Andrea Bressan University of Trieste and INFN

THE SIXTH WORKSHOP ON HADRON PHYSICS IN CHINA AND OPPORTUNITIES IN THE US

RECENT R

FUTURE P

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

Collaboration

~ 250 physicists from 24 Institutions of 13 Countries

fixed target experiment at the CERN SPS

data taking: since 2002

COMPASS Collaboration

Дубна (LPP and LNP), MOCKBA (INR, LPI, State University), Протвино

Bochum, Bonn (ISKP & PI), Erlangen, Freiburg, Mainz, München TU

Saclay

COMPASS

Warsawa (NCBJ),

Warsawa (TU) Warsawa (U)

Brno (ISI-ASCR)

Calcutta (Matrivian)

Lisboa/Aveiro

Tel Aviv

Torino (University, INFN), Trieste (University, INFN)

Taipei (AS)

Lanhzou 20-24/2014

COMPASS

- high energy beam
- large angular acceptance
- broad kinematical range

two stages speatiotneter₁₀ Large Anglet Spesttolon eter 2 GeV/c Small Angle Spectrometer 10 GeV/c

Space resolution

10 µ 100µ 200µ

TargetLargeregionAngleSpectrometer

COMPASS

Small Angle Spectrometer

 $1 \, \text{mm}$

500µ Space resolution is function of the distance to the target

the polarized target system (>2005)

opposite polarisation

polarization	
dilution factor	4

d (⁶LiD) p 50% 9 40% 1

p (NH₃) 90% 16%

no evidence for relevant nuclear effects (160 GeV)

COMPASS – some facts

Located at CERN North Area beam line

Possible beams: μ^+ , μ^- , π^+ , π^- , K \rightarrow Several physics programs

Experiments with muon beam

Experiments with hadron beams

COMPASS - I (2002 – 2011)

- Spin structure, Gluon polarization
- Flavor decomposition
- Transversity
- Transverse Momentum-dependent PDF

- Pion polarizability
- Diffractive and Central production
- Light meson spectroscopy
- Baryon spectroscopy

COMPASS - II (2012 – 2017)

- DVCS and HEMP
- Unpolarized SIDIS and TMDs

- Pion and Kaon polarizabilities
- Drell-Yan studies

COMPASS – some facts

- Located at CERN North Area beam line
 - Possible beams: μ^+ , μ^- , π^+ , π^- , K \rightarrow Several physics programs
- Experiments with muon beam
- Experiments with hadron beams

COMPASS - I (2002 – 2011)

- Spin structure
- p, d polarized target (L & T)

- Hadron spectroscopy
- Small LH₂ or nuclear targets

COMPASS - II (2012 - 2017)

- DVCS/Unpol SIDIS
- Long LH₂ target

- Drell-Yan studies
- Polarized target (T)

Reconfigurable target region - versatile experimental setup!

COMPASS

Key COMPASS measurements

$g_1^d(x), \qquad \int g_1^d(x) dx$	Confirmation of SMC result on d (at variance with E142 claims)	
$\Delta g/g$	first hint that Δg is small, at variance with predictions	
$A^h_{Col,d}$	first measurement of transversity on deuteron $h_1^u \simeq -2h_1^d H_{1,fav}^{\perp} \simeq -H_{1,unf}^{\perp}$	
$A_{p,d}^{2h}$	Only polarimeter for transversity extraction from 2h asymmetries transversity extracted directly from the data, following Pavia group	
$A^h_{Siv,p}$	Evolution of Sivers	
$\pi_1(1600)$ Hint for an exotic state		
$a_1(1420)$	New state	
Radiative width of $a_2(1320)$ and $\pi_2(1670)$	Confirmation of VMD model, EPJ highlight	

Structure of the Nucleon

The spin of the nucleon

Three twist-2 quark DF's in collinear approximation ($\int dk_{\perp}$)

 $\mathsf{F}_{Coll}^{Tw-2}(x) = \frac{1}{2} \{ q(x) + S_L g_5 \mathsf{D} q(x) + S_T g_5 g^1 \mathsf{D}_T q(x) \} n^+$

helicity

transversity

$$\frac{S_{z}^{N}}{\hbar} = \frac{1}{2} = \frac{1}{2} DS + DG + L_{z}^{q} + L_{z}^{g}$$

[boost, rotat.]=0

 \Rightarrow D_Tq(x,Q²) = Dq(x,Q2)

$$\Delta_{\mathbf{T}}\mathbf{q}(\mathbf{x})$$

$$h_1^{q}(\mathbf{x})$$

q(x) $f_{1}^{q}(x)$

∆q(x) $g_1^q(x)$

zle

$$\frac{1}{2}\Delta\Sigma$$
 ≈30% : Spin puz

 ΔG

 \mathcal{L}_q

 \mathcal{L}_{g}

Jg

Lanhzou 20-24/2014

Global NLO QCD fits to world data on g_1

138 out of 679 points are from COMPASS

 $g_1 = \frac{1}{2} \langle e^2 \rangle (C^S(\alpha_s) \otimes \Delta q_S + C^{NS}(\alpha_s) \otimes \Delta q_{NS} + C^g(\alpha_s) \otimes \Delta g)$

 $\Delta q_s = \Delta u + \Delta d + \Delta s$; Δq_{NS} is a combination of $\Delta q_3 = \Delta u - \Delta d$ and $\Delta q_8 = \Delta u + \Delta d - 2\Delta s$

