency
- Hidden color
- s >>-t >> $\Lambda_{Q C D}$: Reggeons have negative-integer intercepts at large $-t$
- J=o Fixed pole in DVCS
- Quark interchange
- Renormalization group invariance
- No renormalization scale ambiguity
- Exclusive inclusive connection with spectator counting rules
- Diffractive reactions from pomeron, Reggeon, odderon

AdS5: Conformal Template for QCD

- Líght-Front Holography
with Guy de Teramond and Hans Guenter Dosch

Fixed $\tau=t+z / c$

Duality of AdS 5 with LF Hamiltonian Theory

- Light Front Wavefunctions:

Light-Front Schrödinger Equation Spectroscopy and Dynamics

$H_{Q C D}^{L F}$

QCD Meson Spectrum

$\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>$
$\left[\frac{\vec{k}_{\perp}^{2}+m^{2}}{x(1-x)}+V_{\text {eff }}^{L F}\right] \psi_{L F}\left(x, \vec{k}_{\perp}\right)=M^{2} \psi_{L F}\left(x, \vec{k}_{\perp}\right)$

Coupled Fork states

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{m^{2}}{x(1-x)}+\frac{-1+4 L^{2}}{4 \zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta) \zeta^{2}=x(1-x) b_{\perp}^{2}
$$

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Semiclassical first approximation to QCD

Light-Front Schrödinger Equation

G. de Teramond, sjb

Relativistic LF single-variable radial equation for $Q C D$ \& QED

Frame Independent!

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{m^{2}}{x(1-x)}+\frac{-1+4 L^{2}}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta)
$$

AdS/QCD:

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Semiclassical first approximation to QCD

July 21, 2014

Confining AdS/QCD potential

Stan Brodsky SLAC

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \sum_{\dot{\Psi}} \bar{\Psi}_{f}
$$

$$
i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]
$$

Chiral Lagrangian is Conformally Invariant

Where does the $\mathbf{Q C D}$ Mass Scale Λ_{QCD} come from?

How does color confinement arise?

- de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Unique potential!

Dúlaton-Modified AdS/QCD

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

- Color Confinement
- Introduces confinement scale κ

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}} \quad \text { Positive-sign dilaton }
$$

- Dosch, de Teramond, sjb

AdS Soft-Wall Schrodinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action for Dülaton-Modified AdS 5
Identical to Light-Front Bound State Equation!

$$
z \quad \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

$$
\begin{gathered}
\psi\left(x, \vec{b}_{\perp}\right) \\
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \\
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta)
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for EM and gravitational current matrix elements and identical equations of motion

AdS/QCD
Soft-Wall Model

Single scheme-independent fundamental mass scale

$$
\kappa
$$

de Tèramond, Bosch, sjb

Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Confinement Potential!
Conformal symmetry of the action
Confinement scale:

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

($\mathbf{m}_{\mathrm{q}}=\mathbf{0}$)
$1 / \kappa \simeq 1 / 3 \mathrm{fm}$
de Alfaro, Fubini, Furlan:
Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

- $J=L+S, I=1$ meson families $\mathcal{M}_{n, L, S}^{2}=4 \kappa^{2}(n+L+S / 2)$

$$
m_{q}=0
$$

Massless pion in Chiral Limit! Same slope in n and L!

$\mathrm{I}=1$ orbital and radial excitations for the $\pi(\kappa=0.59 \mathrm{GeV})$ and the ρ-meson families $(\kappa=0.54 \mathrm{GeV})$

- Triplet splitting for the $I=1, L=1, J=0,1,2$, vector meson a-states

$$
\mathcal{M}_{a_{2}(1320)}>\mathcal{M}_{a_{1}(1260)}>\mathcal{M}_{a_{0}(980)}
$$

Mass ratio of the ρ and the a_{1} mesons: coincides with Weinberg sum rules

> G. de Teramond, H. G. Dosch, sjb

Lanzhou
July 21, 2014

Stan Brodsky S는슬

de Teramond, sjb

$$
\begin{array}{ll}
\mathcal{M}_{n, L, S}^{2(+)}=4 \kappa^{2}\left(n+L+\frac{S}{2}+\frac{3}{4}\right), & \text { positive parity } \\
\mathcal{M}_{n, L, S}^{2(-)}=4 \kappa^{2}\left(n+L+\frac{S}{2}+\frac{5}{4}\right), & \text { negative parity }
\end{array}
$$

Includes all confirmed resonances from PDG 2012

Hadron Form Factors from AdS/CFT

Propagation of external perturbation suppressed inside AdS.

$$
\begin{aligned}
J(Q, z) & =z Q K_{1}(z Q) \\
F\left(Q^{2}\right)_{I \rightarrow F} & =\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
\end{aligned}
$$

