First Results from QWEAK

Rupesh Silwal MIT
(for the QWEAK Collaboration)

Jefferson Lab

The Sixth Workshop on Hadron Physics in China and Opportunities in the US Lanzhou, China (July 23, 2014)

The Weak Charges

Electron-quark scattering, general four-fermion contact interaction:

$$
\mathcal{L}_{e q}^{P V}=-\frac{G_{F}}{\left.\sqrt{2} \sum_{i}\left[C_{1 i} \bar{e} \gamma_{\mu} \gamma_{5} e \bar{q} \gamma^{\mu} q+C_{2 q} \bar{e} \gamma_{\mu} e \bar{q} \gamma^{\mu} \gamma^{5} q\right]+\mathcal{L}_{\text {new }}^{P V}\right)}
$$

Note "accidental" suppression of $Q^{p}{ }_{\text {weak }} \rightarrow$ sensitivity to new physics

Particle	Electric charge	Weak vector charge $\left(\sin ^{2} \theta_{W} \approx \frac{1}{4}\right)$
e	-1	$Q_{W}^{e}=-1+4 \sin ^{2} \theta_{W} \approx 0$
u	$+\frac{2}{3}$	$-2 C_{1 u}=+1-\frac{8}{3} \sin ^{2} \theta_{W} \approx+\frac{1}{3}$
d	$-\frac{1}{3}$	$-2 C_{1 d}=-1+\frac{4}{3} \sin ^{2} \theta_{W} \approx-\frac{2}{3}$
$\mathrm{p}($ und $)$	+1	$Q_{W}^{P}=1-4 \sin ^{2} \theta_{W} \approx 0.07$
$\mathrm{n}($ udd $)$	0	$Q_{W}^{n}=-1$

$Q^{\rho}{ }_{\text {weak }}$ has a definite prediction in the electroweak Standard Model

Sensitivity to New Physics

> Qweak proposal: $\Delta Q_{w}^{p} / Q^{p}{ }_{w}=4.2 \%$

Depending on how the PV "new physics" Lagrangian is constructed, and the value of model dependent value g, the mass scale can be much greater

RPC SUSY

Generic Z'

RPV SUSY

Leptoquarks

New Physics Example - Dark Z

"Dark parity violation" (Davoudiasl, Lee, Marciano, arXiv 1402.3620)

- Introduces a new source of low energy parity violation through mass mixing between Z and Z_{d} with observable consequences.
- Complementary to direct searches for heavy dark photons.

Low-E experiments most sensitive to deviations from SM due to Dark Z

Determining $Q^{p}{ }_{w}$

- $A_{e p}=\left[\frac{\sigma^{+}-\sigma^{-}}{\sigma^{+}+\sigma^{-}}\right] \sim \frac{\left|M_{w e a k}^{P V}\right|}{\left|M_{E M}\right|}$

- $A_{e p}=\left[\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}}\right] \frac{\epsilon G_{E}^{\gamma} G_{E}^{Z}+\tau G_{M}^{\gamma} G_{M}^{Z}-\left(1-4 \sin ^{2} \theta_{w}\right) \epsilon^{\prime} G_{M}^{\gamma} G_{A}^{Z}}{\varepsilon\left(G_{E}^{\gamma}\right)^{2}+\tau\left(G_{M}^{\gamma}\right)^{2}}$
- where $\varepsilon=\left[1+2(1+\tau) \tan ^{2}(\theta / 2)\right]^{-1}, \quad \varepsilon^{\prime}=\sqrt{\tau(1+\tau)\left(1-\varepsilon^{2}\right)}$, $\tau=\mathrm{Q}^{2} / 4 \mathrm{M}^{2}, G_{E, M}^{\gamma}$ are EM FFs, $G_{E, M}^{Z}$ \& G_{A}^{Z} are strange \& axial FFs, and $\sin ^{2} \theta_{w}=1-\left(M_{w} / M_{z}\right)^{2}=$ weak mixing angle
- Recast $A_{e p}=\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}}\left[Q_{w}^{p}+Q^{2} B\left(Q^{2}, \theta\right)\right]$
- So in a plot of $A_{e p} /\left[\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}}\right]$ vs Q^{2} :

This Experiment

- Q_{w}^{p} is the intercept (anchored by precise data near $Q^{2}=0$) \longleftarrow
- $B\left(Q^{2}, \theta\right)$ is the slope (determined from higher Q^{2} PVES data)

PVES Challenges

PVeS Experiment Summary

PVES challenges:

- Statistics
- High rates required
- High polarization, current
- High powered targets with large acceptance
- Low noise
- Electronics, target density fluctuations
- Detector resolution
- Systematics
- Helicity-correlated beam parameters
- Backgrounds (target windows)
- Polarimetry
- Parity-conserving processes

Qweak's goal: most precise (relative and absolute) PVES result to date.

