The g_{2} Spin Structure Function

Chao Gu
University of Virginia
On Behalf of the E08-027 Collaboration

Electron Scattering

- Inclusive unpolarized cross section:

$$
\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\sigma_{\mathrm{Mott}}\left[\frac{1}{\nu} F_{2}\left(x, Q^{2}\right)+\frac{2}{M} F_{1}\left(x, Q^{2}\right) \tan ^{2} \frac{\theta}{2}\right]
$$

- At Bjorken Limit $Q^{2} \rightarrow \infty$:

$$
F_{1}=\frac{1}{2} \sum_{i} e_{i}^{2} q_{i}(x) \quad F_{2}=2 x F_{1}
$$

Electron Scattering

- If the beam and target are polarized, the asymmetric part of the lepton and hadron tensor will not vanish, which leads to 2 additional structure functions g_{1} and g_{2}

$$
\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\sigma_{\mathrm{Mott}}\left[\frac{1}{\nu} F_{2}\left(x, Q^{2}\right)+\frac{2}{M} F_{1}\left(x, Q^{2}\right) \tan ^{2} \frac{\theta}{2}+\gamma g_{1}\left(x, Q^{2}\right)+\delta g_{2}\left(x, Q^{2}\right)\right]
$$

2 addition structure functions which are related to the polarized parton distributions

Structure Function

- At Bjorken limit, g_{1} related to the polarized parton distribution functions

$$
g_{1}=\frac{1}{2} \sum_{i} e_{i}^{2} \Delta q_{i}(x) \quad \Delta q_{i}(x)=q_{i}^{\uparrow}(x)-q_{i}^{\downarrow}(x)
$$

- However g_{2} does no show a simple relation with parton distribution functions at Bjorken limit
- $g_{2}^{W W}$ is the leading twist part of the g_{2} :

$$
g_{2}\left(x, Q^{2}\right)=g_{2}^{\mathrm{WW}}\left(x, Q^{2}\right)+\bar{g}_{2}\left(x, Q^{2}\right)
$$

which can be calculated from g_{1} with the Wandzura-Wilczek relation

$$
g_{2}^{\mathrm{WW}}=-g_{1}\left(x, Q^{2}\right)+\int_{x}^{1} \frac{\mathrm{~d} y}{y} g_{1}\left(y, Q^{2}\right)
$$

Structure Function

- Higher twist components can be expressed as:

$$
\begin{gathered}
\bar{g}_{2}\left(x, Q^{2}\right)=-\int_{x}^{1} \frac{\partial}{\partial y}\left[\frac{m_{q}}{M} h_{T}\left(y, Q^{2}\right)+\zeta\left(y, Q^{2}\right)\right] \frac{\mathrm{d} y}{y} \\
\begin{array}{c}
\text { quark transverse momentum } \\
\text { contribution }
\end{array} \\
\begin{array}{c}
\text { twist-3 part which arises from } \\
\text { quark-gluon interactions }
\end{array}
\end{gathered}
$$

- Will get information about higher twist effect when measuring g_{2}

Measurements of g_{2} and its Moments

- Measurements of g_{2} need transversely polarized targets, more difficult experimentally
- Oth moment (no x-weighting): Burkhardt-Cottingham (BC) Sum Rule

$$
\int_{0}^{1} g_{2}\left(x, Q^{2}\right) \mathrm{d} x=0
$$

- Valid at all Q^{2}
- 2nd moment (x^{2} weighting):
- High $Q^{2}-d_{2}$, twist-3 color polarizability, test of lattice QCD
- Low Q^{2} - spin polarizabilities, test of Chiral Perturbation Theory (XPT)

Measurements of g_{2} and its Moments

- High-intensity electron accelerator
- $E_{\text {max }}=6 \mathrm{GeV}$
- $\mathrm{I}_{\text {max }}=200 \mathrm{uA}$
- Pol $_{\text {max }}=90 \%$
- Upgrading to 12 GeV

