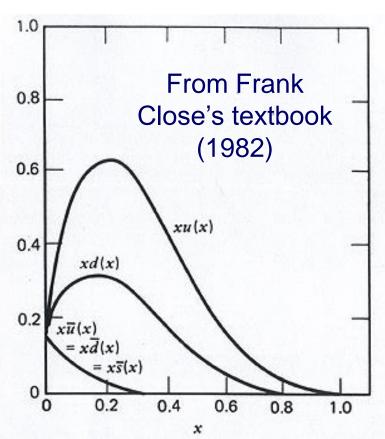
#### Flavor and x-dependence of the Nucleon Sea

Jen-Chieh Peng


University of Illinois at Urbana-Champaign

# The Sixth Workshop on Hadron Physics in China and Opportunities in US

July 21--July 24, 2014 (Lanzhou, China)

### There was a time when nucleon sea was nice and simple.....

#### Flavor structure of the proton sea



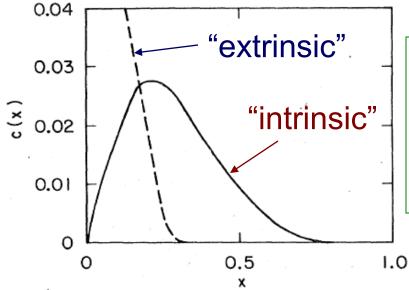
$$\overline{u}(x) = \overline{d}(x) = \overline{s}(x) = s(x)$$

SU(3) symmetric sea

Actually, the nucleon sea is full of surprises 2

### <u>Outline</u>

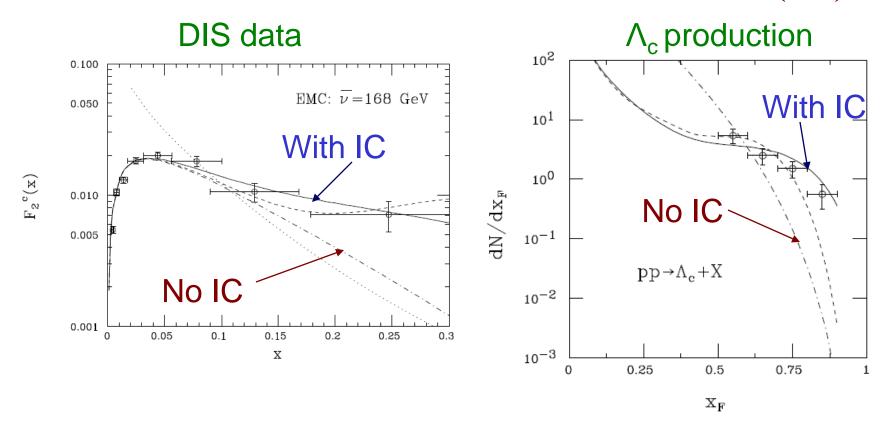
- Extraction of "intrinsic"  $\bar{u}$ , d, and  $\bar{s}$  sea in the nucleons from Drell-Yan and semi-inclusive DIS experiments
- Separation of "connected sea" from "disconnected sea" for  $\bar{u}(x) + \bar{d}(x)$
- Bjorken-x dependences of  $\bar{d}(x) \bar{u}(x)$  and  $[s(x) + \bar{s}(x)]/[(\bar{u}(x) + \bar{d}(x)]$


Based on a review article: "Flavor Structure of the Nucleon Sea", Wen-Chen Chang and Jen-Chieh Peng, arXiv: 1406.1260

### Search for the "intrinsic" quark sea

In 1980, Brodsky, Hoyer, Peterson, Sakai (BHPS) suggested the existence of "intrinsic" charm

$$|p\rangle = P_{3q} |uud\rangle + P_{5q} |uudQ\bar{Q}\rangle + \cdots$$


The "intrinsic"-charm from  $|uudc\overline{c}\rangle$  is "valence"-like and peak at large x unlike the "extrinsic" sea  $(g \to c\overline{c})$ 



The "intrinsic charm" in  $|uudc\overline{c}\rangle$  can lead to large contribution to charm production at large x

4

### "Evidence" for the "intrinsic" charm (IC)



Gunion and Vogt (hep-ph/9706252)

#### Tantalizing evidence for intrinsic charm

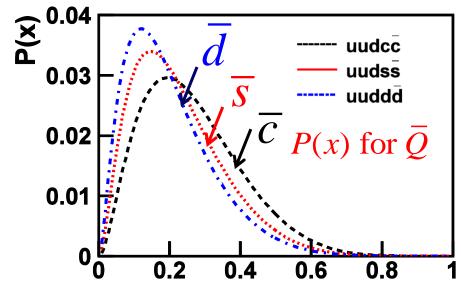
(subjected to the uncertainties of charmedquark parametrization in the PDF, however)

### Search for the "intrinsic" light-quark sea

$$|p\rangle = P_{3q} |uud\rangle + P_{5q} |uudQ\bar{Q}\rangle + \cdots$$

Some tantalizing, but not conclusive, experimental evidence for intrinsic-charm so far Are there experimental evidences for the intrinsic light-quark sea:  $|uudu\bar{u}\rangle$ ,  $|uudd\bar{d}\rangle$ ,  $|uuds\bar{s}\rangle$ ?

$$P_{5q} \sim 1/m_Q^2$$


The "intrinsic" sea for lighter quarks have larger probabilities!