QWEAK JLab Site

Jefferson Lab (6 GeV)

Qweak Installation:
May 2010-May 2012
~1 year of beam in 3 running periods:

- Run 0

Jan - Feb 2011

- Run 1

Feb - May 2011

- Run 2

Nov 2011 - May 2012

Asymmetry ~250 ppb Error goal ~5 ppb

QWEAK Apparatus

Horizontal drift chambers

$$
E_{\text {beam }}=1.155 \mathrm{GeV}
$$

$$
<\mathrm{Q}^{2>} \sim 0.025(\mathrm{GeV} / \mathrm{c})^{2}
$$

$$
<\theta>\sim 7.9^{\circ} \pm 3^{\circ}
$$

$$
\varphi \text { coverage } \sim 49 \% \text { of } 2 \pi
$$

$$
\text { Current }=145(180) \mu \mathrm{A}
$$

Polarization = 89\%

$$
\text { Target }=34.4 \mathrm{~cm} \mathrm{LH}_{2}
$$

$$
\text { Cryopower }=2.5 \mathrm{~kW}
$$

$$
\text { Luminosity } 2 \times 10^{39} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}
$$

Electron beam

Target
Trigger scintillator

Red $=$ low-current tracking mode (production current $\times 10^{-6}$)

> Toroidal magnet spectrometer

Blue = production ("integrating") mode

QWEAK Apparatus

Horizontal drift chambers

$\mathrm{E}_{\text {beam }}=1.155 \mathrm{GeV}$

$<Q^{2>} \sim 0.025(\mathrm{GeV} / \mathrm{c})^{2}$ $<\theta>\sim 7.9^{\circ} \pm 3^{\circ}$ φ coverage $\sim 49 \%$ of 2π Current = 145 (180) $\mu \mathrm{A}$ Polarization = 89\% Target $=34.4 \mathrm{~cm} \mathrm{LH} 2$ Cryopower $=2.5 \mathrm{~kW}$ Luminosity $2 \times 10^{39} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$

Electron beam

Toroidal magnet spectrometer
Red $=$ low-current tracking mode (production current $\times 10^{-6}$)
Blue = production ("integrating") mode

Quartz Cerenkov Detectors

Target Design and Performance

- 35 cm LH ($4 \% \mathrm{X}_{0}$)
- 20K, 30-35 psia
- ~3 kW power
- Designed using CFD

Fluid Velocity Simulation

Measuring Asymmetry

Detector signal integrated For each helicity window

Asymmetry formed by quartet (4 ms)
Statistical power is

$$
\Delta \mathrm{A}=\mathrm{s}_{\text {width }} / \sqrt{ } \mathrm{N}_{\text {quartets }}
$$

Measured asymmetry has unknown additive "blinding factor" for analysis
($\pm 60 \mathrm{ppb}$ blinding box)
Helicity of electron beam flipped at up to 960 times/sec. Delayed helicity reporting to prevent θ direct electrical pick up of reversal signal by ADC's

Constructing Asymmetry

False Asymmetries

- $\mathrm{A}_{\text {msr }}=\mathrm{A}_{\text {raw }}+\mathrm{A}_{\mathrm{T}}-\mathrm{A}_{\text {reg }}$
- $A_{\text {raw }}=\left(Y^{+}-Y^{-}\right) /\left(Y^{+}+Y^{-}\right)$
- Charge normalized ep yields for \pm e-helicity
- $A_{T}=$ remnant transverse asymmetry measured with explicitly P_{T} beam
- $A_{\text {reg }}=\sum\left(\frac{\partial A}{\partial \chi_{i}}\right) \Delta \chi_{i}$,
measured with natural \& driven beam motion for ($x, y, x^{\prime}, y^{\prime}, E$) using BPMs
- A_{Q} driven to 0 with feedback