Thomas Jefferson National Accelerator Facility

Measurements of g_{2} and its Moments

- SLAC E155x: Only dedicated measurement before JLab, not high precision, wider range of Q^{2} for moment
- g_{2} Measurements on the neutron at JLab:
- E97-103: $\mathrm{W}>2 \mathrm{GeV}, Q^{2} \approx 1 \mathrm{GeV}^{2}, x \approx 0.2$, study higher twist (published)
- E99-117: W>2 GeV, high $Q^{2}\left(3-5 \mathrm{GeV}^{2}\right)$ (published)
- E94-010: moments at low Q^{2} (0.1-1 GeV^{2}) (published)
- E97-110: moments at very low $Q^{2}\left(0.02-0.3 \mathrm{GeV}^{2}\right)$ (analysis)
- E01-012: moments at intermediate $Q^{2}\left(1-4 \mathrm{GeV}^{2}\right)$ (submitted)
- E06-014: moments at high $Q^{2}\left(2-6 \mathrm{GeV}^{2}\right)$ (published)
- g_{2} Measurements on the proton at JLab:
- RSS: moments at intermediate $Q^{2}\left(1-2 \mathrm{GeV}^{2}\right)$ (published)
- SANE: moments at high $Q^{2}\left(2-6 \mathrm{GeV}^{2}\right)$ (analysis)
- E08-027 (g2p): moments at very low Q^{2} (0.02-0.2 GeV^{2}) (analysis)

Measurements of g_{2} and its Moments

- g_{2} Measurements on the proton:
- SLAC: $1 \sim 10 \mathrm{GeV}^{2}$
- SANE: $2 \sim 6 \mathrm{GeV}^{2}$
- RSS: $1 \sim 2 \mathrm{GeV}^{2}$
K. Slifer et al, PRL, I05(20I0)IOI60।

BC Sum Rule: Oth Moment

-SLAC E155x
-Hall C RSS
-Hall A E94-010
-Hall A E97-110 (preliminary)
■Hall A E01-012 (preliminary)

- BC Sum Rule:

$$
\int_{0}^{1} g_{2}\left(x, Q^{2}\right) \mathrm{d} x=0
$$

- Violation suggested for proton at large Q^{2}
- BC Sum $=$ Meas + Low $x+$ Elastic
- "Meas": measured \times range (open circle)
- "Low $x^{\prime \prime}$: unmeasured low-x part of the integral - assume leading twist behavior
- "Elastic": from well known Form Factors (<5\%)

Spin Polarizability: 2nd Moment

- Generalized spin polarizabilities γ_{0} and $\delta_{L T}$ are a benchmark test of XPT
- One difficulty is how to include the nucleon resonance contributions
- Y_{0} is sensitive to resonances, $\delta_{L T}$ is not

$$
\begin{aligned}
& \gamma_{0}\left(Q^{2}\right)=\frac{16 \alpha M^{2}}{Q^{6}} \int_{0}^{x_{0}} x^{2}\left[g_{1}-\frac{4 M^{2}}{Q^{2}} x^{2} g_{2}\right] \mathrm{d} x \\
& \delta_{L T}\left(Q^{2}\right)=\frac{16 \alpha M^{2}}{Q^{6}} \int_{0}^{x_{0}} x^{2}\left[g_{1}+g_{2}\right] \mathrm{d} x
\end{aligned}
$$

Spin Polarizability: 2nd Moment

- $\delta_{L T}$ is seen as a more suitable testing ground of XPT - insensitive to Δ resonance
- Significant disagreement between data and both XPT calculations
- No proton data yet

d_{2} and Higher Twist

$d_{2}\left(Q^{2}\right)=\int_{0}^{1} x^{2}\left[2 g_{1}\left(x, Q^{2}\right)+3 g_{2}\left(x, Q^{2}\right)\right] \mathrm{d} x$

$$
=3 \int_{0}^{1} x^{2}\left[g_{2}\left(x, Q^{2}\right)-g_{2}^{W W}\left(x, Q^{2}\right)\right] \mathrm{d} x
$$

- Clean access of higher twist (twist-3) effect
- Only contributions from measured region
- Elastic not included, only important for $Q^{2}<2 \mathrm{GeV}^{2}$
- Contributions from unmeasured low x region usually not significant due to x^{2} weighting.
- A benchmark test of Lattice QCD predictions at high Q^{2}

g2p Experiment at JLab

- First Measurement of the proton structure function g_{2} in the low Q^{2} region (0.02-0.2 GeV^{2})
- Extract spin polarizability $\delta_{\text {LT }}$ as a test of XPT calculations
- Test BC Sum Rule
- Finite size effects:
- Hydrogen hyperfine splitting: proton structure contributes to uncertainty
- Proton charge radius: proton polarizability contributes to uncertainty
- Data were taken in Jefferson Lab Hall A in 2012
- Analysis is currently underway

g2p Collaboration

Spokespeople

Alexander Camsonne
Jian-Ping Chen
Don Crabb
Karl Slifer

Post Docs
Kalyan Allada
Elena Long
James Maxwell
Vince Sulkosky
Jixie Zhang

Graduate Students

Toby Badman
Melissa Cummings
Chao Gu
Min Huang
Jie Liu
Pengjia Zhu
Ryan Zielinski

