GEM Readout R&D at USTC for SoLID Experiment

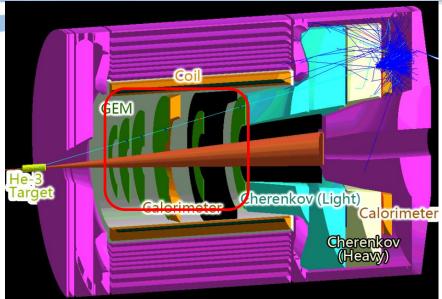
The Sixth Workshop on Hadron Physics in China and Opportunities in US

Lanzhou 2014.7

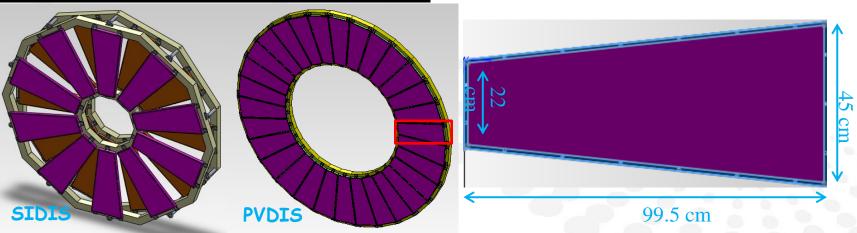
Outline

1

Background
≻SoLID tracking system
≻GEM readout requirement in SoLID


GEM readout ≻GEM readout system on market ≻GEM readout method used before ≻new GEM readout R&D

Our GEM readout ≻GEM readout design ≻FPGA logic design ≻prototype board test ≻new readout system plan


Conclusion and outlook

SoLID Tracking System

System Requirement	typical GEM
High Resolution: 100µm	~80µm
Large Area: 37m ² in total	acheiveable
High Background Rate : 1MHz/cm ²	~MHz/mm ²

Large scale GEM

2 SoLID adopt GEM in the tracking system

Department of Modern Physics

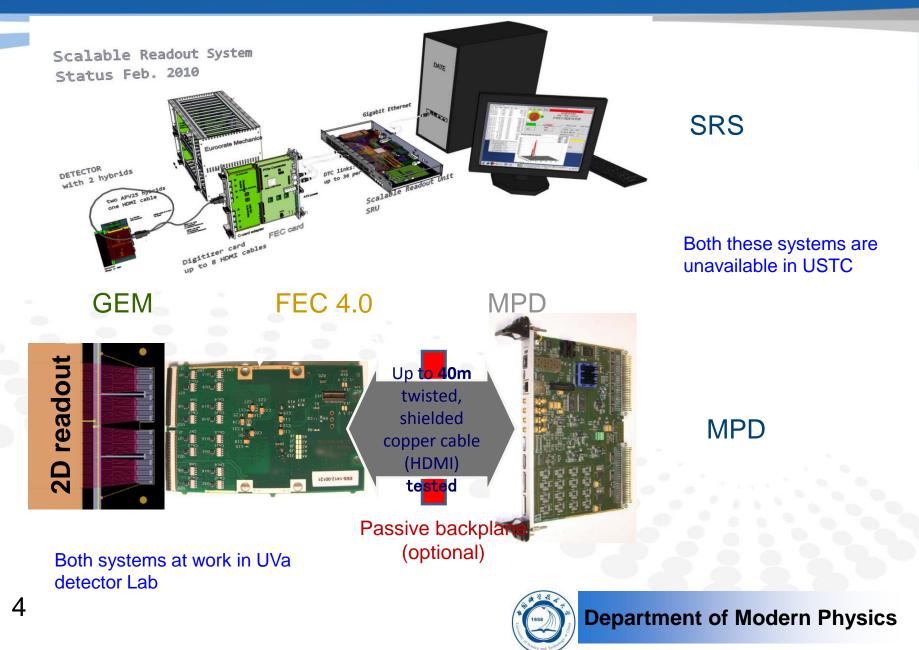
Requirement to SoLID GEM Readout

PVDIS				SIDIS							
Location	Z (cm)	R_{min} (cm)	R_{max} (cm)	Surface (m ²)	# chan	Location	Z (cm)	R_{min} (cm)	R_{max} (cm)	Surface (m ²)	# chan
1	157.5	51	118	3.6	24 k	1	-175	36	87	2.0	24 k
2	185.5	62	136	4.6	30 k	2	-150	21	98	2.9	30 k
3	190	65	140	4.8	36 k	3	-119	25	112	3.7	33 k
4	306	111	221	11.5	35 k	4	-68	32	135	5.4	28 k
5	315	115	228	12.2	38 k	5	5	42	100	2.6	20 k
Total				≈ 36.6	$\approx 164 \text{ k}$	6	92	55	123	3.8	26 k
	1					Total				pprox 20.4	$\approx 161 \text{ k}$

