JLab Physics Analysis Center (JPAC)

Adam Szczepaniak Indiana University/JLab

Develop theoretical,phenomenological/ computational tools for hadron experiments

Experiment-theory collaboration

 Analysis strategy
 Current projects : diffractive dissociation light meson properties

GLOBAL EFFORT

Create a vibrant community

Specific goals

• Develop state-of-the-art description of hadronic interactions to take the full advantage of the information contained in the high quality experimental data.

 Build software tools to analyze high statistics data on a large number of reactions channels simultaneously.

• Develop framework for data preservation.

Current Channels

Final state	meson	experiment	availability	people	Date available
3π	η	g12	now	D. Schott, [1]	
		g11	disk failure	[1,2]	Fall 2014
	ω	g12	thesis in progress	FSU, NSU	winter 2014/2015
		g11	now	A. Celentano [2]	Being copied
		g1c/g8b	soon		Being copied
pK+K-		g12	now	D. Schott	
		g11	pub. In progress	S. Lombardo [2]	End of summer?

Rough Data Sizes $O(100K) \; \eta's, \omega's, \phi's$

 $O(1M) \ pK^+K^-, \ p\pi^+\pi^-$

Future Channels (from existing data)

Final state	meson	experiment	availability	people	Date available
3π	η′	g11	in progress	A. Rizzo [2], [1]	
ΚΚπ		g11	in progress	A. Filippi [2]	
Xe+e-	ω→π ⁰ e⁺e ⁻	g12/g11	thesis in progress	H. Shah [1]	Fall or spring?
	φ→π⁰e⁺e⁻			[1]	
K ⁺ K ⁻ π		g11	in progress	S. Fegan [2]	
pπ⁺π⁻		g11	pub. in 2009	M. Battaglieri [2]	

GlueX and CLAS12 data arriving soon "Can we quantitatively understand quark and gluon confinement in quantum chromodynamics and the existence of a mass gap"

in 10 Physics Questions to Ponder for a Millennium or Two

Wednesday, July 23, 14

All gluons are equal but some are more equal than others: provide confinement => long range correlations are confined => short range correlations

Lightest hybrids have "constituent" gluons !

lc	naturality =P(-1) ^J	twist =+1 if J=0,2, =-1 if J=1,3	name
0+	+1	+1	f ₀ ,f ₂ ,
0+	+1	-1	η/η'1,η/η'3, (1~+,3~+,)
0+	-1	+1	η/η'₀,η/η'₂,
0+	-1	-1	f 1, f 3,
0-	+1	+1	ho,h2, (0+-,2+-,)
0-	+1	-1	ω/φ ₁ ,ω/φ ₃ ,
0-	-1	+1	<u>ω/φ₀,ω/φ₂,(0,2,</u> :not seen)
0-	-1	-1	h1,h3,
1+	+1	+1	b ₀ ,b ₂ , (0+-,2+-,)
1+	+1	-1	ρ ₁ ,ρ ₃ ,
1+	-1	+1	ρο,ρ ₂ , (0 ,2 , :not seen)
1+	-1	-1	b1,b3,
1-	+1	+1	a ₀ ,a ₂ ,
1.	+1	-1	π ₁ ,π ₃ , (1 ⁻⁺ ,3 ⁻⁺ ,)
11	-1	+1	Π,Π2,
1-	-1	-1	a1,a3,

The Golden Channel for ground state exotic meson search

The Golden Channel for ground state exotic meson search

The Golden Channel for ground state exotic meson search

Effects to include

(similar for lower vertex)

The Golden Channel for ground state exotic meson search

Effects to include (similar for lower vertex)

I. Double-Regge amplitudes for higher masses/spins

The Golden Channel for ground state exotic meson search

Effects to include

(similar for lower vertex)

I. Double-Regge amplitudes for higher masses/spins

2. Single-Regge (Deck)

The Golden Channel for ground state exotic meson search

Effects to include

(similar for lower vertex)

I. Double-Regge amplitudes for higher masses/spins

2. Single-Regge (Deck)

3. Quasi-elastic (isobar) parametrized low-energy waves (unitarity/coupled channels)

"slow"

Use duality/FESR to constrain parameters

Wednesday, July 23, 14

Yp→ηπ⁰p (g12)