How to get g_{2}

$$
\begin{aligned}
& \Delta \sigma_{\|}=-e^{-} \rightarrow-e^{-}-\rightarrow \\
& =\frac{d^{2} \sigma^{\uparrow \Uparrow}}{d \Omega d E^{\prime}}-\frac{d^{2} \sigma^{\downarrow \Uparrow}}{d \Omega d E^{\prime}} \\
& =\frac{4 \alpha^{2} E^{\prime}}{M \nu Q^{2} E}\left[\left(E+E^{\prime} \cos \theta\right) g_{1}-2 M x g_{2}\right] \\
& \Delta \sigma_{\perp}=e^{-} \hat{\phi}-e^{-} \hat{\phi} \\
& =\frac{d^{2} \sigma^{\uparrow \Rightarrow}}{d \Omega d E^{\prime}}-\frac{d^{2} \sigma^{\downarrow \Rightarrow}}{d \Omega d E^{\prime}} \\
& =\frac{4 \alpha^{2} E^{\prime 2}}{M \nu Q^{2} E} \sin \theta\left[g_{1}+\frac{2 E}{\nu} g_{2}\right] \\
& \mathrm{g}_{2}{ }^{\text {P }} \text { experiment will measure } \\
& \text { this, combining the EG4 data } \\
& \text { to get } g_{2}{ }^{p} \text { at low } Q^{2}
\end{aligned}
$$

Experiment Setup

- Major New Installation in Hall A
- Polarized NH_{3} Target with $2.5 / 5 \mathrm{~T}$ magnetic field
- Low current (<100nA) beam line diagnostics
- Septa magnets

Beam diagnostics:
 Spectrometer (HRS)

Experiment Setup

- Polarized NH_{3} Targe \dagger
- Dynamic nuclear polarization
- Target polarization measured via NMR

Target Polarization Results for 5T Field Setting

- Average Polarization:
- $2.5 \mathrm{~T}: \sim 15 \%$
- 5.0 T: ~ 70\%

Experiment Setup

- HRS Detector package
- Vertical Drift Chamber (VDC)
- Particle identification (PID) Detectors
- High Efficiency (>99\%) for gas Cherenkov and lead glass calorimeters

Gas Cherenkov Efficiency

Kinematics Coverage

$M_{p}<W<2 \mathrm{GeV}$
$0.02<Q^{2}<0.2 \mathrm{GeV}^{2}$

Beam Energy (GeV)	Target Field (T)
2.254	2.5
1.706	2.5
1.158	2.5
2.254	5
3.352	5

Projections

LT Spin Polarizability

BC Sum Integral

$$
\delta_{L T}\left(Q^{2}\right)=\frac{16 \alpha M^{2}}{Q^{6}} \int_{0}^{x_{0}} x^{2}\left[g_{1}+g_{2}\right] \mathrm{d} x \quad \int_{0}^{1} g_{2}\left(x, Q^{2}\right) \mathrm{d} x=0
$$

Analysis Status

- Completed
- Run Database
- HRS Optics
- Field measurement analysis
- VDC to calibration
- Simulation package
- Optics with target field (LHRS)
- Detector Calibrations/ Efficiency Studies
- Gas Cherenkov
- Lead Glass Calorimeters
- Scintillator trigger efficiencies
- Scalers
- BCM calibration
- Helicity decoding
- Dead time calculations
- Target Polarization Analysis
- BPM Calibrations
- In Progress
- Raster Size Calibrations
- Packing Fraction/Dilution Analysis
- Elastic Analysis
- Yields/Radiative Corrections

Preliminary Results

$$
\Delta \sigma_{\perp}=\sigma_{\text {total }} \cdot A_{\perp}
$$

Conclusion of g2p

- g2p experiment will provide first measurement of the proton structure function g_{2} in the low Q^{2} region (0.02-0.2 GeV^{2})
- The result will provide insight on several outstanding physics puzzles:
- Spin polarizability $\delta_{\text {Lt }}$ discrepancy seen for neutron data
- BC Sum Rule violation suggested for proton at large Q^{2}
- Contribute to the uncertainty of some finite size effects like hydrogen hyperfine splitting and proton charge radius puzzle

