

ERC Advanced Grant PI: Prof. Dr. Eberhard Widmann

HADRONIC ATOMS: Precision spectroscopy of ANTIPROTONIC HELIUM and ANTIHYDROGEN

E. WIDMANN

STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS, VIENNA

HADRON PHYSICS IN CHINA AND THE US LANZHOU JULY 21-24, 2014

EXOTIC ATOM FORMATION

- energy loss until E_{kin} < ionization energy
- capture

00000000

Fermi and Teller Phys. Rev. 72, 399-408 (1947)

ANTIPROTONIC HELIUM

EXOTIC ATOMS

E. Widmann

ATOMS CONTAINING ANTIPROTONS

• ANTIPROTONIC HELIUM

0000

0

- laser and microwave spectroscopy CPT test antiproton properties
 - mass,charge: 7x10⁻¹⁰ 2011
 - magnetic moment: 2.9×10⁻³ 2009
- most precisely calculated 3-body system
- ANTIHYDROGEN
 - hydrogen measured to high precision
 - IS-2S: <10⁻¹⁴
 - ground-state HFS 10⁻¹²

E. Widmann

ASACUSA COLLABORATION @ CERN-AD

ASAKUSA KANNON TEMPLE BY UTAGAWA HIROSHIGE (1797–1858)

0 0.00

000

00000

H·HFS

Atomic Spectroscopy And Collisions Using Slow Antiprotons

SPOKESPERSON: R.S. HAYANO, UNIVERSITY OF TOKYO

- University of Tokyo, Japan
 - INSTITUTE OF PHYSICS
 - FACULTY OF SCIENCE, DEPARTMENT OF PHYSICS
- RIKEN, Saitama, Japan
- SMI, Austria
- Aarhus University, Denmark
- Max-Planck-Institut f
 ür Quantenoptik, Munich, Germany
- KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
- ATOMKI Debrecen, Hungary
- Brescia University & INFN, Italy
- University of Wales, Swansea, UK
- The Queen's University of Belfast, Ireland

~ 44 MEMBERS

ANTIPROTON DECELERATOR @ CERN

- All-in-one machine:
 - Antiproton capture
 - deceleration & cooling
 - 100 MeV/c (5.3 MeV)
- Pulsed extraction
 - 2-4 x 107 antiprotons per pulse of 100 ns length
 - I pulse / 85-120 seconds

AD & ELENA AREA AND EXPERIMENTS

ELENA operation from 2017

8

E. Widmann

H·HFS

0

0

MATTER-ANTIMATTER SYMMETRY

• COSMOLOGICAL SCALE:

Asymmetry

• CPT

H·HFS

• Microscopic: symmetry?

E. Widmann

CPT SYMMETRY & COSMOLOGY

- mathematical theorem, not valid e.g. in string theory, quantum gravity
- possible hint: antimatter absence in the universe
 - Big Bang -> if CPT holds: equal amounts matter/antimatter
 - Standard scenario for Baryogenesis (Sakharov 1967)
 - Baryon-number non-conservation
 - C and CP violation

00

- Deviation from thermal equilibrium
- Currently known CPV not large enough
 - Other source of baryon asymmetry?
 - CPT non-conservation?

E. Widmann

ANTIHYDROGEN SPECTROSCOPY

CPT TESTS - RELATIVE & ABSOLUTE PRECISION

• ATOMIC PHYSICS EXPERIMENTS, ESPECIALLY ANTIHYDROGEN OFFER THE MOST SENSITIVE EXPERIMENTAL VERIFICATIONS OF CPT

E. Widmann

ANTIPROTONIC HELIUM LASER SPECTROSCOPY

E. Widmann

PROGRESS IN ATOMCULE SPECTROSCOPY

E. Widmann

0000

000

MAGNETIC MOMENT OF P

ASACUSA: Comparison Theory-Experiment

$$\mu_s^{\bar{p}} = -2.7862(83)\mu_N$$

$$\frac{\mu_s^p - |\mu_s^{\bar{p}}|}{\mu_s^p} = (2.4 \pm 2.9) \times 10^{-3}$$

T. Pask et al. / Physics Letters B 678 (2009) 55–59 H•HFS E. Widmann

Atrap Collaboration Penning Trap Physical Review Letters 110,130801 (2013)