Backgrounds

- $\mathrm{A}_{\mathrm{ep}}=\mathrm{R}_{\text {tot }} \frac{A_{\mathrm{msr}} / \mathrm{P}-\sum_{\mathrm{i}=1}^{4} \mathrm{f}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}}{1-\mathrm{f}_{\mathrm{tot}}}$
- $R_{\text {tot }}=R_{Q^{2}} R_{R C} R_{\text {Det }} R_{\text {Bin }}=0.98$
- $\mathrm{f}_{\text {tot }}=\sum \mathrm{f}_{\mathrm{i}}=3.6 \%$
- $f_{i}=$ fraction of yield from bkg i
- $A_{i}=$ asymmetry of bkg i
- b_{1} from Al windows of tgt cell (dominant bkg)
- b_{2} from beamline bkg
- b_{3} from other soft neutral bkg
- b_{4} from $N \rightarrow \Delta$ inelastic bkg

Beam Parameter Corrections

Example: Detector Sensitivity to X position variation

- Helicity correlated beam parameter variations can produce an asymmetry in the detectors
- Symmetric detectors give partial cancellation
- Large HC beam variations can be reduced by retuning
- Measured detector-beam correlations can provide a correction

$$
\begin{gathered}
A_{\text {corr }}=\sum_{i=1}^{5}\left(\frac{\partial A}{\partial x_{i}}\right) \Delta x_{i} \\
\left(\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{y}, \mathrm{y}^{\prime}, \mathrm{E}\right)
\end{gathered}
$$

Regression Correction from Qweak "Wien0" (PRL 111, 141803): $A_{\text {corr }}=-35 \pm 11 \mathrm{ppb}$

Transverse Asymmetry

- Dedicated measurement with fully transverse beam
- Constrains false asymmetry for $\mathrm{A}_{\text {ep }}$ result

- Good cancellation (symmetry factor)
- Small residual P_{T} when running
- Correction < 4 ppb
- Transverse result: nucleon structure and 2γ exchange

The data provide an integral test of all allowed virtual excitations of the proton up to $\mathrm{E}_{\mathrm{cm}}=1.7 \mathrm{GeV}$

Aluminum Window Background

Large A \& f make this our largest correction. Determined from explicit measurements using Al dummy tgts \& empty H_{2} cell.

$$
f_{\mathrm{Al}}=3.23 \pm 0.24 \%
$$

- Dilution from windows measured with empty target (actual tgt cell windows). - Corrected for effect of H_{2} using simulation and data driven models of elastic and QE scattering.

$$
\begin{gathered}
C_{\mathrm{Al}}=-64 \pm 10 \mathrm{ppb} \\
A_{\mathrm{Al}}=1.76 \pm 0.26 \mathrm{ppm}
\end{gathered}
$$

- Asymmetry measured from thick Al targets
- Measured asymmetry agrees with expectations from scaling.

$$
A_{P V}\left({ }_{Z}^{N} X\right)=-\frac{Q^{2} G_{F}}{4 \pi \alpha \sqrt{2}}\left[Q_{W}^{p}+\left(\frac{N}{Z}\right) Q_{W}^{n}\right]
$$

Simulated e- profile at detector:

Precision Polarimetry

Qweak requires $\Delta P / P \leq 1 \%$

Strategy: use 2 independent polarimeters

- Use existing <1\% Hall C Moller polarimeter:
- Low beam currents, invasive
- Known analyzing power provided by polarized Fe foil in a 3.5 T field.
- Use new Compton polarimeter ($1 \% / \mathrm{h}$)
- High current, non-invasive
- Continuous
- Photon \& Electron
- Known analyzing power provided by circularly-polarized laser

Kinematics Determination

$A_{P V}=-\frac{\left.Q^{2}\right) G_{F}}{4 \sqrt{2} \pi \alpha}\left[Q_{W}^{p}+F\left(\theta, Q^{2}\right)\right]$

- Drift chambers before and after magnetic field
- Low current, reconstruct individual events
- Systematic studies

Q ${ }^{2}$ Distribution in Octant 1 (Sim \& Data)

First Results: Asymmetry

- Run 0 Results (1/25th of total dataset)

Kinematics: $\left\langle Q^{2}\right\rangle=0.0250 \pm 0.0006 \mathrm{GeV}^{2}$ $\left\langle E_{\text {beam }}\right\rangle=1.155 \pm 0.003 \mathrm{GeV}$