Future Experiments

- JLab at 12 GeV
- Hall A
- E12-06-122: Aln in valence quark region (8.8 and 6.6 GeV)
- Hall B
- E12-06-109: longitudinal spin structure of the nucleon
- Hall C
- E12-06-110: Aln in valence quark region (11 GeV)
- E12-06-121: g2n and d2n at high Q^{2}

Thanks

Backups

Electron Scattering

- Important kinematics variables:
- $v=E-E^{\prime}$
- Q : Momentum transfer squared
- W : Invariant mass of residual hadronic system
- $x=\frac{Q^{2}}{2 M \nu^{\prime}}$ Bjorken variable: fraction
 momentum of struck quark

Structure Function

- "twist" in Operator Production Expantion

$$
\begin{aligned}
T_{\mu \nu}(P, q)= & i \int d^{4} z \exp (i q \cdot z)\langle N(P)| \mathcal{T}\left(j_{\mu}(z) j_{\nu}(0)\right)|N(P)\rangle \\
= & \sum_{n=\text { even }}\langle N(P)| O_{n}^{\mu_{1} \ldots \mu_{n}}|N(P)\rangle \frac{2^{n}}{\left(Q^{2}\right)^{n}}\left(P_{\mu \nu}^{(L)} C_{n}^{(L)}\left(Q^{2}\right) q_{\mu_{1}} \ldots q_{\mu_{n}}\right. \\
& +\left[-q^{2} g_{\mu \mu_{1}} g_{\mu_{2} \nu}+\left[g_{\mu \mu_{1}} q_{\mu_{2}} q_{\nu}+g_{\mu_{2} \nu} q_{\mu} q_{\mu_{1}}\right]-g_{\mu \nu} q_{\mu_{1}} q_{\mu_{2}}\right] \\
& \left.\times C_{n}^{(2)}\left(Q^{2}\right) q_{\mu_{3}} \ldots q_{\mu_{n}}\right), \quad \text { Structure of Nucleon, eq } 5.125
\end{aligned}
$$

- quark-quark and quark-gluon correlation

Proton Polarizability

- Proton electric and magnetic polarizabilities: response to lowfrequency, long-wavelength electromagnetic fields
- From the dispersion relation of the real Compton scattering (RCS) amplitude, one could derive electric and magnetic polarizability and forward spin polarizability
$\alpha+\beta=\frac{1}{2 \pi^{2}} \int_{\nu_{0}}^{\infty} \frac{\sigma_{T}}{{\nu^{\prime}}^{2}} \mathrm{~d} \nu^{\prime}$
electric and magnetic polarizability
$\sigma_{T}=\frac{1}{2}\left(\sigma_{1 / 2}+\sigma_{3 / 2}\right)$

forward spin polarizability

$$
\sigma_{T T}=\frac{1}{2}\left(\sigma_{1 / 2}-\sigma_{3 / 2}\right)
$$

Generalized Longitudinal-Transverse Polarizability

- Start from forward spin-flip doubly-virtual Compton scattering (VVCS) amplitude $\mathrm{g}_{\mathrm{T} T}$ and g_{LT}

$$
\begin{aligned}
& \operatorname{Re}\left[g_{T T}^{\text {non-pole }}\left(\nu, Q^{2}\right)\right]=\frac{\nu}{2 \pi^{2}} \mathcal{P} \int_{\nu_{\pi}}^{\infty} \frac{\mathrm{d} \nu^{\prime} K}{\nu^{\prime 2}-\nu^{2}} \sigma_{T T}\left(\nu^{\prime}, Q^{2}\right) \\
& \operatorname{Re}\left[g_{L T}^{\text {non-pole }}\left(\nu, Q^{2}\right)\right]=\frac{1}{2 \pi^{2}} \mathcal{P} \int_{\nu_{\pi}}^{\infty} \frac{\mathrm{d} \nu^{\prime} \nu^{\prime} K}{\nu^{\prime}{ }^{2}-\nu^{2}} \sigma_{L T}\left(\nu^{\prime}, Q^{2}\right)
\end{aligned}
$$