$\mu_{\bar{p}}/\mu_N = -2.792845 \pm 0.000012$	[4.4 ppm].
$\mu_{\bar{p}}/\mu_p = -0.9999992 \pm 0.0000044$	[4.4 ppm]

GROUND-STATE HYPERFINE SPLITTING OF H/H

 spin-spin interaction positron - antiproton

0

 Leading: Fermi contact term

-32.77±0.01 ppm

•magnetic moment of \overline{p}

- previously known to 0.3%, 2012 Gabrielse Penning trap 4.4 ppm PRL 110,130801 (2013)
- H: deviation from Fermi contact term:
 - finite electric & magnetic radius (Zemach corrections): -41.43±0.44 ppm
 - polarizability of p/p (g1,g2, PRA 78, 022517 (2008)): 1.88±0.64 ppm
- remaining deviation th-exp: 0.86±0.78 ppm $\Delta\nu(\text{Zemach}) = \nu_{\text{F}} \frac{2Z\alpha m_{\text{e}}}{\pi^2} \int \frac{d^3p}{p^4} \left[\frac{G_E(p^2)G_M(p^2)}{1+\kappa} - 1 \right]$ •HFS E. Widmann

HFS MEASUREMENT IN AN ATOMIC BEAM

- atoms evaporate no trapping needed
- cusp trap provides polarized beam
- spin-flip by microwave

00000

0000000000

- spin analysis by sextupole magnet
- low-background high-efficiency detection of antihydrogen

E.W. et al. ASACUSA proposal addendum CERN-SPSC 2005-002

achievable resolution

- better 10^{-6} for T ≤ 100 K
- > 100 \overline{H} /s in 1S state into 4π needed
- event rate I / minute: background from cosmics, annihilations uptsreams

POLARIZED H BEAM FROM "CUSP"

First antihydrogen production in 2010

achievable resolution

- better 10^{-6} for T ≤ 100 K
- > 100 \overline{H} /s in 1S state into 4π needed
- event rate I / minute: background from cosmics, annihilations upstreams

A. Mohri & Y. Yamazaki, Europhysics Letters 63, 207 (2003).

Y. Enomoto et al. Phys. Rev. Lett 243401, 2010

000000

E. Widmann

H·HFS

ASACUSA H PRODUCTION

RECENT RESULTS

- BACKGROUND
 - e⁻ cooling of p
 - mix e^- and \overline{p}
- SCHEME |

HFS

- e^- cooling of \overline{p}
- mix e^+ and \overline{p}

N. Kuroda¹, S. Ulmer², D.J. Murtagh³, S. Van Gorp³, Y. Nagata³, M. Diermaier⁴, S. Federmann⁵, M. Leali^{6,7}, C. Malbrunot^{4,†}, V. Mascagna^{6,7}, O. Massiczek⁴, K. Michishio⁸, T. Mizutani¹, A. Mohri³, H. Nagahama¹, M. Ohtsuka¹, B. Radics³, S. Sakurai⁹, C. Sauerzopf⁴, K. Suzuki⁴, M. Tajima¹, H.A. Torii¹, L. Venturelli^{6,7}, B. Wünschek⁴, J. Zmeskal⁴, N. Zurlo⁶, H. Higaki⁹, Y. Kanai³, E. Lodi Rizzini^{6,7}, Y. Nagashima⁸, Y. Matsuda¹, E. Widmann⁴ & Y. Yamazaki^{1,3}

NATURE COMMUNICATIONS | 5:3089 | DOI: 10.1038/ncomms4089 | www.nature.com/naturecommunications

Table 1 | Summary of antihydrogen events detected by theantihydrogen detector.