### x-distribution for "intrinsic" light-quark sea

$$|p\rangle = P_{3q} |uud\rangle + P_{5q} |uudQ\bar{Q}\rangle + \cdots$$

Brodsky et al. (BHPS) give the following probability for quark i (mass  $m_i$ ) to carry momentum  $x_i$ 

$$P(x_1, \dots, x_5) = N_5 \delta(1 - \sum_{i=1}^5 x_i) \left[ m_p^2 - \sum_{i=1}^5 \frac{m_i^2}{x_i} \right]^{-2}$$



In the limit of large mass for quark Q (charm):

$$P(x_5) = \frac{1}{2}\tilde{N}_5 x_5^2 [(1 - x_5)(1 + 10x_5 + x_5^2) - 2x_5(1 + x_5)ln(1/x_5)$$

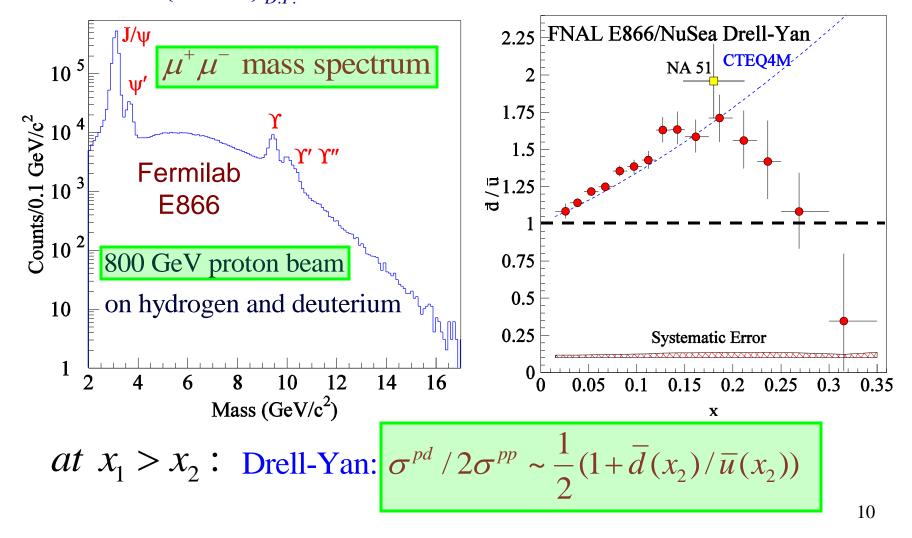
One can calculate P(x) for

antiquark  $\overline{Q}$   $(\overline{c}, \overline{s}, \overline{d})$  numerically

# How to separate the "intrinsic sea" from the "extrinsic sea"?

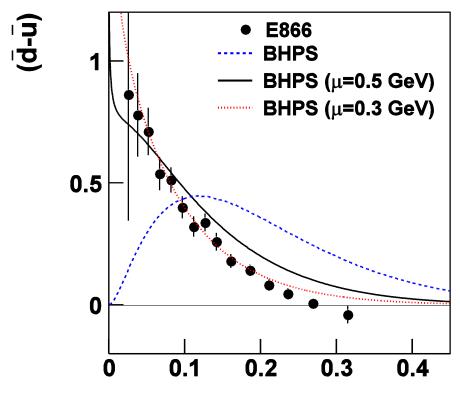
- Select experimental observables which have no contributions from the "extrinsic sea"
- "Intrinsic sea" and "extrinsic sea" are expected to have different *x*-distributions
  - Intrinsic sea is "valence-like" and is more abundant at larger x
  - Extrinsic sea is more abundant at smaller x

## How to separate the "intrinsic sea" from the "extrinsic sea"?


• Select experimental observables which have no contributions from the "extrinsic sea"

 $\overline{d}$   $-\overline{u}$  has no contribution from extrinsic sea  $(g \to \overline{q}q)$  and is sensitive to "intrinsic sea" only




### $d/\overline{u}$ flavor asymmetry from Drell-Yan

$$\left(\frac{d^2\sigma}{dx_1dx_2}\right)_{DY} = \frac{4\pi\alpha^2}{9sx_1x_2} \sum_{a} e_a^2 \left[ q_a(x_1)\overline{q}_a(x_2) + \overline{q}_a(x_1)q_a(x_2) \right]$$



### Comparison between the $\overline{d}(x) - \overline{u}(x)$ data

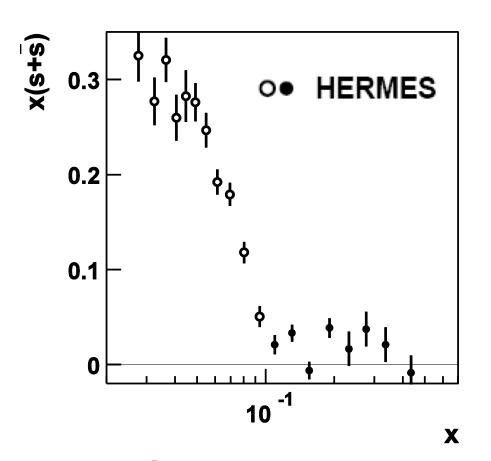
#### with the intrinsic-sea model



(W. Chang and JCP , PRL 106, 252002 (2011))

The data are in good agreement with the BHPS model after evolution from the initial scale  $\mu$  to Q<sup>2</sup>=54 GeV<sup>2</sup>

The difference in the two 5-quark components can also be determined

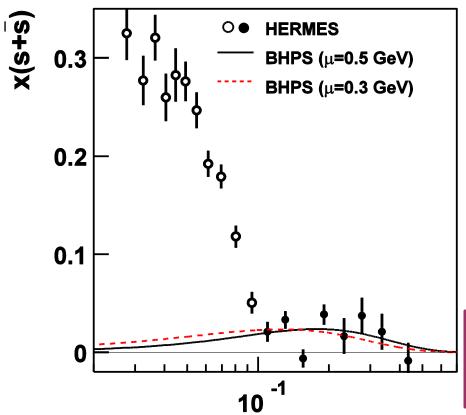

$$P_5^{uudd\bar{d}} - P_5^{uudu\bar{u}} = 0.118$$

# How to separate the "intrinsic sea" from the "extrinsic sea"?

- "Intrinsic sea" and "extrinsic sea" are expected to have different *x*-distributions
  - Intrinsic sea is "valence-like" and is more abundant at larger x
  - Extrinsic sea is more abundant at smaller x

An example is the  $s(x) + \bar{s}(x)$  distribution

### Extraction of the intrinsic strange-quark sea from the HERMES $s(x) + \overline{s}(x)$ data




 $s(x) + \overline{s}(x)$  extracted from HERMES Semi-inclusive DIS kaon data at  $\langle Q^2 \rangle = 2.5 \text{ GeV}^2$ 

The data appear to consist of two different components (intrinsic and extrinsic?)

