Hadron Spectroscopy from Strangeness to charm and beauty

Bing-Song Zou Institute of Theoretical Physics, CAS, Beijing

Outline :

- 1. Introduction
- 2. Hadron spectroscopy with strangeness
- **3. From Strangeness to charm & beauty**
- 4. Conclusions

1. Introduction

Key problem in QCD and hadron structure Quark confinement – self-interaction of gluons

energy density

linear potential

QED field lines

Lattice QCD

The number of constituents in a hadron is not a constant!

2. Hadron spectroscopy with strangeness SU(3) 3q-quark model for baryons 1/2 +3/2 +spin-parity \triangle^{++} S $\bigwedge 0$ \wedge^+ (uuu) (ddd) n(udd) p(uud) (udd) (uud) Σ^0 \sum^{*} Σ^{*+} (dds) (uds) (uus) Σ^{0} Σ^+ (uus) (uds) $\Sigma^{-}(dds)$ I_3 Λ^{0} $\frac{\Xi^{*0}}{(uss)}$ (\overline{dss}) $\Omega^{-}(sss)$ $\Xi^0(uss)$ $\Xi^{-}(dss)$ m_O.≅ 1670 MeV **Prediction Successful for spatial** ground states ! experiment $m_{\Omega} \cong 1672.45 \pm 0.29 \text{ MeV}$

quenched vs un-quenched for mesons

1/2⁻ baryon nonet with strangeness

- Mass pattern : quenched or unquenched ?
 - uds (L=1) $1/2^- \sim \Lambda^*(1670) \sim [us][ds] s$
 - uud (L=1) $1/2^- \sim N^*(1535) \sim [ud][us] \overline{s}$
 - uds (L=1) $1/2^- \sim \Lambda^*(1405) \sim [ud][su] \overline{u}$
 - uus (L=1) $1/2^- \sim \Sigma^*(1390) \sim [us][ud] \overline{d}$

Zou et al, NPA835 (2010) 199 ; CLAS, PRC87(2013)035206

• Strange decays of N*(1535) and Λ *(1670): N*(1535) large couplings $g_{N^*N\eta}$, $g_{N^*K\Lambda}$, $g_{N^*N\eta}$, $g_{N^*N\phi}$ Λ *(1670) large coupling $g_{\Lambda^*\Lambda\eta}$

The breathing mode for the N*(1535)

Alternative pictures :

Hadronic molecules

Penta-quark states

- **N*(1440)** ~ Nσ
- N*(1535) ~ KΣ-KΛ
- $\Lambda^*(1405) \sim \text{KN-}\Sigma\pi$

N*(1440) ~ [ud][ud] <u>q</u> N*(1535) ~ [ud][us] <u>s</u>

 $\Lambda^*(1405) \sim [ud][sq] \overline{q}$

Kaiser, Weise, Oset, Ramos, Oller, Meissner, Hyodo, Jido, Hosaka, ...

Successful extension to 3/2⁻ baryon nonet, 1⁺ & 2⁺ meson nonets Oset et al.

Important implications:

• qqqqq in S-state more favorable than qqq with L=1 ! & qqqq in S-state more favorable than qq with L=1 !

> 1/2⁻ baryon nonet ~ $\overline{q}q^2q^2$ state + ... 0⁺ meson octet ~ \overline{q}^2q^2 state + ...

multiquark components are important for hadrons!

Quark model needs to be unquenched !

Best playgrounds for unquenched quark models:

for baryon	$sss \rightarrow$	sss qq
for meson	$\overline{c}c \rightarrow$	$\overline{\mathbf{c}} \mathbf{c} \ \overline{\mathbf{q}} \mathbf{q}$

Totally different predictions for the lowest Ω^* :

 $\Omega^*(x/2^-)$ as sss (L=1): ~ 2020 MeV

Chao, Isgur, Karl, PRD38(1981)155

Ω*(1/2⁻) as KΞ bound state: ~ 1805 MeV W.L.Wang, F.Huang, Z.Y.Zhang, F.Liu, JPG35 (2008) 085003

 $\Omega^{*}(x/2^{-})$ as usss (L=0): ~ 1820 MeV Yuan-An-Wei-Zou-Xu, PRC87(2013)025205

Ω*(3/2⁻) as sss - uusss mixture : ~ 1780 MeV by instanton/NJL interaction An-Metsch-Zou, PRC87(2013) 065207; An-Zou, PRC89(2014)055209 Experiment knowledge on Ω^* states still very poor !

 Ω^* in PDG:

**** Ω(1672) 3/2+,
*** Ω (2250)
** Ω (2380), Ω (2470)

No $1/2^-$ or $3/2^- \Omega^*$ observed yet !!