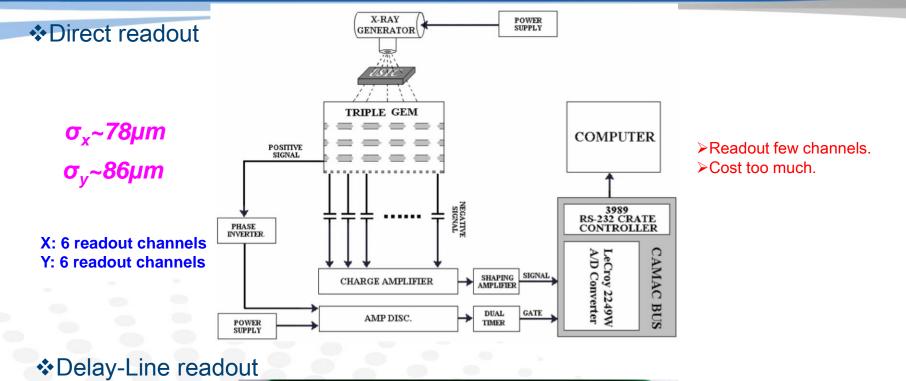
large amount of readout channels: ~160k

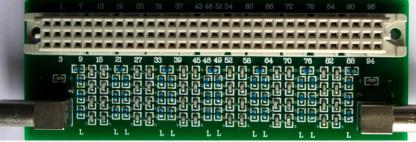
Table 1: Summary of Minimum Requirements of SolID Base Equipment

Equipment	dimension/description	description	performance, eff	performance, rej	conditions
Magnet	OD 3m, ID 1m, L> 3m	B> 1.35 T, BDL> 5 T-m	2π , 8 to 24° / 22 to 35°	P: 1-7 GeV, Res 2%	Fringe field < 5 G
GEMs	6 planes / 5 planes	Total 37 m ² , Chan 165K	Track Eff > 90%	Posi res 100µm	high rate
EM Calorimeter	$1800 \times 100 \text{ cm}^2$	18 RL + 2 RL +5 mm SPD	E res 10%, eff> 90%	50:1 π , 5:1 γ	rad hard
Light Cherenkov	2m CO2/ 1m C4F8O/N2	60 mirr, 270 PMTs, 20 m ²	γ -e > 10, Eff> 90%	π 500:1 < 4.5/3.2 GeV	100 G field
Heavy Cherenkov	1m 1.5 atm C4F8O	30 mirr, 480 PMTs, 20 m ²	γ -e > 10, Eff> 90%	K 10:1 2.5-7 GeV	100 G field
MRPC	50×3 modules, 10 m^2	1650 strips, 3300 chan.	Time res < 100 ps	$K 20:1 < 2.5$ GeV, $\gamma 10:1$	high rate
DAQ	282 FADC @ 250 MHz	32 pipeline VXS, 30 SRS	Trig 100 KHz × 2.6 KB	Trig 30×20 KHz $\times 48$ KB	high noice
Lead Baffle	11×30 blocks,9 cm	5 cm, r 110-200 cm	area open $\phi > 4^{\circ}$ / 12°	reduce background	


large amount of readout data

PVDIS30 sectorsSIDIS30 sectors together


per sector trigger 20kHz trigger 100kHz event size: 48KBytes event size: 2.6KBytes

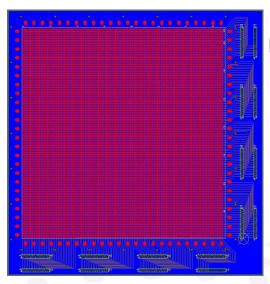

Readout System for GEM on Market

GEM Readout Method Used Before

σ_x~148.4μm σ_y~157.0μm

Low position resolution.Low Speed.

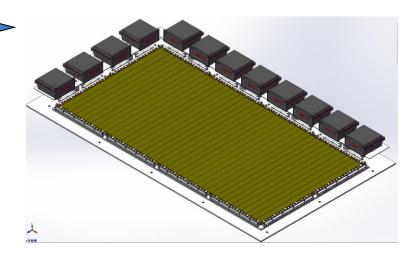
SFE16 based frontend readout


Suitable for small GEM readout.