HERMES collaboration, Phys. Lett. B666, 446 (2008)

# Comparison between the $s(x) + \overline{s}(x)$ data with the intrinsic 5-q model

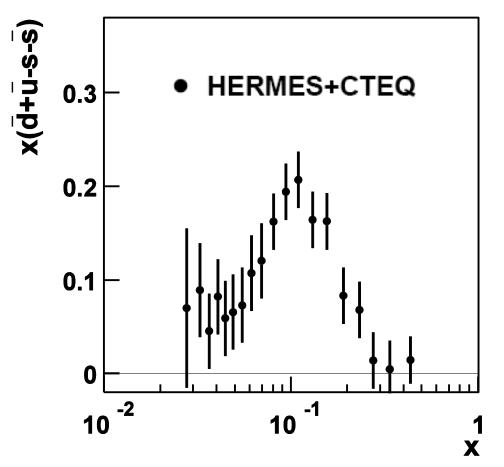


 $s(x) + \overline{s}(x)$  from HERMES kaon SIDIS data at  $\langle Q^2 \rangle = 2.5 \text{ GeV}^2$ 

Assume x > 0.1 data are dominated by intrinsic sea (and x < 0.1 are from QCD sea)

This allows the extraction of the intrinsic sea for strange quarks

(W. Chang and JCP, PL B704, 197(2011))

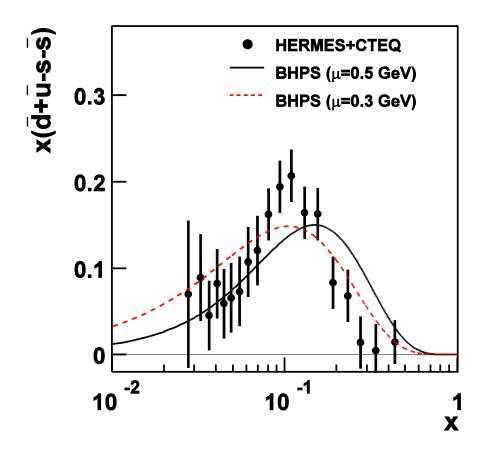

$$P_5^{uud\bar{s}}=0.024$$

## How to separate the "intrinsic sea" from the "extrinsic sea"?

• Select experimental observables which have no contributions from the "extrinsic sea"

$$\overline{d} + \overline{u} - s - \overline{s}$$
 has no contribution from extrinsic sea  $(g \to \overline{q}q)$  and is sensitive to "intrinsic sea" only

# Comparison between the $\overline{u}(x) + \overline{d}(x) - s(x) - \overline{s}(x)$ data with the intrinsic 5-q model




$$\overline{d}(x) + \overline{u}(x)$$
 from CTEQ6.6  
 $s(x) + \overline{s}(x)$  from HERMES

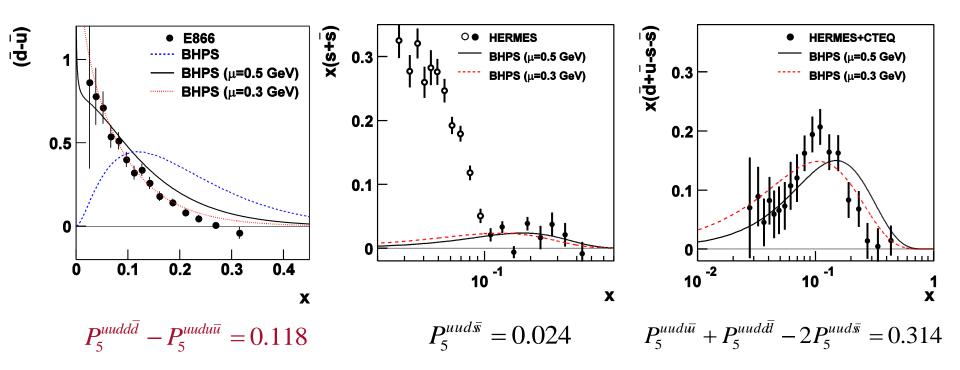
$$\overline{u} + \overline{d} - s - \overline{s}$$
 has  
no contribution  
from extrinsic sea

A valence-like x-distribution is observed

# Comparison between the $\overline{u}(x) + \overline{d}(x) - s(x) - \overline{s}(x)$ data with the intrinsic 5-q model



$$\overline{d}(x) + \overline{u}(x)$$
 from CTEQ6.6  
 $s(x) + \overline{s}(x)$  from HERMES

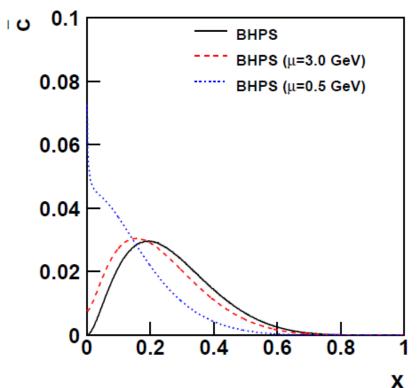

$$\overline{u} + \overline{d} - s - \overline{s}$$

$$\sim P_5^{uudu\overline{u}} + P_5^{uudd\overline{d}} - 2P_5^{uuds\overline{s}}$$
(not sensitive to extrinsic sea)

(W. Chang and JCP, PL B704, 197(2011))

$$P_5^{uudu\bar{u}} + P_5^{uudd\bar{d}} - 2P_5^{uuds\bar{s}} = 0.314$$

# Extraction of the various five-quark components for light quarks




$$P_5^{uudd\overline{d}} = 0.240; \ P_5^{uudu\overline{u}} = 0.122; \ P_5^{uuds\overline{s}} = 0.024$$

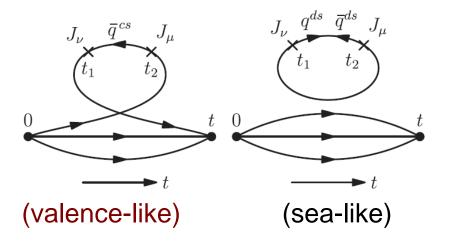
# What are the implications on the intrinsic charm content in the proton?

$$P_5^{uudd\bar{l}} = 0.240; \ P_5^{uudu\bar{u}} = 0.122; \ P_5^{uud\bar{s}} = 0.024$$

## Expect $P_5^{uudc\overline{c}} \sim 0.0025$



- Calculation assumes  $P_5^{uudc\bar{c}} = 0.01$
- $Q^2$  evolution could shift the x-distribution to smaller x