PRL 111,141803 (2013)

Electroweak Corrections

 $Q_{W}^{p}=\left[\rho_{\mathrm{NC}}+\Delta_{e}\right]\left[1-4 \sin ^{2} \hat{\theta}_{\mathrm{W}}(0)+\Delta_{e}^{\prime}\right]+\square_{W W}+\square_{Z Z}+\left(\square_{\gamma Z}\right)$~7\% correction

Table 1: $\square_{\gamma Z}^{V}$ contribution to Q_{W}^{p} (Qweak kinetmatics)

Gorchtein \& Horowitz

Phys. Rev. Lett. 102, 091806 (2009)
Sibirtsev, Blunden, Melnitchouk, \& Thomas Phys. Rev. D 82, 013011 (2010)
Rislow \& Carlson
Phys. Rev. D 83, 113007 (2007)
Gorchtein, Horowitz, \& Ramsey-Musolf
Phys. Rev. C 84, 015502 (2011)
Hall, Blunden, Melnitchouk, Thomas, \& Young 0.00557 ± 0.00036
Phys. Rev. D 88, 013011 (2013)

The $\square_{\gamma \mathrm{Z}}$ is the only $\mathrm{E} \& \mathrm{Q}^{2}$ dependent EW correction.

Correct the PVES data for this E \& Q^{2} dependence.

- Calculations are primarily dispersion theory type - error estimates can be firmed up with data!
- Qweak: inelastic asymmetry data taken at $\mathrm{W} \sim 2.3 \mathrm{GeV}, \mathrm{Q}^{2}=0.09 \mathrm{GeV}^{2}$

First Results: Weak Charge

First Results: Quark Couplings

4% of
Qweak
PRL 111,141803 (2013)
Data

Weak mixing angle

* Uses electroweak radiative corrections from Erler, Kurylov, Ramsey-Musolf, PRD 68, 016006 (2003)

"Teaser"

"Teaser"

Auxiliary Measurements

Qweak has data (under analysis) on a variety of observables of potential interest for Hadron physics:

- Beam normal single-spin asymmetry for elastic scattering on proton
- Beam normal single-spin asymmetry for elastic scattering on ${ }^{27} \mathrm{Al}$
- PV asymmetry in the $N \rightarrow \Delta$ region.
- Beam normal single-spin asymmetry in the $N \rightarrow \Delta$ region.
- Beam normal single-spin asymmetry near $\mathrm{W}=2.5 \mathrm{GeV}$
- Beam normal single-spin asymmetry in pion photoproduction
- PV asymmetry in inelastic region near $\mathrm{W}=2.5 \mathrm{GeV}$ (related to Z box diagrams)
- PV asymmetry for elastic/quasielastic from ${ }^{27} \mathrm{Al}$
- PV asymmetry in pion photoproduction

Summary

- Measured $\mathrm{A}_{\mathrm{ep}}=-279 \pm 35$ (statistics) ± 31 (systematics) ppb
- Smallest \& most precise ep asymmetry measurement to date
- First determination of $\mathrm{Q}_{\mathrm{w}}(\mathrm{p})=-2\left(2 \mathrm{C}_{1 \mathrm{u}}+\mathrm{C}_{1 \mathrm{~d}}\right)$
$-Q_{w}(p)=0.063 \pm 0.012$ (from only 4\% of all data collected)
- (SM value = 0.0710(7))
- New physics reach $\lambda / \mathrm{g}=\left(2 \mathrm{~V}_{2} \mathrm{G}_{\mathrm{F}} \Delta \mathrm{Q}_{\mathrm{W}}\right)^{-1 / 2}>1.5 \mathrm{TeV}$
- Based on 18% commissioning rslt, 95% CL, Erler, Kurylov, Musolf PRD68, 016006 (2003)
- First determination of $\mathrm{Q}_{\mathrm{w}}(\mathrm{n})=-2\left(\mathrm{C}_{1 \mathrm{u}}+2 \mathrm{C}_{1 \mathrm{~d}}\right)$:
- By combining our result with APV: $\mathrm{Q}_{\mathrm{w}}\left({ }^{133} \mathrm{Cs}\right)=-2\left(188 \mathrm{C}_{1 \mathrm{u}}+\right.$ $211 C_{1 d}$)
- $\mathrm{O}_{\mathrm{w}}(\mathrm{n})=-0.975 \pm 0.010$ (SM value $=-0.9890(7)$)
- Final results from full data set (~ 5 times smaller $\Delta \mathrm{A}$) in 2015
- Expected PV new physics reach λ / g of \sim multi TeV level
- Very precise measurement of $Q^{p}{ }_{w}$