Very important to find the lowest Ω^* (1/2⁻or 3/2⁻)

 $\psi(2S) \rightarrow \overline{\Omega}\Omega$ BR = $(5 \pm 2) \times 10^{-5}$

M. Ablikim et al. (BESII Coll.), CPC36(2012)1040

 $\psi(2S) \rightarrow \overline{\Omega}\Omega^* \text{ with } \Omega^* \rightarrow \gamma \Omega$

 \rightarrow excitation mechanism for sss states

cc decays -- a important new source for baryons

 $J/\Psi \rightarrow \overline{BBM} \implies N^*, \Lambda^*, \Sigma^*, \Xi^*$

an ideal isospin and low spin filter from cc annihilation No contamination from t/u-channel scattering as in πN and γN high statistics extension to ψ', χ_{cJ}, η_c

3/7 new N* from PDG92 to PDG03 are from BESII & BESIII

Many more interesting channels:

 $\overline{\Omega} \equiv \overline{K}, \ \overline{\Xi} \equiv \pi, \ \overline{\Lambda}\Lambda\gamma, \ \overline{\Sigma}\Lambda\gamma, \ \overline{\Sigma}\Sigma\gamma, \ \overline{\Xi} \equiv \gamma, ...$ with $\Omega \rightarrow \Lambda K, \ \Xi \rightarrow \Lambda \pi$

S.Dulat, J.J.Wu, B.S.Zou, PRD83 (2011) 094032 "Proposal and theoretical formalism for studying baryon radiative decays from $J/\psi \rightarrow \overline{B}B^* + \overline{B}^*B \rightarrow \overline{B}B\gamma$ ".

JLAB : $N^*, \Delta^* \rightarrow \gamma N$

Super τ -c: $\Lambda^* \rightarrow \gamma \Lambda, \gamma \Sigma; \Sigma^* \rightarrow \gamma \Lambda, \gamma \Sigma; \Xi^* \rightarrow \gamma \Xi$!

3. From strangeness to charm & beauty

Many N* & Λ^* are proposed dynamically generated states and multi-quark states

Problem:

None of them can be clearly distinguished from qqq due to tunable ingredients and possible large mixing of various configurations

Solution: Extension to hidden charm and beauty for baryons

N*(1535) ssuud

N*(4260) ccuud J.J.Wu, R.Molina, E.Oset, B.S.Zou. Phys.Rev.Lett. 105 (2010) 232001 N*(11050) bbuud J.J.Wu, L.Zhao, B.S.Zou. PLB709(2012)70

Y.Huang, J.He, H.F.Zhang, X.R.Chen, ArXiv:1305.4434

PHYSICAL REVIEW D

VOLUME 51, NUMBER 9

1 MAY 1995

$\Upsilon(3S) \rightarrow \Upsilon(1S) \pi \pi$ decay: Is the $\pi \pi$ spectrum puzzle an indication of a $b\bar{b}q\bar{q}$ resonance?

V. V. Anisovich, ^{1,2} D. V. Bugg, ¹ A. V. Sarantsev, ^{1,2} and B. S. Zou¹
 ¹Queen Mary and Westfield College, London E1 4NS, United Kingdom
 ²Petersburg Nuclear Physics Institute, Gatchina, 188350, Russia
 (Received 22 August 1994; revised manuscript received 2 February 1995)

The $\pi\pi$ mass spectrum in $\Upsilon(3S) \rightarrow \Upsilon(1S)\pi\pi$ has a peculiar double peak structure. This structure and the $\Upsilon(1S)\pi$ spectrum are reproduced by introducing a triangle singularity associated with a $b\bar{b}\pi$ resonance $(J^P = 1^+)$ in the mass range 10.4–10.8 GeV.

Belle Collaboration, PRL108 (2012) 122001 → Z_b(10610), Z_b (10650)
"Observation of Two Charged Bottomoniumlike Resonances in Y(5S) Decays"
important to confirm them and find their partners

Usual hadrons with hidden charm and beauty

 $\overline{cc} \rightarrow \overline{c} \overline{q} c q$

Necessary go beyond quenched quark model

hadron molecules, tetra-quark states, mixture, ...

cf review by S.L.Zhu et al, arXiv:1311.3763

 $\mathbf{X}(\mathbf{3872}) \sim \mathbf{cc} (\mathbf{L=1}) + [\mathbf{q} \mathbf{c}] [\mathbf{qc}] + \mathbf{D*D} + \dots$

4. Conclusions

- Hadron spectroscopy reveals unquenched quark picture
- Distinguishable prediction for hyperon spectroscopy is yelling for experimental confirmation
- Experimental confirmation of them will unambiguously establish multiquark dynamics
- They can be looked for at 12GeV@Jlab and PANDA maybe also at JPARC, super-B, RHIC, EIC?

Prospects at Future CCP

- CCP Circular Collider of Particles (e⁺e⁻, pp, ep, ...)
- For hadron spectroscopy at CCP, high priority:
 XYZ mesons with hidden cc or bb @super c-b
 Ω* baryons @super c
 Superheavy N*&A* with hidden cc or bb @ ep, pp
- XYZ production from γ*γ*, 第第, γ*第 by (e⁺e⁻, pp, ep)
 XYZ& structure, qq production mechanisms

Figure 4: The e^+e^- cross section for the production of a resonance via the two-photon process (normalized to $\Gamma_{nn} = 1 \ keV$).