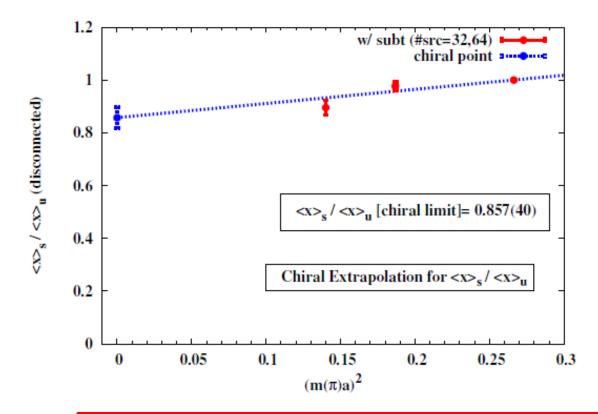

#### **Future Possibilities**

- Search for intrinsic charm and beauty at RHIC and LHC.
- Intrinsic gluons in the nucleons (Hoyer and Roy)?
- Spin-dependent observables of intrinsic sea?
- Global fits including intrinsic u, d, s sea?
- Intrinsic sea for hyperons and mesons?
- Connection between intrinsic sea and lattice QCD formalism?

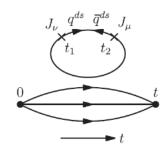
#### Connected-Sea Partons

Keh-Fei Liu,1 Wen-Chen Chang,2 Hai-Yang Cheng,2 and Jen-Chieh Peng3

#### Connected sea Disconnected sea




Two sources of sea: Connected sea (CS) and Disconnected sea (DS)


CS and DS have different Bjorken-x and flavor dependences

- x dependence: at small x, CS  $\sim x^{-1/2}$ ; DS  $\sim x^{-1}$
- Flavor dependence:  $\overline{u}$  and  $\overline{d}$  have both CS and DS;  $\overline{s}$  is entirely DS

# Can one separate the "connected sea" from the "disconnected sea" for $\bar{u} + \bar{d}$ ?



Disconnected sea



$$R = \frac{\langle x \rangle_{s+\overline{s}}}{\langle x \rangle_{u+\overline{u}}} = 0.857(40)$$

for disconnected sea

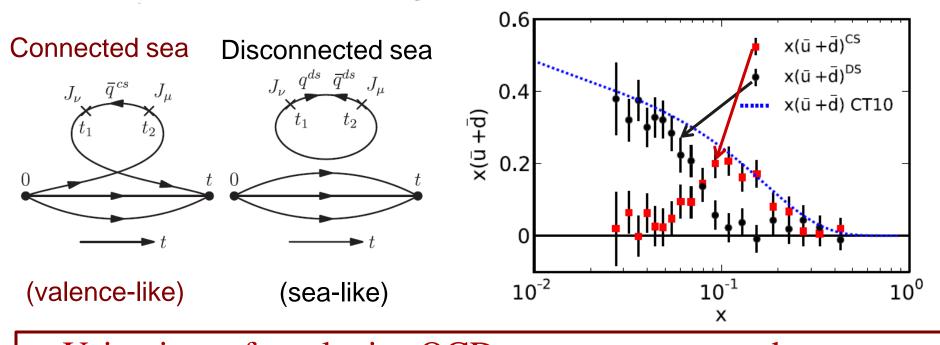
(Doi et al., Pos lattice 2008, 163.)

Lattice QCD shows that disconnected sea is roughly SU(3)-flavor independent

# Can one separate the "connected sea" from the "disconnected sea" for $\bar{u} + \bar{d}$ ?

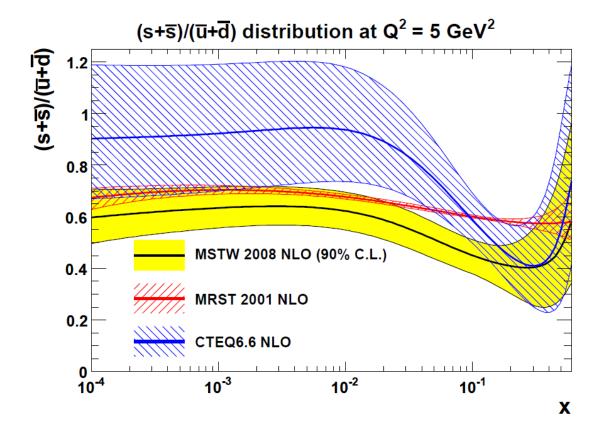
A) Lattice QCD shows that disconnected sea is roughly SU(3)-flavor independent

$$R = \frac{\langle x \rangle_{s+\overline{s}}}{\langle x \rangle_{u+\overline{u}}} = 0.857(40) \text{ for disconnected sea}$$


B)  $[\overline{u}(x) + d(x)]_{\text{disconnected sea}} = [s(x) + \overline{s}(x)]/R$ (since  $s, \overline{s}$  is entirely from the disconnected sea)

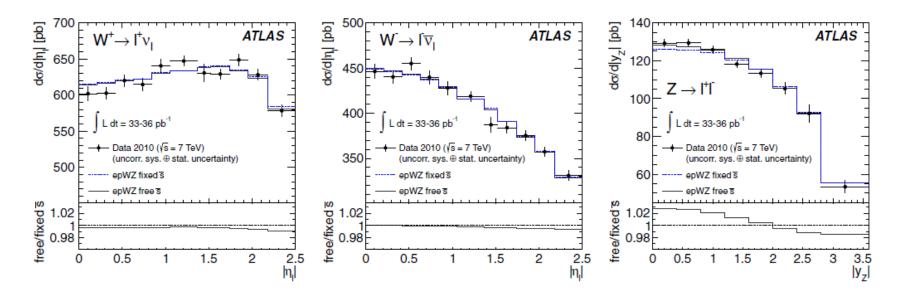
C) 
$$[\overline{u}(x) + d(x)]_{\text{connected sea}} =$$

