

SoLID EM calorimeter study and general test system in SDU

<u>Cunfeng Feng(冯存峰)</u>, Changyu Li(李长裕), Yansheng Sun(孙延生), Ye Tian(田野), Xu Wang(王旭), Tongye Xu(徐统业), Rui Yuan(袁睿), Chengguang Zhu(祝成光), Shandong University

Lanzhou, China, July 23, 2014

- SoLID Electromagnetic calorimeter introduce
- Pre-shower module and test
- Pre-shower module simulation
- MAPMT test
- PMT test bench
- CoRaRS(Cosmic Ray reference System)
- Summary

Electromagnetic calorimeter in SoLID

HADRON2014, C. Feng

SP between C and MRPC

Layout of the EM calorimeter

1: Layout of the hexagon-shaped modules with their support for a 30-degree wedge of the

Pre-shower module in SDU

- HND-S2: Kedi, China
 - Density: 1.05g/cm^3
 - Refraction index: 1.59
 - Emission peak : 420nm
 - Light yield(photons/MeV): 8000
- Thickness: 20 mm
- Depth of groove: 2 mm
- Shape 1: Hexagon, side 6 cm
- Shape 2: Square, 10*10 cm

WLS BCF-92

- Type: BCF-92(Saint-gobain)
- Diameter: 1.5 mm

Scintillator module

Light yield preliminary test

PMT type: HAMAMATSU R11102,

Gain: 10^6.

One LABVIEW program record the waveforms.

Hexagon shape module test results

Mean number of photons recorded by the PMT is 31

Mean number of photons recorded by the PMT is 48

Square module test result

Size: 10*10 cm^2 Thickness: 2 cm Diameter of circular groove: 9 cm Only 1 turn of fiber, too shallow for 2 turn

Less photons(16) than hexagon shape(31). Need to confirm.

HADRON2014, C. Feng

Simulation with GEANT4

- Scintillator thickness: 2cm
- Fiber : one turn, Φ 1.5 mm
- Package: tyvek paper

The number of photons which reach the PMT cathode is recorded, no quantum effect and collection of PMT is considered

Multi-anode PMT

- HAMAMATSU, H7546A
 - 8*8 anodes, anode size:2*2mm/anode
 - Cross-talk: 2% type
 - 12-stage
 - Voltage-divider circuit: 3:2:2:1...1:2:5

Preliminary test results of MAPMT

The fitting of the Pedestal and SPE

Single photoelectron peak

<1%	3.2	<1%	
4.15	81	3.85	
<1%	3.1	<1%	

Cross talk for the central channel. The amplitude (mV) for this channel and neighbor. Cross talk is larger than specification sheet due to 1.5 mm fiber.

PMT test bench in SDU

A PMT test bench was setup in SDU, which include:

- ✓ One light tight box
 - Hold 16 PMTs
 - 2D scanning system
- ✓ Picosecond pulse laser: PLP-10, Hamamatsu
- ✓ Multi-channel High voltage power supply: SY1527, CEAN
- ✓ VME DAQ system:
 - TDC: LSB=35ps
 - QDC: dual range, 100/900pC, 12-bit
 - Scaler
 - NIM module
- ✓ Artificial climate box: -40~150 °C

The chart of machinery architecture in light tight box

guide the pulse light into PMT.

HADRON2014, C. Feng

Uniformity of cathode test results

Step size: 1mm. The PMT: R11102. The non-uniformity of the cathode are visible.

Cathode transit time difference

Relatvie transit time uniformity

(a) Surface plot

(b) X-Y Axis

(c) Transit time spread vs. transit time

Test with same scanning system. The relative transit time is difference for light

incident from different cathode position.

Linear dynamic range

(Dd

1000

800

400

200

Anode Output Charge of high light

Di-distance method. The ratio of incident light intensity on PMT for both distance is constant λ .

Non-Linearity =
$$\left(\frac{S_{near}}{S_{far}} - \lambda\right)/\lambda$$

The test range depends on the electronic and light source. We can test from SPE to 900 pC.

Effect of temperature

Cosmic Ray reference System(CoRaRS)

Picture of the CoRaRS laboratory and the diagram of the system.

CoRaRS: TGC

HADRON2014, C. Feng

Tine Gap Chamber, used in ATLAS as muon trigger detector.

CoRaRS: trigger

Prototype electromagnetic detector of LHAASO

Test results of the ED

Time resolution of each point on ED.

Detect efficiency of each point. Low efficiency region due to detector problem.

Summary

- Pre-shower detector preliminary study.
- One PMT test bench can test the end window PMT for SoLID in batch.
- The CoRaRs system can test the detector performance.

Thanks !