Department of Modern Physics

We Need New GEM Readout System

USTC GEM R&D in great progress



30cm*30cm GEM detector

Two-dimension readout: 118 readout strips in x direction; 118 readout strips in y direction.

Why new readout?

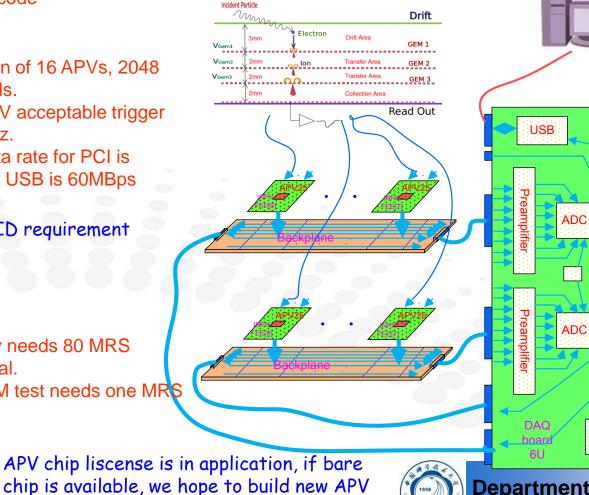
MPD system we bought still has some problems.
GEM readout method we used before could not satisfy the requirement to large GEM R&D

future design: 1m*0.5m GEM

Our Readout System: ≻easier to use, for testing GEM prototype ≻R&D MPGD readout system

GEM Readout System Design

APV MRS(Multiple chip Readout System): APV MPD structure ➢INFN APV FrontEnd USB, PCI connector, easier to test and debug ≻new FPGA code


Character:

➢ Digitalization of 16 APVs, 2048 **GEM** channels. ➤Maxium APV acceptable trigger rate is 270kHz. ➢ Maxium data rate for PCI is 132MBps, for USB is 60MBps

satisfy SoLID requirement

Demand: ➢SoLID only needs 80 MRS boards in total. USTC GEM test needs one MRS board.

FEE.

APV MRS (Multiple_chip Readout System)

Department of Modern Physics

SDRAM

Þ

FPGA

CLK

CPLD

MRS Prototype

USB Trigger Analogue in

Digital in

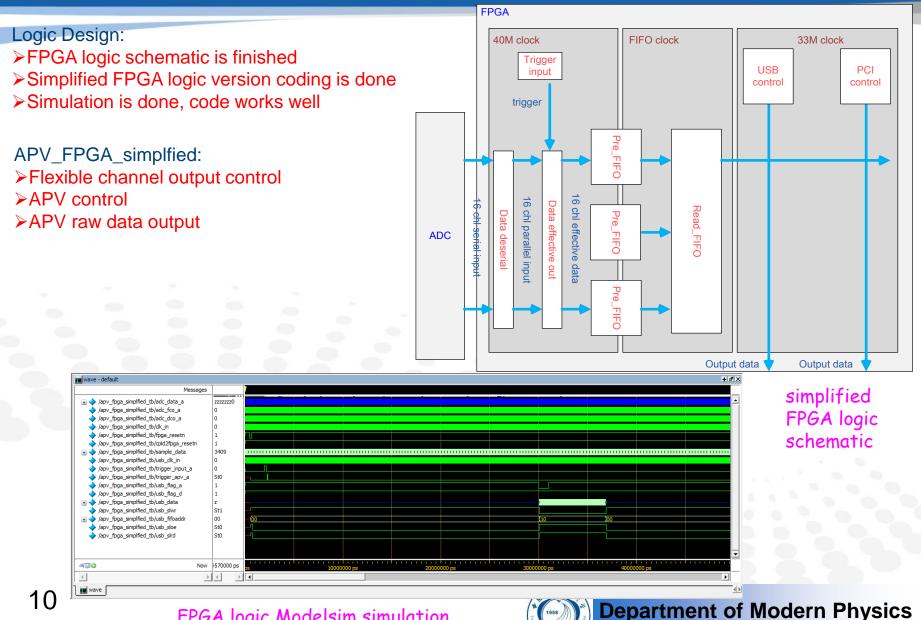

Bottom View

Department of Modern Physics

Top View

APV backplane

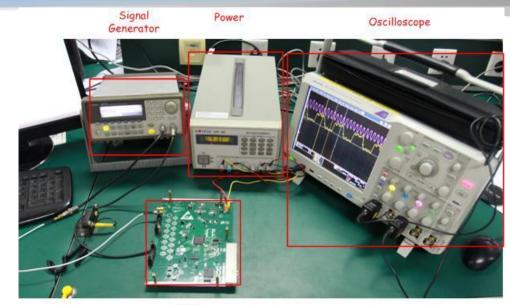
APV backplane>8 APV FEE slots> test points and power supply