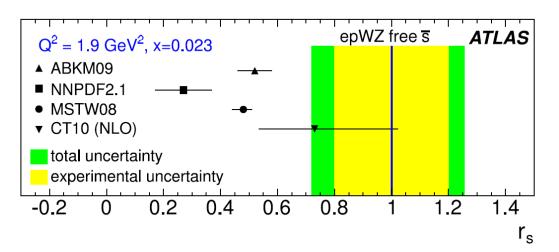
$$[\overline{u}(x) + \overline{d}(x)]_{\text{PDF}} - [\overline{u}(x) + \overline{d}(x)]_{\text{disconnected sea } 23}$$


#### Connected-Sea Partons

Keh-Fei Liu, Wen-Chen Chang, Hai-Yang Cheng, and Jen-Chieh Peng<sup>3</sup>




- Using input from lattice QCD, one can separate the connected sea from the disconnected sea for  $\overline{u}(x) + d(x)$
- For  $\overline{u} + \overline{d}$  at  $Q^2 = 2.5 \text{ GeV}^2$ , momenta carried by CS and DS are roughly equal 24


#### What is the x-dependence of $[s(x) + \overline{s}(x)]/[\overline{u}(x) + \overline{d}(x)]$ ?



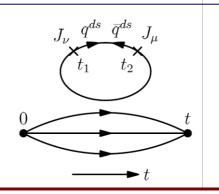
- CTEQ6.6 suggests an SU(3) symmetric sea at small *x*?
- A strong x dependence for the  $[s(x) + \overline{s}(x)]/[\overline{u}(x) + d(x)]$  ratio?

#### ATLAS W/Z production suggests SU(3) symmetric sea?

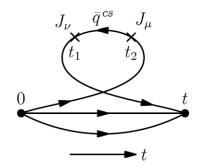




$$r_s = (s + \overline{s}) / 2\overline{d} = 1.00^{+0.09}_{-0.10}$$
  
at  $x=0.013$ ,  $Q^2 = M_Z^2$ 


Aad et al., PRL 109 (2012) 012001

#### Flavor structure of nucleon sea is strongly *x* dependent

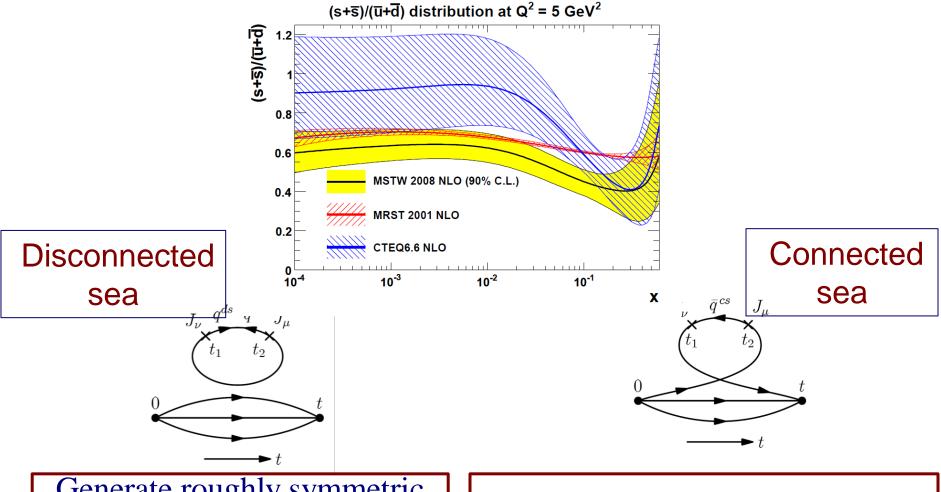

- Sea is roughly SU(3) symmetric at small x
- Sea is SU(3) asymmetric at large x

Can be understood from Lattice QCD (PRL 109 (2012)252002)

#### Disconnected sea



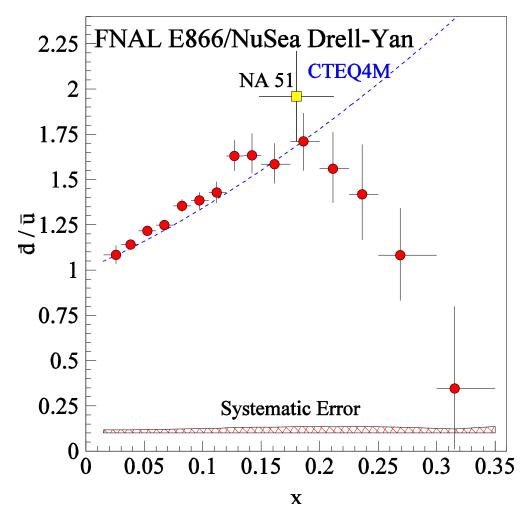
Connected sea




Generate roughly symmetric

$$s(x), \overline{s}(x), \overline{u}(x)$$
 and  $\overline{d}(x)$  at small  $x$ 

Generate additional "valence-like"  $\overline{u}(x)$  and  $\overline{d}(x)$  (no  $\overline{s}(x)$ ) at larger x

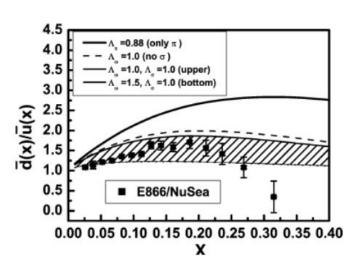

### The *x*-dependence of $[s(x) + \overline{s}(x)]/[\overline{u}(x) + d(x)]$



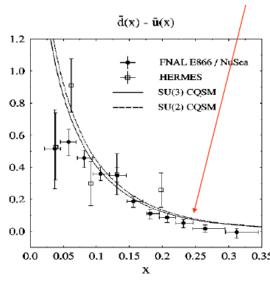
Generate roughly symmetric  $s(x), \overline{s}(x), \overline{u}(x)$  and  $\overline{d}(x)$  at small x

Generate additional "valence-like"  $\overline{u}(x)$  and  $\overline{d}(x)$  (no  $\overline{s}(x)$ ) at larger x

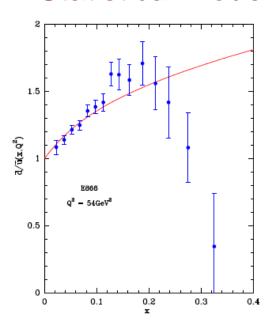
## Does $d / \overline{u}$ drop below 1 at large x?