Thanks to Qweak collaborators, from whom I have borrowed many slides

The Qweak Collaboration

- 95 collaborators
- 23 grad students
- 10 post docs
- 23 institutions: JLab, W\&M, UConn, TRIUMF, MIT, UMan., Winnipeg, VPI, LaTech, Yerevan, MSU, OU, UVa, GWU, Zagreb, CNU, HU, UNBC, Hendrix, SUNO, ISU, UNH, Adelaide
D.S. Armstrong, A. Asaturyan, T. Averett, J. Balewski, J. Beaufait, R.S. Beminiwattha, J. Benesch, F. Benmokhtar, J. Birchall, R.D. Carlini ${ }^{1}$, J.C. Cornejo, S. Covrig, M.M. Dalton, C.A. Davis,
W. Deconinck, J. Diefenbach, K. Dow, J.F. Dowd, J.A. Dunne, D. Dutta, W.S. Duvall, M. Elaasar, W.R. Falk, J.M. Finn ${ }^{1}$, T. Forest, D. Gaskell, M.T.W. Gericke, J. Grames, V.M. Gray, K. Grimm, F. Guo, J.R. Hoskins, K. Johnston, D. Jones, M. Jones, R. Jones, M. Kargiantoulakis, P.M. King, E. Korkmaz, S. Kowalski¹, J. Leacock, J. Leckey, A.R. Lee, J.H. Lee, L. Lee, S. MacEwan, D. Mack, J.A. Magee, R. Mahurin, J. Mammei, J. Martin, M.J. McHugh, J. Mei, R. Michaels, A. Micherdzinska, K.E. Myers, A. Mkrtchyan, H. Mkrtchyan, A. Narayan, L.Z. Ndukum, V. Nelyubin, Nuruzzaman, W.T.H van Oers, A.K. Opper, S.A. Page ${ }^{1}$, J. Pan, K. Paschke, S.K. Phillips, M.L. Pitt, M. Poelker, J.F. Rajotte, W.D. Ramsay, J. Roche, B. Sawatzky, T. Seva, M.H. Shabestari, R. Silwal, N. Simicevic, G.R. Smith², P. Solvignon, D.T. Spayde, A. Subedi, R. Subedi, R. Suleiman, V. Tadevosyan, W.A. Tobias, V. Tvaskis, B. Waidyawansa, P. Wang, S.P. Wells, S.A. Wood, S. Yang, R.D. Young, S. Zhamkochyan

Extra Slides

Global PVES Fit Details

- 5 free parameters (Young, et al. PRL 99, 122003 (2007)):
- $C_{111} \mathrm{C}_{101} \rho_{s}, \mu_{s}$ \& isovector axial FF G_{A}^{Z}
- $G_{E}^{S}=\rho_{s} \mathrm{Q}^{2} \mathrm{G}_{\mathrm{D}}, \mathrm{G}_{M}^{S}=\mu_{\mathrm{s}} \mathrm{G}_{\mathrm{D}}, \& \mathrm{G}_{A}^{Z}$ use G_{D} where
- $G_{0}=\left(1+Q^{2} / \lambda^{2}\right)^{-2}$ with $\lambda=1 \mathrm{GeV} / \mathrm{c}$
- Employs all PVES data up to $\mathrm{Q}^{2}=0.63(\mathrm{GeV} / \mathrm{c})^{2}$
- On p, d, \& ${ }^{4} \mathrm{He}$ targets, forward and back-angle data - SAMPLE, HAPPEX, GO, PVA4
- Uses constraints on isoscalar axial $F F G_{A}^{Z}$
- Zhu, et al., PRD 62, 033008 (2000)
- All data corrected for $E \& Q^{2}$ dependence of $\square_{Y} R C$
- Hall et al., PRD88, 013011 (2013) \& Gorchtein et al., PRC84, 015502 (2011)
- Effects of varying $Q^{2}, \theta, \& \lambda$ studied, found to be small