- $g_{t т}$ and $g_{\text {Lt }}$ can be expanded in power series of V
$\begin{aligned} & O\left(v^{3}\right) \text { term of } \mathrm{g}_{T \tau} \text { leads to } \\ & \text { the generalized forward }\end{aligned} \gamma_{0}\left(Q^{2}\right)=\frac{1}{2 \pi^{2}} \int_{\nu_{\pi}}^{\infty} \frac{K\left(\nu, Q^{2}\right)}{\nu} \frac{\sigma_{T T}\left(\nu, Q^{2}\right)}{\nu^{3}} \mathrm{~d} \nu$ spin polarizability γ_{0}

$$
=\frac{16 \alpha M^{2}}{Q^{6}} \int_{0}^{x_{0}} x^{2}\left[g_{1}-\frac{4 M^{2}}{Q^{2}} x^{2} g_{2}\right] \mathrm{d} x
$$

$O\left(v^{2}\right)$ term of glt leads to the generalized longitudinal-transverse
polarizability $\delta_{\text {LT }}$

$$
\begin{aligned}
\delta_{L T}\left(Q^{2}\right) & =\frac{1}{2 \pi^{2}} \int_{\nu_{\pi}}^{\infty} \frac{K\left(\nu, Q^{2}\right)}{\nu} \frac{\sigma_{L T}\left(\nu, Q^{2}\right)}{Q \nu^{2}} \mathrm{~d} \nu \\
& =\frac{16 \alpha M^{2}}{Q^{6}} \int_{0}^{x_{0}} x^{2}\left[g_{1}+g_{2}\right] \mathrm{d} x
\end{aligned}
$$

$\delta_{\text {Lt }}$ puzzle

- At low Q^{2}, the generalized polarizabilities have been evaluated with NLO XPT calculations:
- Relativistic Baryon XPT (V.Bernard,T. Hemmert and Ulf-G. Meissner, Phys. Rev. D, 67(2003)076008)
- Heavy Baryon XPT (C.W. Kao,T. Spitzenberg and M.Vanderhaeghen, Phys. Rev. D, 67(2003)01600I)
- One issue in the calculation is how to properly include the nucleon resonance contributions, especially the Δ resonance
- Y_{0} is sensitive to resonances
- $\delta_{L T}$ is insensitive to the Δ resonance
- $\delta_{L T}$ should be more suitable than γ_{0} to serve as a testing ground for the chiral dynamics of QCD

$\delta_{\text {LT }}$ puzzle

Kochelev's new calculation result:

- Include the axial-anomaly $a_{1}(1260)$ meson contribution
- Improves agreement with neutron

Still need Proton $\delta_{\text {Lt }}$ Data
Kochelev \& Oh. arXiv: I I O3.4892

Hydrogen Hyperfine Structure

- Hydrogen hyperfine splitting in the ground state has been measured to a relative high accuracy of 10

$$
\begin{aligned}
\Delta E & =1420.4057517667(9) \mathrm{MHz} \\
& =(1+\delta) E_{F} \\
\delta= & \left(\delta_{\mathrm{QED}}+\delta_{R}+\delta_{\text {small }}\right)+\Delta_{S}
\end{aligned}
$$

- Δ_{S} is the proton structure correction and has the largest uncertainty

$$
\Delta_{S}=\Delta_{Z}+\Delta_{\mathrm{pol}}
$$

- Δ_{z} can be determined from elastic scattering, which is $-41.0 \pm 0.5 \times 10$
- $\Delta_{\text {pol }}$ involves contributions of the inelastic part (excited state), and can be extracted to 2 terms corresponding to 2 different spindependent structure function of proton

Hydrogen Hyperfine Structure

$$
\begin{aligned}
& \Delta_{2}=-24 m_{p}^{2} \int_{0}^{\infty} \frac{\mathrm{d} Q^{2}}{Q^{4}} B_{2}\left(Q^{2}\right) \\
& B_{2}\left(Q^{2}\right)=\int_{0}^{x_{t h}} \mathrm{~d} x \beta_{2}(\tau) g_{2}\left(x, Q^{2}\right) \\
& \beta_{2}(\tau)=1+2 \tau-2 \sqrt{\tau(\tau+1)}
\end{aligned}
$$

- B_{2} is dominated by low Q2 part
- $\mathrm{g}_{2}{ }^{\mathrm{P}}$ is unknown in this region, so there may be huge error when calculating Δ_{2}
- This experiment will provide a constraint