No existing models can explain sign-change for  $\overline{d}(x) - \overline{u}(x)$  at any value of x


## Sign change of $\overline{d}(x) - \overline{u}(x)$ at $x \sim 0.25$ ? (or $\overline{d}(x) / \overline{u}(x) < 1$ at $x \sim 0.25$ ?)

Why is it interesting? (no models can explain it yet!)


#### Meson cloud model

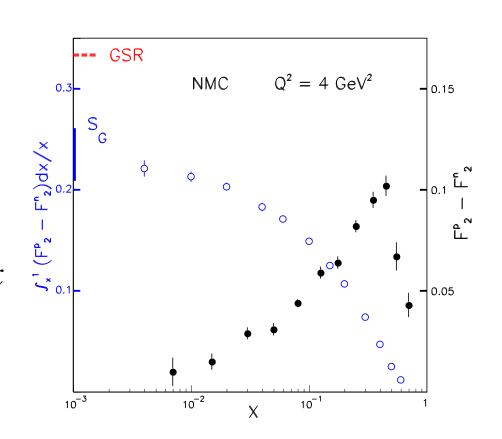


## Chiral-quark soliton model



#### Statistical model



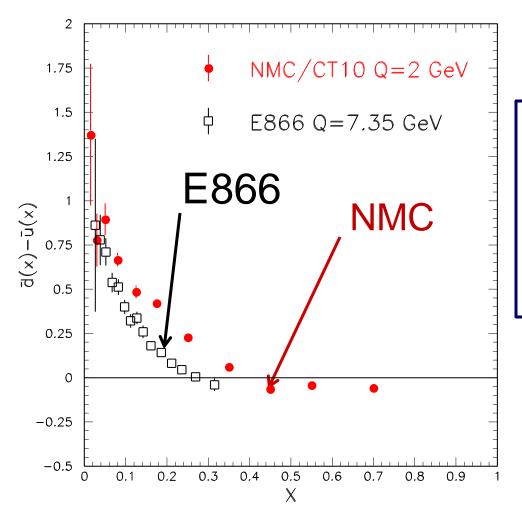

### Revisit the NMC measurement of the Gottfried Sum rule

#### The Gottfried Sum Rule

The Gottfried Sum Rule
$$S_{G} = \int_{0}^{1} [(F_{2}^{p}(x) - F_{2}^{n}(x))/x] dx$$

$$= \frac{1}{3} + \frac{2}{3} \int_{0}^{1} (\overline{u}_{p}(x) - \overline{d}_{p}(x)) dx$$

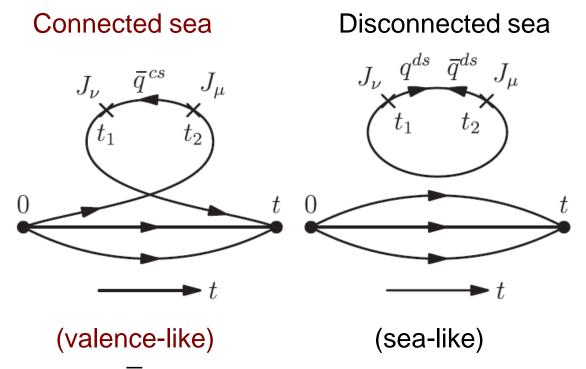
$$= \frac{1}{3} \quad (if \ \overline{u}_{p} = \overline{d}_{p})$$




New Muon Collaboration (NMC) obtains

$$S_G = 0.235 \pm 0.026$$
 (Significantly lower than 1/3!)  $\Longrightarrow \overline{d} \neq \overline{u}$ ?

### Extracting $\overline{d}(x) - \overline{u}(x)$ from the NMC data


$$\overline{d}(x) - \overline{u}(x) = [u_V(x) - d_V(x)]_{CT10} / 2 - 3/2 * [F_2^p(x) / x - F_2^n(x) / x]_{NMC}$$



The NM Cdata, together with the recent PDF, already suggest that  $\overline{d}(x) - \overline{u}(x) < 0$  at large x!

(JCP, Chen, Liu, Qiu, et al. arXiv: 1401.1705)

### What mechanism could lead to $\overline{u} > \overline{d}$ at x > 0.25?

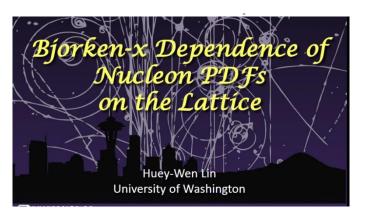


 $\overline{u}(x) \neq d(x)$  can only come from connected sea (CS)

 $(u \to \overline{u} + u + u, d \to \overline{d} + d + d)$  ( $\overline{q}$  has the same flavor as q for CS)

 $\Rightarrow$  Connected sea could lead to  $\overline{u} > d$  at certain x region?? (since there are two u valence quarks and one d valence quak)

## Recent progress in LQCD suggests the possibility to calculate the *x*-dependence of parton distributions

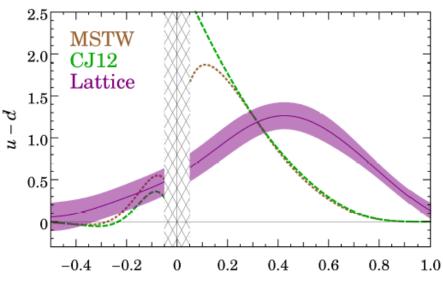

PRL **110**, 262002 (2013)

PHYSICAL REVIEW LETTERS

week ending 28 JUNE 2013

#### Parton Physics on a Euclidean Lattice

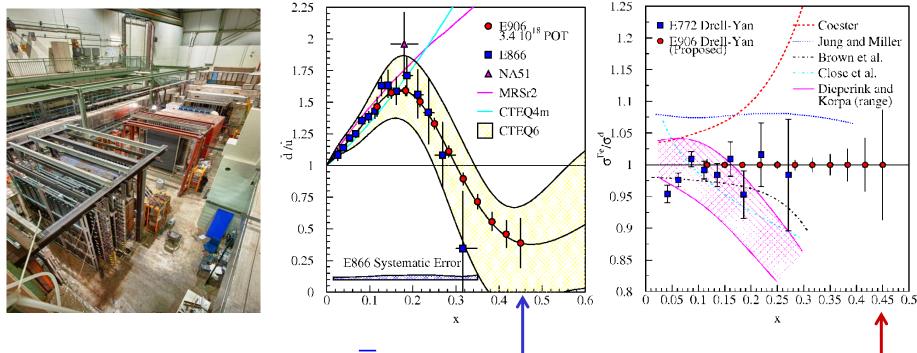
Xiangdong Ji<sup>1,2</sup>




The *x*-dependence of the quark and antiquark distributions can be calculated (not just their moments)