Polchinski, Strassler de Teramond, sjb

Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small z, Φ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}
$$

where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$. The twist is equal to the number of partons, $\tau=n$.
July 21, 2014
Novel QCD Physics

Pion Form Factor from AdS/QCD and Light-Front Holography

Photon-to-pion transition form factor

Using $S U(6)$ flavor symmetry and normalization to static quantities

$$
F_{1}^{p}{ }_{N \rightarrow N^{*}}\left(Q^{2}\right)=\frac{2 \sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{P}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}{ }_{n} \rightarrow 4 \kappa^{2}(n+1 / 2)$

$$
\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)
$$

$$
\begin{gathered}
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \\
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta)
\end{gathered}
$$

Light Front Holography: Unique mapping derived from equality of LF and AdS formula for EM and gravitational current matrix elements

July 21, 2014

Light-Front Holography:
 Map AdS/CFT to 3+1 LF Theory

Relativistic LF radial equation
Frame Independent

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)} \\
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} \\
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1) \text { soft wall }
\end{gathered}
$$

G. de Teramond, sjb confining potential:

July 21, 2014

Prediction from AdS/CFT: Meson LFWF

de Teramond, sjb
 "Soft Wall" model

$$
\kappa=0.375 \mathrm{GeV}
$$

$$
\phi_{M}\left(x, Q_{0}\right) \propto \sqrt{x(1-x)}
$$

Connection of Confinement to-TMDs

Stan Brodsky SLAC

Hadron Distribution Amplitudes

$$
\phi_{M}(x, Q)=\int_{\sum_{i} x_{i}=1}^{Q} d^{2} \vec{k} \psi_{q \bar{q}}\left(x, \vec{k}_{\perp}\right)
$$

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons

Lepage, sjb

- Evolution Equations from PQCD, OPE

Efremov, Radyushkin
Sachrajda, Frishman Lepage, sjb

- Conformal Expansions

Braun, Gardi

- Compute from valence light-front wavefunction in light-cone gauge

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

J. R. Forshaw*
Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manchester,
Oxford Road, Manchester M13 9PL, United Kingdom
R. Sandapen ${ }^{\dagger}$
Département de Physique et d'Astronomie, Université de Moncton, Moncton, New Brunswick E1A3E9, Canada (Received 5 April 2012; published 20 August 2012)

We show that anti-de Sitter/quantum chromodynamics generates predictions for the rate of diffractive ρ-meson electroproduction that are in agreement with data collected at the Hadron Electron Ring Accelerator electron-proton collider.

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}}
$$

AdS/QCD Holographic Wave Function for the ρ Meson

 and Diffractive ρ Meson Electroproduction
(a) H
J. R. Forshaw, R. Sandapen
$\gamma^{*} p \rightarrow \rho^{0} p^{\prime}$

(b) ZEUS

$$
\tilde{\phi}(x, k) \propto \frac{1}{\sqrt{x(1-x)}} \exp \left(-\frac{M_{q \bar{q}}^{2}}{2 k^{2}}\right) .
$$

Running Coupling from Modified AdS/QCD

Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for $Q<\mathbf{I G e V}$

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Teramond, sjb

Chiral Features of Soft-Wall AdS/

 QCD Model- Boost Invariant
- Trivial LF vacuum! No condensate, but consistent with GMOR
- Massless Pion
- Hadron Eigenstates (even the pion) have LF Fock components of different L^{z}
- Proton: equal probability $\quad S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$

$$
J^{z}=+1 / 2:<L^{z}>=1 / 2,<S_{q}^{z}>=0
$$

- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o.

No mass -degenerate parity partners!

Remarkable Features of Light-Front Schrödinger Equation

- Relativistic, frame-independent

Dynamics + Spectroscopy

- QCD scale emerges- unique LF potential
- Reproduces spectroscopy and dynamics of light-quark hadrons with one parameter
- Zero-mass pion for zero mass quarks!
- Regge slope same for n and L -- not usual HO
- Splitting in L persists to high mass -- contradicts conventional wisdom based on breakdown of chiral symmetry
- Phenomenology: LFWFs, Form factors, electroproduction
- Extension to heavy quarks

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

July 21, 2014

Stan Brodsky SLAC

Interpretation of Mass Scale κ

- Does not affect conformal symmetry of QCD action
- Self-consistent regularization of IR divergences
- Determines all mass and length scales for zero quark mass
- Compute scheme-dependent $\Lambda_{\overline{M S}}$ determined in terms of κ
- Value of κ itself not determined -- place holder
- Need external constraint such as f_{π}