	Scheme 1	Scheme 2	Background
Measurement time (s)	4,950	2,100	1,550
Double coincidence events, N _t	1,149	487	352
Events above the threshold			
(40 MeV), N _{>40}	99	29	6
Z-value (profile likelihood ratio) (σ)	5.0	3.2	—
Z-value (ratio of Poisson means) (σ)	4.8	3.0	_

RECENT RESULTS

- H BEAM OBSERVED WITH
 5σ significance
 - n≤43 (field ionization)
 - 6 events / 15 min
- significant fraction in lower n
 - n≲29:3σ

· · · · · · · ·

• 4 events / 15 min

E. Widmann

• **τ** ~ few ms

N. Kuroda¹, S. Ulmer², D.J. Murtagh³, S. Van Gorp³, Y. Nagata³, M. Diermaier⁴, S. Federmann⁵, M. Leali^{6,7}, C. Malbrunot^{4,†}, V. Mascagna^{6,7}, O. Massiczek⁴, K. Michishio⁸, T. Mizutani¹, A. Mohri³, H. Nagahama¹, M. Ohtsuka¹, B. Radics³, S. Sakurai⁹, C. Sauerzopf⁴, K. Suzuki⁴, M. Tajima¹, H.A. Torii¹, L. Venturelli^{6,7}, B. Wünschek⁴, J. Zmeskal⁴, N. Zurlo⁶, H. Higaki⁹, Y. Kanai³, E. Lodi Rizzini^{6,7}, Y. Nagashima⁸, Y. Matsuda¹, E. Widmann⁴ & Y. Yamazaki^{1,3}

NATURE COMMUNICATIONS | 5:3089 | DOI: 10.1038/ncomms4089 | www.nature.com/naturecommunications

а

Table 1 Summary of antihydrogen events detected by theantihydrogen detector.					
	Scheme 1	Scheme 2	Background		
Measurement time (s)	4,950	2,100	1,550		
Double coincidence events, N _t	1,149	487	352		
Events above the threshold					
(40 MeV), N _{>40}	99	29	6		
Z-value (profile likelihood ratio) (σ)	5.0	3.2	—		
Z-value (ratio of Poisson means) (σ)	4.8	3.0	—		

 $n \lesssim 43 \quad n \lesssim 29$

Außensensor

SPIN-FLIP RESONATOR

- f = 1.420 GHz, Δf = few MHz, ~W power
- challenge: homogeneity over $10 \times 10 \times 10 \times 10^{3}$ ($\lambda = 21 \text{ cm}$
- solution: strip line

H·HFS

00

longitudinal field: cos(z) Eingänge für die Mikrowellen

RF cavity

SETUP TESTING DURING LSI

Polarized cold hydrogen beam:

- •Source of atomic hydrogen (microwave discharge)
- Permanent sextupoles create polarized hydrogen beam
- •QMS detect GS hydrogen

0

•Choppers connected to a lock-in amplifier for noise reduction

permanent sextupole for initial polarization developed at CERN I.4 T integrated field I0mm inner diameter Permendur/permanent magnet

hydrogen beamline developed at SMI

CURRENT PRECISION

Individual scans

B field scan

error ~20 ppb $\Delta_{lit} \sim 8$ ppb

EXPERIMENTS IN AN ATOMIC BEAM

Phase I (ongoing): Rabi method

(FAR) FUTURE EXPERIMENTS

• PHASE 3: TRAPPED H

0000000

- Hyperfine spectroscopy in an atomic fountain of antihydrogen
- needs trapping and laser cooling outside of formation magnet
- slow beam & capture in measurement trap
- Ramsey method with d=1m
 - $\Delta f \sim 3 \text{ Hz}, \Delta f/f \sim 2 \times 10^{-9}$

SUMMARY

00

- Antiprotonic helium allows best \overline{p} mass determination
- Precise measurement of the hyperfine structure of antihydrogen promises one of the most sensitive tests of CPT symmetry
- First "beam" of H observed in field-free region
- Next steps: optimize rate, check polarization, velocity
- HFS measurement of H beam ~10⁻⁸ achieved
- Time scale of precision experiments is 5-10 years

ERC Advanced Grant 291242 HbarHFS www.antimatter.at PI EW

. Widmann