

Development of a Time Projection Chamber with GEM technology in IMP

Herun yang Gas detector group

Outline

- Introduction
- TPC prototype based on GEM
- performance test based cosmic ray
- Beam test
- Summary

Gas detector group @ IMP

The gas detector group was founded in 2003.

functional positioning: research and development of gas detectors for physical experiments

Members Professor:1 Associate professor: 3 Research Associate: 5

Gas detector group @ IMP

Facilities

40 m² clean room

Automatic winding machine

2-dimensional measurement platform

Multi-component gas mixed system

Front-end electronics and data acquisition system

Cosmic ray calibration system -

TPC - Time Projection Chamber

Operation Principle of a TPC

- Large gas filled volume.
- The cathode provides a negative potential, resulting in the field of the order of 100 V/cm in the sensitive area.
- Electrons drift towards the endcaps.
- Signal is amplified at endcaps.
- The x(Y)-coordinate is determined by a simple algorithm calculating the center-of-gravity of the hit charge.
- The drift time of electrons which read out by anode pad provide spatial information of z-coordinate.

Sketch of a TPC

Application of TPCs

• Three major fields of application:

1.) TPCs in High Energy Physics (ALEPH, Delphi, ILD)

- 2.) TPCs in Heavy Ion Physics (STAR, ALICE)
- 3.) TPCs in rare event searches (T2K, XENON, NEXT)

Advantages of a TPC

- Good spatial resolution
- Good energy resolution with de/dx
- Large number of measure
- Truly 3-dimensional detector
- Robust tracking in high multiplicity environment
- Very homogeneous (only gas)
- Comparably cheap

Advantages of MPGDs readout

- ion backflow can be reduced significantly
 => continuous readout might be possible
- small pitch of gas amplification regions (i.e. holes)
 => strong reduction of E × B-effects
- no preference in direction (as with wires)
 => all 2 dim. readout geometries can be used
- no ion tail => very fast signal (O(10 ns))
 => good timing and double track resolution
- no induced signal, but direct e--collection
 => small transverse width
 - => good double track resolution

performance test based cosmic ray

data-acquisition system :SFE16+HPTDC

TPC: 100 \times 100 sensitive area, 150mm drift length

Pad size: $2 \times 5 \text{mm}^2$, $4 \times 10 \text{mm}^2$

- The cosmic ray calibration system was employed for the test.
- The cosmic ray was measured by 3 MWPCs.
- Start signal of cosmic ray was given by a plastic scintillator detector with 150mm*150mm area placed under 3rd MWPC.

electronics

FEE

- SFE16 chip (TOT)
- 16 channels
- Amplification-shaping-discrimination
- Intermediate shaping time range

TDC card

- Based on HPTDC
- 128 channels
- PXI plug-un board
- 100ps precision

calibration system of the MWPC

Cosmic ray was measured by 3 MWPC. The MWPC's sensitive area is 80mm*80mm, and position resolution σ_x and σ_y are about 250 μ m. Start signal of cosmic ray was given by a plastic scintillator detector with 150mm*150mm area placed under 3rd MWPC

TPC result and analysis

5.9keV X-ray TOT energy spectra.

Left: fired pad>0; right: fired pad=1

E=83.5v/cm, HV=1370V, pad size 4×10 mm², Gas: Ar+10%iC₄H₁₀; Pressure: 0.85bar

Drift length was given by MWPC ,and Drift-time was given by TPC pad.

pad size 2×5mm², E=130V/cm, HV=1570

One cosmic ray: histogram is for TPC; the thin one is for mwpc.

drift time is from the tpc, 50000 starting time given by PMT

Drift distance is from the mwpc

Drift length was calculated from drift time

Beam Experimental setup

data-acquisition system :SFE16+HPTDC

Prototype : TPC

- Sensitive volume: 10.0 x 10.0 x 15 cm3
- Triple-GEM amplification structure

pad planes:448

- (size: 2.0 x 5.0 mm2 and 4.0 x 10.0 mm2)
- No Magnetic field

Double track events

5351

TPC 测量到的 2 个双径迹事件。

drift time

- drift velocity :~3cm/μm for Ar+iC₄H₁₀(20%)
- Z position: ~6cm

Summary

- Time Projections Chambers have been invented 27 years ago
- Wire-based TPC are still widely used for example in heavy ion physics
- MPGDs give a new boost to the TPC R&D: Improved spatial resolutions, intrinsic ion back flow suppression are only two of many advantages.
- performance test used cosmic ray and beam for TPC based GEM
- New measurement runs add Magnetic field change pad size or style big Sensitive volume

.....

Thanks!

F. Sauli, Nucl. Instrum. Methods A386(1997)531

GEM结构图示

C. Buttner et al, Nucl. Instr. and Meth. A 409(1998)79 S. Bachmann et al, Nucl. Instr. and Meth. A 443(1999)464

calculate hit coordinates

- x: center of gravity (charge)
- y: center of the row
- z: error weighted mean of time of pulses

Find pulses in raw data:

- detect pulses by threshold
- time: inflexion point of rising slope

Standard MWPC readout: potential limitations

- Planar construction
- Planarity must be insured between amplification and collection
- Width of PRF
- Limits resolving power / track density and/or event rate
- Pad/wire angular effects
- Limits usefulness for largeangle tracks
- Ion backflow in the drift region
- Limits track density / event rate
- S/N, calibrations, gain fluctuations,...