H. Klanoski, P. M. Zerwas, "Two-Photon Physics" 1987

Observation of a χ'_{c2} Candidate in $\gamma\gamma \rightarrow D\bar{D}$ Production at Belle

Thanks !

- 3. Mechanisms for qq pair production
- 1) Perturbative ${}^{3}S_{1}$ failed for 1⁻ and 1⁺ decays
- 2) Non-perturbative ${}^{3}P_{0}$ qu

quite successful & popular

A. Le Yaouanc et al., Phys.Rev. D8 (1973) 2223

B. Aubert et al. (BABAR Collaboration), PRD 78 (2008) 112002: $\Gamma(Y(4S) \rightarrow \eta Y(1S)) / \Gamma(Y(4S) \rightarrow \pi^+ \pi^- Y(1S)) = 2.41 \pm 0.40_{\text{stat}} \pm 0.12_{\text{syst}}$

M. Ablikim et al. (BESIII Collaboration), PRD 86 (2012) 071101 $\Gamma(\psi(4040) \rightarrow \eta J/\psi) / \Gamma(\psi(4040) \rightarrow \pi^+ \pi^- J/\psi) > 2$

PDG: $\Gamma(J/\psi \rightarrow \gamma \eta) > \Gamma(J/\psi \rightarrow \gamma \sigma)$

Gluons more favor to produce $qq({}^{1}S_{0})$ sometimes !

$e^+e^- \rightarrow J/\psi \ c \bar{c}$ only 0^- and 0^+ c observed !

BaBar Collaboration, Phys.Rev. D72 (2005) 031101

Phenomenology of instantons in QCD T. Schafer, E. Shuryak

NJL model : both 0⁻ & 0⁺ important ! $\mathcal{L} = i \bar{\psi} \partial \!\!\!/ \psi + \frac{\lambda}{4} \left[\left(\bar{\psi} \psi \right) \left(\bar{\psi} \psi \right) - \left(\bar{\psi} \gamma^5 \psi \right) \left(\bar{\psi} \gamma^5 \psi \right) \right] = i \bar{\psi}_L \partial \!\!\!/ \psi_L + i \bar{\psi}_R \partial \!\!\!/ \psi_R + \lambda \left(\bar{\psi}_L \psi_R \right) \left(\bar{\psi}_R \psi_L \right).$

for baryon sss
$$\rightarrow$$
 sss $\overline{\mathbf{q}}\mathbf{q}$ $H = \begin{pmatrix} H_3 & V_{\Omega_3 \leftrightarrow \Omega_5} \\ V_{\Omega_3 \leftrightarrow \Omega_5} & H_5 \end{pmatrix}$

'm

$$H_N = H_o + H_{hyp} + \sum_{i=1}^N m_i$$

$$H_o = \sum_{i=1}^{N} \frac{\vec{p}_i^2}{2m_i} + \sum_{i < j}^{N} V_{conf}(r_{ij})$$

$$H_{qq}^{NJL} = \sum_{i < j}^{N} \sum_{a=0}^{8} \hat{g}_{ij} \lambda_{i}^{a} \lambda_{j}^{a} [1 + \frac{1}{4m_{i}m_{j}} \hat{\sigma}_{i} \cdot (\vec{p}_{i}' - \vec{p}_{i}) \hat{\sigma}_{j} \cdot (\vec{p}_{j}' - \vec{p}_{j})]$$

from
$$\mathcal{L}_{NJL} = \frac{1}{2}g_s \sum_{a=0}^{8} \left[(\bar{q}\lambda^a q)^2 + (\bar{q}i\lambda^a \gamma_5 q)^2 \right]$$

Totally different predictions for 1/2⁻ hyperons: unquenched quenched

- Σ^* [us][du] $\overline{d} \sim 1400 \text{ MeV}$
- Ξ^* [us][ds] \overline{d} ~ 1550 MeV
- Ω^* [us] ss \overline{u} ~ 1800 MeV

- uus (L=1) ~ 1650 MeV
- uss (L=1) ~ 1760 MeV
- sss (L=1) ~ 2000 MeV

- Meson-Baryon states

 Y.S.Oh

 Σ* ~ 1475
 MeV

 Ξ* ~ 1616
 MeV

 Ω* ~ 1837
 MeV
- K. P. Khemchandani et al.
- ~ 1426 MeV
- ~ 1606 MeV Ramos & Oset
- ~ 1810 MeV Wang & Zhang

Σ^* in PDG

****	$\begin{array}{llllllllllllllllllllllllllllllllllll$
***	$\Sigma^*(1660)1/2^+$ $\Sigma^*(1750)1/2^ \Sigma^*(1940)3/2^-$ $\Sigma^*(2250)??$
**	$\Sigma^*(1690)$?? $\Sigma^*(1880)1/2^+ \Sigma^*(2080)3/2^+ \Sigma^*(2455)$?? $\Sigma^*(2620)$??
*	$\begin{array}{llllllllllllllllllllllllllllllllllll$
All fro	om old experiments of 1970-1985 !!

No established $1/2^- \Sigma^*$, Ξ^* , Ω^* !