A.Celentano, PhD, HASPEC/JPAC

Duality and exotic mesons

Finite Energy Sum Rules

 $\pi N \to \pi N$

Wednesday, July 23, 14

- Duality: resonances in direct channel dual to reggeons in cross channels and backgrounds are dual to the pomeron
- All resonances are "connected": resonances belong to Regge trajectories (reggeons)
- Asymptotics: determined by Regge poles
- Unitarity: imaginary parts determined by decay thresholds

Wednesday, July 23, 14

The B_4 amplitude and the ω decay

The $\omega \rightarrow 3 \pi$ decay process is a good candidate to test the B₄ amplitude approach.

First results look very promising

Work plan:

- Use the full g11 statistics, merge different E_{γ} bins.
- Try different numbers of trajectories
- Investigate the $M_{3\pi}$ dependence

Fit performed with 2 trajectories (2 real parameters)

- 2.3 GeV < sqrt(s) < 2.31 GeV
- $0.78 \text{ GeV} < M_{3\pi} < 0.79 \text{ GeV}$

A.Celentano, PhD, HASPEC/JPAC

B_n amplitudes

single Regge limit

Generalizations of the Veneziano model:

> Force -Resonance Duality

Reggeone and resonances

single Regge limit

double Regge limit

van Hove longitudinal plot . . K^+ Ey 5.42GeV<E<5.44GeV, 18582 Events K^{-} DR⁺region $p_{\rm pL} = 0$ 2 R23 D 1,233 2 ¢ R12 Fitting Result for double Regge limit Projection of Dalitz Plot $p_{K^{+}L^{=0}}$ DATA DATA EIT Mass²(K*+K*+) (GeV/R²) Projection of Dalitz Plot Projection of Dalitz Plot $p_{X^{-}L^{=0}}$ Preliminary CLAS g12 -2 2 n

• Light meson properties $\eta \rightarrow 3\pi \quad \omega \rightarrow 3\pi \quad \phi \rightarrow 3\pi$

 $A_{3\pi^0} \sim (m_u - m_d) [1 + \alpha(s_1 - s_m) + ..]$

• Light meson properties $\eta \rightarrow 3\pi \quad \omega \rightarrow 3\pi \quad \phi \rightarrow 3\pi$

Amplitudes constrained phase space: effective (chiral) dynamics, low partial waves

 $A_{3\pi^0} \sim (m_u - m_d)[1 + \alpha(s_1 - s_m) + ..]$

D.Schott, JPAC/GWU P.Guo JPAC/IU

2 + ~

Expected sensitivity to 3-body effects

Transition form factors: $\omega/\phi \rightarrow \pi\gamma$

Disc
$$f_{V\pi}(s) = \frac{\rho^3 s}{96 \pi} (F(s) + \hat{F}(s)) F_{\pi}^*(s)$$

 $V \to 3\pi \qquad \pi\pi \to \gamma$

$$f_{V\pi}(s) = \int_{s_{\pi}}^{s_i} \frac{ds'}{\pi} \frac{\text{Disc } f_{V\pi}(s')}{s' - s} + \sum_{i=0}^{N} C_i \,\omega(s)^i$$

Black: standard VMD (fails to describe the data)

- w(s) is the conformal map (inelastic contrb)
- Green: N=0 and C₀ determined from Γ_{exp}(V→πγ)
- Red: N=1 and Blue: N=2 (fit to the data)
- Nature of the steep rise? -> Exp analysis of φ→πγ is very important

I.Danilkin JPAC

Hadron Spectroscopy Portal

HOME EXPERIMENTS ANALYSIS THEORY MESONS LINKS

Institute of High Energy Physics Chinese Academy of Sciences

This page contains details of how to parametrize two pions isobar

Two Pions

- Descriptions
 Parametrization
 Applications
 References
- Comments
 Resources

TWO PIONS PARAMETRIZATION

Description

The $\pi\pi$ amplitude depends on two variables, the invariant mass squared s and the scattering angle in the center of mass θ . Final states are not eigenstates of the isospin. For neutral systems we have

$$\begin{split} \pi^0 \pi^0 &= -\frac{1}{\sqrt{3}} F^{(0)}(s,\theta) + \frac{2}{\sqrt{3}} F^{(2)}(s,\theta), \\ \pi^+ \pi^- &= +\frac{1}{\sqrt{3}} F^{(0)}(s,\theta) + \frac{1}{\sqrt{2}} F^{(1)}(s,\theta) + \frac{1}{\sqrt{6}} F^{(2)}(s,\theta) \end{split}$$