Proton Size Radius

- The finite size of the nucleus plays a small but significant role in atomic energy levels
- Simplest: proton
- 2 ways to measure:
- energy splitting of the $2 \mathrm{~S}_{1 / 2}-2 \mathrm{P}_{1 / 2}$ level

Nucleus~10-15 (Lamb shift)

- scattering experiment
- The result do not match when using muonic hydrogen
- $\left\langle R_{p}\right\rangle=0.84184 \pm 0.00067 \mathrm{fm}$ by Lamb shift in muonic hydrogen
- $\left\langle R_{p}\right\rangle=0.87680 \pm 0.0069 \mathrm{fm}$ CODATA world average

Experiment Setup

- Chicane and Local Dump
- Outgoing beam will be tilted by the large target field
- Use Chicane to provide an incident angle
- Use local dump to stop non-straight beam

Experiment Setup

- Septa magnets
- Detector package has a minimum angle limit at 12.5°
- Use septa magnets to bend 5.6° scattered electrons to 12.5° to allow access to the lowest possible Q^{2}

Experiment Setup

- Hall A High Resolution Spectrometer
- High momentum resolution: 10^{-4} level over a range of $0.8-4.0 \mathrm{GeV} / \mathrm{c}$
- High momentum acceptance: $|\delta p / p|$ < 4.5\%
- Wide range of angular settings: $12.5^{\circ} \sim 150^{\circ}$ for left arm, $12.5^{\circ} \sim 130^{\circ}$
 for right arm
- Angular acceptance: $\pm 30 \mathrm{mrad}$ (Horizontal) and $\pm 60 \mathrm{mrad}$ (Vertical)

Analysis Status

HRS Optics: Overview

- HRS has a series of magnets
- 3 quadrupoles to focus and 1 dipole to disperse on momentums
- Optics study will provide a matrix to transform VDC readouts to kinematics variables which represents the effects of these magnets

Optics for g2p

- Septa magnet
- Target magnetic field
- Optics matrix will cover septa magnet
- Target magnetic field will break the focusing nature of the spectrometer so more difficult

Optics Goal

- The g2p experiment will measure the proton structure function g_{2} in the low Q^{2} region (0.02-0.2 GeV^{2}) for the first time
- Goal: 5% systematic uncertainty when measuring cross section
- Optics Goal:
- $<1.0 \%$ systematic uncertainty of scattering angle, which will contribute $<4.0 \%$ to the uncertainty of cross section

$$
\sigma \sim 1 / \sin ^{4}(\theta / 2)
$$

- Momentum uncertainty is not as sensitive, but it is not hard to reach 10^{-4} level

Angle Calibration

- Determine the center scattering angle
- Survey: ~1mrad
- Idea: Use elastic scattering on different target materials
$\Delta E^{\prime}=\frac{E}{1+\frac{E}{M_{1}}(1-\cos \theta)}-\frac{E}{1+\frac{E}{M_{2}}(1-\cos \theta)}$
- Data taking: Carbon foil in LHe, or CH_{2} foil
- Two elastic peak took at the same time
- The accuracy to determine this difference is $\langle 50 \mathrm{KeV}$-> $<0.5 \mathrm{mrad}$

Matrix Calibration

- Calibrate the angle and momentum matrix elements:
- Use carbon foil target and point beam
- Use sieve slit to get the real scattering angle from geometry
- Angle: Fit with data which we already know the real scattering angle
- Momentum: Use the real scattering angle to calculate elastic scattering momentum of carbon target

Matrix Calibration: Angle

LHRS
Before Calibration

After Calibration

Matrix Calibration: Angle

RHRS

After Calibration

Matrix Calibration: Momentum

LHRS

Matrix Calibration: Momentum

RHRS

Optics Study with Target Field

- To include target field
- Normal sieve slit method is not useful
- Idea: separate reconstruction process to 2 parts:
- Use HRS optics matrix to do the reconstruction from VDC to sieve slit
- Use the target field map to do a ray trace of the scattered particle from sieve slit to target

Optics Study with Target Field

Sieve pattern after calibration

- Use carbon foil target and point beam
- Sieve pattern is decided by both the beam position and the reconstructed angle
- Directly use BPM readout to provide beam position here

Optics Study with Target Field

- Compare reconstructed target theta and phi angle with the calculated result

Calculated theta and phi

Reconstructed theta and phi