Goals

- Test QCD to maximum precision
- High precision determination of $\alpha_{s}\left(Q^{2}\right)$ at all scales
- Relate observable to observable --no scheme or scale ambiguity
- Eliminate renormalization scale ambiguity in a scheme-independent manner
- Relate renormalization schemes without ambiguity
- Maximize sensitivity to new physics at the colliders

$$
A^{\operatorname{tI}}\left(\Delta y_{i}\right)=\frac{N\left(\Delta y_{i}\right)-N\left(-\Delta y_{i}\right)}{N\left(\Delta y_{i}\right)+N\left(-\Delta y_{i}\right)}
$$

Fermilab-Pub-10-525-E
Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production

CDF Collaboration

Implications for the $\bar{p} p \rightarrow t \bar{t} X$ asymmetry at the Tevatron

Interferes with Born term.
Small value of renormatization scale increases asymmetry

Lanzhou
July 21, 2014

Xing-Gang Wu, sjb

Stan Brodsky
SLAC

The Renormalization Scale Ambiguity for Top-Pair Production Eliminated Using the 'Principle of Maximum Conformality' (PMC)

Top quark forward-backward asymmetry predicted by PQCD NNLO within 1 of $C D F / D O$ measurements using $P M C / B L M$ scale setting

Set multiple renormalization scales -Lensing, DGLAP, ERBL Evolution ...

Choose renormalization scheme; e.g. $\alpha_{s}^{R}\left(\mu_{R}^{\text {init }}\right)$

Choose $\mu_{R}^{i n i t}$; arbitrary initial renormalization scale

Result is independent of $\mu_{R}^{\text {init }}$ and scheme at fixed order

PMC/BLM

No renormalization scale ambiguity!
Result is independent of Renormalization scheme and initial scale!

QED Scale Setting at $\mathbf{N}_{\mathbf{C}}=\mathbf{o}$

Eliminates unnecessary systematic uncertainty

Scale fixed at each order
ठ-Scheme automatically identifies β-terms!

Principle of Maximum Conformality

Xing-Gang Wu, Matin Mojaza
Leonardo di Giustino, SJB

Relate Observables to Each other

- Eliminate intermediate scheme
- No scale ambiguity
- Transitive!
- Commensurate Scale Relations
- Conformal Template
- Example: Generalized Crewther Relation

$$
\begin{gathered}
R_{e^{+} e^{-}}\left(Q^{2}\right) \equiv 3 \sum_{\text {flavors }} e_{q}^{2}\left(1+\frac{\alpha_{R}(Q)}{\pi}\right) . \\
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{1}{3}\left|\frac{g_{A}}{g_{V}}\right|\left[1-\frac{\alpha_{g_{1}}(Q)}{\pi}\right] \\
\text { Novel QCD Physics } \\
\text { Stan Brodsky } \\
\text { S!L_AC }
\end{gathered}
$$

$$
\begin{gathered}
R_{e^{+} e^{-}}\left(Q^{2}\right) \equiv 3 \sum_{\text {flavors }} e_{q}^{2}\left[1+\frac{\alpha_{R}(Q)}{\pi}\right) \\
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{1}{3}\left|\frac{g_{A}}{g_{V}}\right|\left[1-\frac{\alpha_{g_{1}}(Q)}{\pi}\right] \\
\frac{\alpha_{g_{1}}(Q)}{\pi}=\frac{\alpha_{R}\left(Q^{*}\right)}{\pi}-\left(\frac{\alpha_{R}\left(Q^{* *}\right)}{\pi}\right)^{2}+\left(\frac{\alpha_{R}\left(Q^{* * *}\right)}{\pi}\right)^{3}
\end{gathered}
$$

Geometric Series in Conformal QCD

Generalized Crewther Relation

Lu, Kataev, Gabadadze, Sjb

July 21, 2014

Essential Points

- Physical Results cannot depend on choice of scheme
- Different PMC scales at each order
- No scale ambiguity!
- Series identical to conformal theory
- Relation between observables scheme independent, transitive
- Cboice of initial scale irrelevant even at finite order
- Identify β terms using \boldsymbol{R}_{δ} method

Novel QCD Physics

- Collisions of Flux Tubes and the Ridge
- Factorization-Breaking Lensing Corrections
- Digluon initiated subprocesses and anomalous nuclear dependence of quarkonium production
- Higgs Production at high \mathbf{x}_{F} from Intrinsic Heavy Quarks
- Direct, color-transparent hard subprocesses and the baryon anomaly
- PMC eliminates renormalization scale ambiguity order by order; increased top/anti-top asymmetry; scheme independent
- Light-Front Schrödinger Equation: New approach to confinement, origin of QCD mass scale

Novel QCD Physics

Fixed $\tau=t+z / c$

Thanks to Pengming Zhang！

Stan Brodsky

The Sixth Workshop on Hadron Physics in China and Opportunities in US
July 2 I－－July 24， 20 I4，
Lanzhou University