Flavor Structure of the Nucleon Sea from Lattice QCD

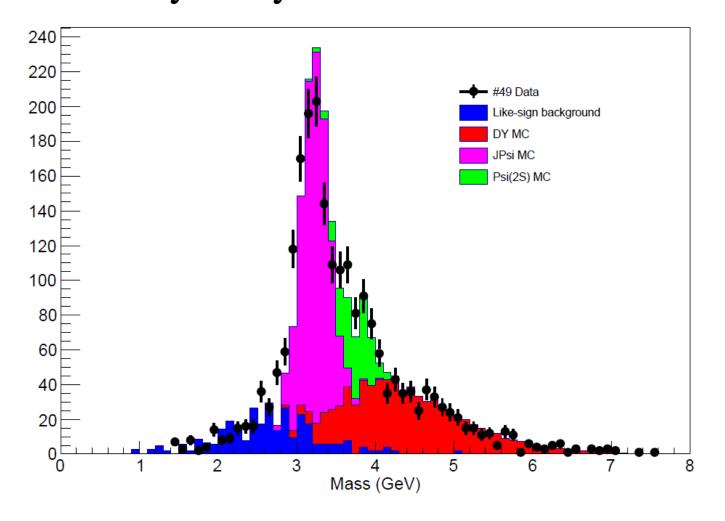
Huey-Wen Lin, 1, \* Jiunn-Wei Chen, 2, † Saul D. Cohen, 3, 1, ‡ and Xiangdong Ji $^{4,5}$ ,


(arXiv: 1402.1462)



x

#### Drell-Yan Experiment at Fermilab


SeaQuest Experiment (Unpolarized Drell-Yan using 120 GeV proton beam)

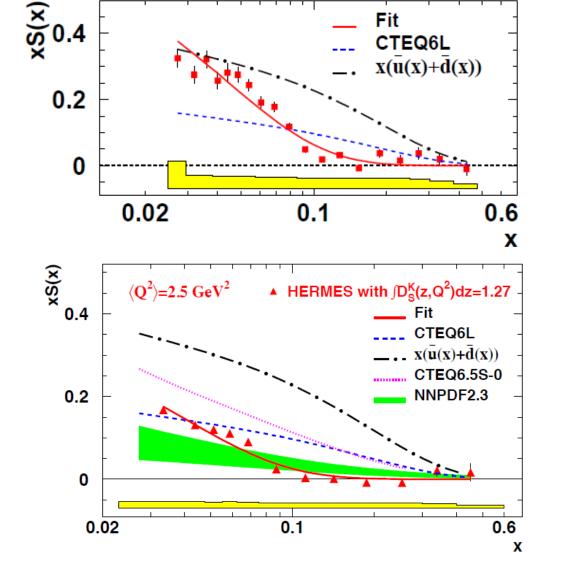


Main goals: 1) Measure  $\bar{d}/\bar{u}$  flavor asymmetry up to  $x \sim 0.45$ 

- 2) Measure EMC effect of antiquarks up to  $x \sim 0.45$
- Commission run took place in February April 2012
- 2-year production run expected in 2014-2015

# Dimuon mass spectra from SeaQuest/E906 (Preliminary analysis of a small fraction of data)

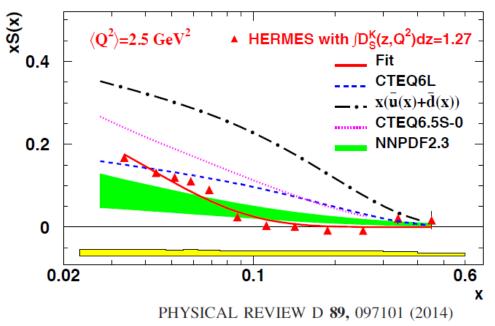



Physics run started Feb. 2014

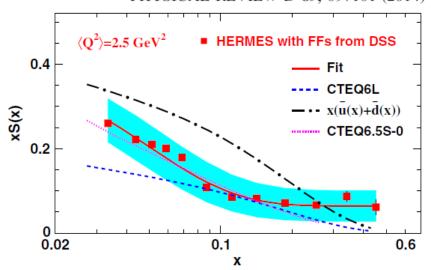
#### **Conclusions**

- Evidences for the existence of "intrinsic" light-quark seas  $(\overline{u}, \overline{d}, \overline{s})$  in the nucleons.
- Clear evidence for intrinsic charm remains to be found.
- The flavor structures of the nucleon sea and their Bjorken-*x* dependence provide strong constraints on theoretical models.
- The concept of connected and disconnected seas in Lattice QCD offers useful insights on the flavor- and *x*-dependences of the sea.
- Ongoing and future Drell-Yan and SIDIS experiments will provide crucial new information.