Resources

- Notes: PiPiParam.pdf
- Fortran: IsobarPiPi.f90, pipiscat.f90, BaseMod.f90, OmnesMod.f90 intx.f
- · S0 wave: PiPi Amplitude, Omnes function, Ln functions, Rn functions
- · S2 wave: PiPi Amplitude, Omnes function, Ln functions, Rn functions
- · P1 wave: PiPi Amplitude, Omnes function, Ln functions, Rn functions
- · D0 wave: PiPi Amplitude, Omnes function, Ln functions, Rn functions
- · D2 wave: PiPi Amplitude, Omnes function, Ln functions, Rn functions
- Publication:
- Contact person: Vincent Mathieu
- Last update: September 2013

IsobarPiPi.f90 is the program calling

- pipiscat.f90: generate the ππ amplitude in term of phase shift, inelasticity, argument. Results are printed in pipiXX.txt with the columns being s, δ, η, φ
- Omnes.f90: generate the Omnes function D(s).
 Results are printed in omnXX.txt with the columns being s, Re D(s), Im D(s)
- BaseMod.f90: generate the base functions \$\mathcal{L}_n(s)\$, \$\mathcal{R}_n(s)\$.
 Results are printed in baseLXX.txt and baseRXX.txt with the columns being s, Re \$L_1(s)\$, Im \$\mathcal{L}_1(s)\$, Re \$\mathcal{L}_2(s)\$, Im \$\mathcal{L}_2(s)\$, Re \$\mathcal{L}_3(s)\$, Im \$\mathcal{L}_3(s)\$
- intx.f90: the integration routine

Webpage template with summary of publication results, data. MC, codes, etc.

The JPAC team

JPAC@JLab	JPAC@IU	JPAC@GW			
Igor Danilkin	Lingun Dai	Ron Workman			
Viktor Mokeev	Geoffrey Fox	Michael Doering			
Peng Guo	Andrew Jacku	ra Diane Schott			
Michael Pennington	Vincent Mathi	eu			
Cesar Ramirez	Emilie Passemar				
Meng Shi	W	eekly meetings (Tue. 1pm, Thu. 9:30)			
New collaborators are	Weekly "lecture series" (Mon. 10am)				
welcomed !	Joint CLAS/JPAC Seminar series				
	<u>h</u>	<u>ttps://wiki.jlab.org/jpac/</u>			

DECK MODEL: ONE STEP AT A TIME

$KN \rightarrow KN$: HIGH-ENERGY REGION

175 GeV x10⁸ 0.2

0.1

0.4

-t (GeV²)

0.3

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

-t (GeV²)

0.5

0.6

24

0.7

$KN \rightarrow KN$: Resonance Region

Coupled-channels Unitary model KN, $\pi\Sigma$, $\pi\Lambda$, $\eta\Lambda$, $\eta\Sigma$, $K_{1}^{*}N,K_{3}^{*}N,K\Delta$, $\pi\Sigma(1385)$, $\pi\Lambda(1520)$ 34 resonances Manley et al. PRC88, 035204 (2013) Partial waves: S₀₁, P₀₁, P₀₃, D₀₃, D₀₅, F₀₅, F₀₇, G₀₇ S₁₁, P₁₁, P₁₃, D₁₃, D₁₅, F₁₅, F₁₇, G₁₇

$$f = \frac{1}{q} \sum_{\ell=0}^{\infty} \left[(\ell+1) f_{\ell+1} + \ell f_{\ell-1} \right] P_{\ell}(z)$$

$$g = \frac{1}{q} \sum_{\ell=1}^{\infty} \left[f_{\ell+} - f_{\ell-} \right] P_{\ell}^{1} \left(z \right)$$

$$T = \bar{u} \left[A + \frac{1}{2} \left(q_1 + q_2 \right)^{\mu} \gamma_{\mu} B \right] u$$