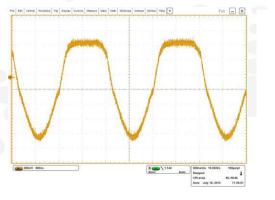

9 APV backplane board:▶PCB design is finished and is in manufacture now.

APV simu board >simulate APV FEE output signal >test MRS performance

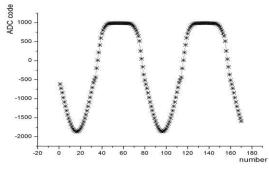
Department of Modern Physics

MRS FPGA Logic Design


FPGA logic Modelsim simulation



Test result and further work


Current result: >Clock, ADC, FPGA works well >FPGA logic is implemented >Preliminary data sampled by Signal Tap II

≻USB port and PCI is under test

waveform from oscilloscope

data from FPGA

MRS

MRS test platform

Further work:

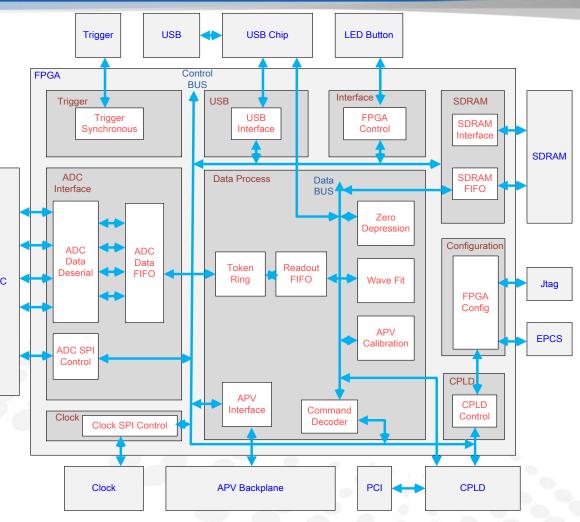
▹backplane to be manufactured

>MRS analog performance to be tested

PCI data transport test, MRS
 performance test
 FPGA logic to be finished and ungraded

MRS FPGA Logic Ungrade Plan

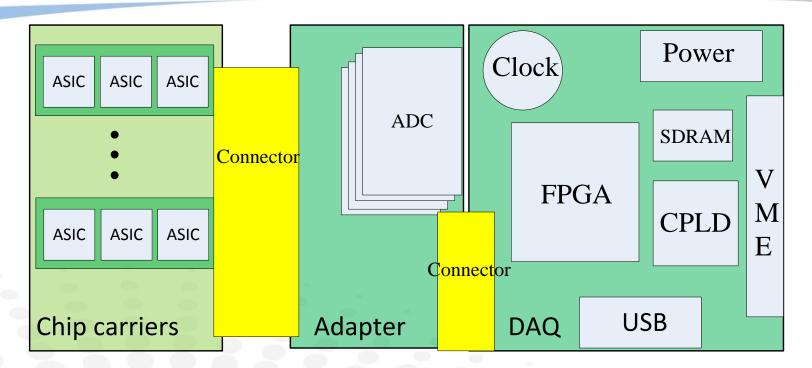
Reason to Logic ungrade: > one trigger 2 bytes, trigger rate 100k, raw data rate = 100k * 16chips * 3samples * 128chls * 2B = 1228.8MBps. > it is impossible to transfer 16 APV raw data constantly.


A lot of useless data is transferred.

It is necessary to use on board data compression.

➢ one trigger read out 5 chls, effective data rate is 100k * 5chls * 3samples * 2B
= 3MBps

>this data rate is acceptable


Logic Ungrade: >Common Mode Substraction >Baseline Correction >Data zero depression

MRS FPGA logic diagram

New Readout System Plan

New Readout System diagram

New System: > SRS architecture > Three boards: Chip carrier, Adapter, DAQ > Use different ASIC chip we can get

>simplify readout design, use in different experiment situations

Conclusion and Outlook

Conclusion:
New GEM readout system R&D is required.
The APV MRS design is finished, prototype board is manufactured.
The APV backplane and test board design is finished.
The simplified version of logic is finished, and its simulation is done.
APV MRS board is under test, no function problem.

What to do:

- >Further testing of MRS function and performance.
- >New logic design and its simulation.
- >Test of backplane and FEE in the near future.
- >Detector and electronic system test.

>New readout system R&D in the future.

Thank you!