## Backup Slides

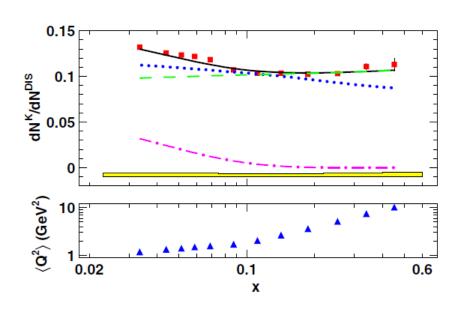

### Latest HERMES result on S(x)



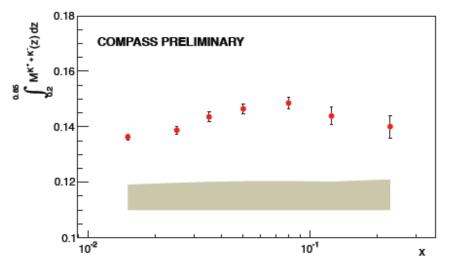

Old result

New result

### Latest HERMES result on S(x)

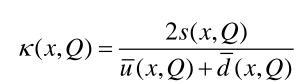



New result




New result obtained with a different kaon fragmentation function

# HERMES versus COMPASS kaon SIDIS data




# New HERMES result

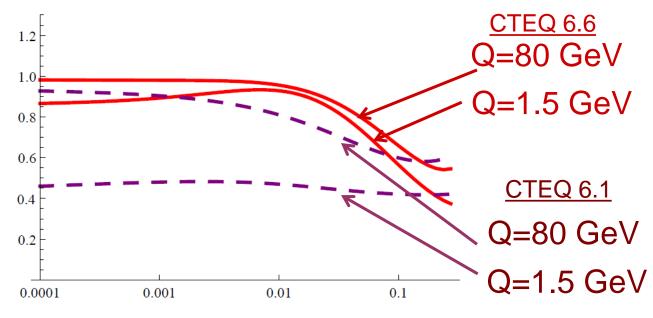
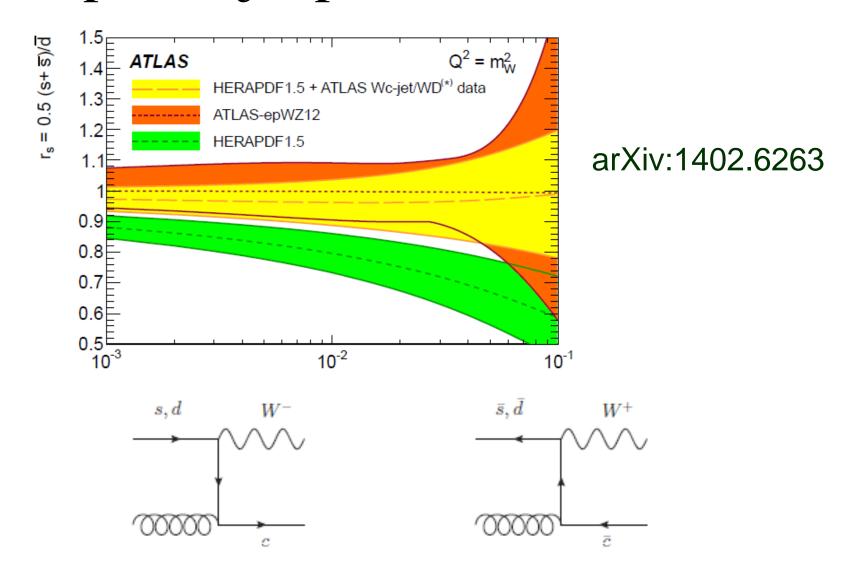


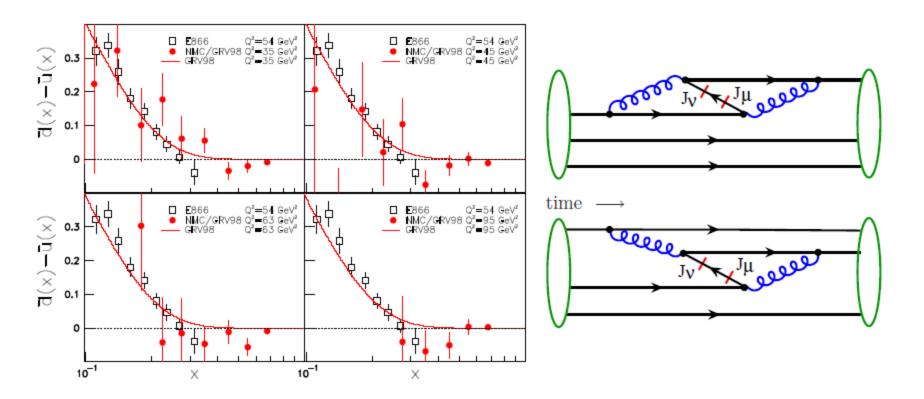
# Preliminary COMPASS result looks different!

### Strange sea content is strongly $Q^2$ dependent



Kusina et al., PRD 85 (2012) 094028



Figure 5:  $\kappa(x,Q)$  vs. x showing the evolution from low to high scales. The solid (red) lines are for CTEQ6.6, and the dashed (purple) lines are for CTEQ6.1. The lower

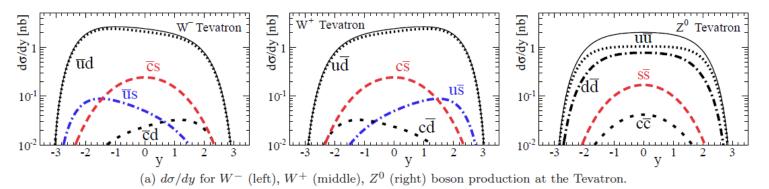
W/Z productions are sensitive to s(x),  $\overline{s}(x)$  at very large  $Q^2$  scale ( $Q^2 = M_{W/Z}^2$ ), dominated by perturbative roughly SU(3) symmetric sea!

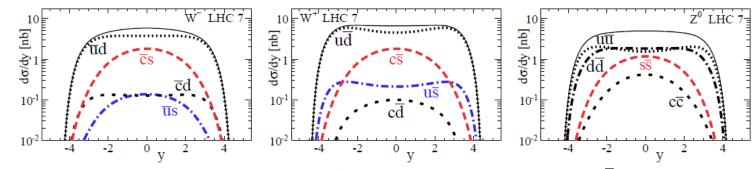
Measurements at low Q<sup>2</sup> are very important

### W plus c-jet production at LHC






#### Strange sea from inclusive W/Z production


#### Inclusive W/Z production at Tevatron/LHC

$$W^+: (u \text{ or } c) + (\overline{d} \text{ or } \overline{s}) \rightarrow W^+$$

$$W^-: (\overline{u} \text{ or } \overline{c}) + (d \text{ or } s) \rightarrow W^-$$

$$Z^0: s+\overline{s} \to Z^0$$





(b)  $d\sigma/dy$  for  $W^-$  (left),  $W^+$  (middle),  $Z^0$  (right) boson production at the LHC with  $\sqrt{S} = 7$  TeV.