Evolving as

$$\frac{d}{d \ln Q^2} \Delta q_{NS} = \frac{\alpha_s(Q^2)}{2\pi} \qquad \Delta P_{qq} \qquad \otimes \Delta q_{NS}$$

$$\frac{d}{d \ln Q^2} \begin{pmatrix} \Delta q_s \\ \Delta g \end{pmatrix} = \frac{\alpha_s(Q^2)}{2\pi} \begin{pmatrix} \Delta P_{qq} & 2n_f \Delta P_{qg} \\ \Delta P_{qg} & \Delta P_{gg} \end{pmatrix} \otimes \begin{pmatrix} \Delta q_s \\ \Delta g \end{pmatrix}$$

First moments of Δq_3 and Δq_8 fixed by baryon decay constants (F + D) and (3F - D) assuming $SU(2)_f$ and $SU(3)_f$ symmetries.

$$\Delta f_k(x) = \Delta q_k \frac{x^{\alpha_k} (1-x)^{\beta_k} (1+\gamma_k x + \rho \sqrt{x})}{\int_0^1 x^{\alpha_k} (1-x)^{\beta_k} (1+\gamma_k x + \rho \sqrt{x})}$$

3 initial Δg shapes; positive, negative with node.

Lanhzou 20-24/2014

$\Delta g/g$ using "all p_T " events

- The main goal is to improve the extraction by removing few sources of systematic effects.
 - However, also a considerable reduction of the statistical error of $\Delta g/g$ was achieved. Three processes contribute to the cross-section

$$A_{LL}^{h}(x) = R_{LO} D A_{1}^{LO}(x) + R_{PQCD} a_{LL}^{QCDC} A_{1}^{LO}(x_{C}) + R_{PGF} a_{LL}^{PGF} \frac{\Delta g}{g}(x_{g})$$

Simultaneous extraction of $\Delta g/g$, and A_1^{LO}

Extraction based on effective Monte Carlo description of all processes giving the relative weights (R_i) and analyzing powers (a_{LL}^i)

Process weights depends on p_T (at small p_T LO contribution is > 0.95)

$\Delta g/g$ "all p_T " : correlations

Lanhzou 20-24/2014

$\Delta g/g$ "all p_T " : results

 $\Delta g/g\Big|_{\langle x_g \rangle = 0.10}$ $= 0.113 \pm 0.038 \pm 0.035$

$\langle x_g \rangle$	x_g range	$\Delta g/g$	
$x_g = 0.08$	0.04 - 0.13	0.087 ± 0.050	
$x_g = 0.12$	0.07 - 0.21	0.149 ± 0.051	
$x_g = 0.19$	0.13 - 0.28	0.154 ± 0.122	

Accessing TMD PDFs

SIDIS off polarized p, d, n targets

HERMES
COMPASS
JLab $\sigma(\ell p \rightarrow \ell' h X) \sim q(x) \otimes \hat{\sigma}^{\gamma q \rightarrow q} \otimes D_q^h(z)$ future: eN colliders?

hard polarised pp scattering

COMPASS

RHIC

polarised Drell-Yan

 $\boldsymbol{\sigma}(\boldsymbol{\pi}\,\boldsymbol{p} \to \boldsymbol{\mu}\boldsymbol{\mu}) \sim \boldsymbol{\bar{q}}_{\boldsymbol{\pi}}(\boldsymbol{x}_{1}) \otimes \boldsymbol{q}_{p}(\boldsymbol{x}_{2}) \otimes \boldsymbol{\hat{\sigma}}^{\boldsymbol{\bar{q}}\boldsymbol{q} \to \boldsymbol{\mu}\boldsymbol{\mu}}(\boldsymbol{\hat{s}})$

FNAL future: FAIR, JPark, NICA

Few facts:

The measurement of transversity was in the COMPASS 1996

proposal

We propose to measure in semi-inclusive DIS on transversely polarised proton and deuterium targets the transverse spin distribution functions $\Delta_T q(x) = q_{\uparrow}(x) - q_{\downarrow}(x)$, where $\uparrow (\downarrow)$ indicates a quark polarisation parallel (antiparallel) to the transverse polarisation of the nucleon. Hadron identification allows to tag the quark flavour.

The measurement of the Sivers PDF was added to the program soon after ... the other TMD with the developments over the years

Measurements started in 2002 by HERMES (p) and COMPASS (d)

This field has grown considerably in the last years and comes one of high priority measurements for the JLab12 program

Results:

Year		
2005	$A^h_{Siv,d}$, $A^h_{Col,d}$	First ⁶ LiD data
2006	$A^h_{Siv,d}$, $A^h_{Col,d}$	Full ⁶ LiD statistics
2009	$A_{Siv,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$, $A_{Col,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$	Full ⁶ LiD statistics
2010	$A^h_{Siv,p}$, $A^h_{Col,p}$	2007 NH ₃ data
2012	$A_{UT,d}^{sin\phi_{RS}}$, $A_{UT,p}^{sin\phi_{RS}}$	Full ⁶ LiD and NH ₃ statistics
2012	$A^h_{Siv,p}$, $A^h_{Col,p}$	Full NH ₃ statistics
2012	$A_{UT,d}^{sin(\phi_{ ho}-\phi_{S})}, A_{UT,p}^{sin(\phi_{ ho}-\phi_{S})}$	Exclusive ρ^0 production– Full ⁶ LiD and NH ₃ statistics
2013	$dn^h/(dN^\mu dz dp_T^2)$	Unpolarized multiplicities on d
	$A_{IIIId}^{\sin \phi_h}, A_{IIIId}^{\cos \phi_h}, A_{IIIId}^{\cos 2\phi_h}$	Unpol. azimuthal asymm.s
2014	$A_{UT,p}^{\sin\phi_S}$, $A_{LT,p}^{\cos\phi_S}$, $A_{UT,p}^{\sin(2\phi_{\rho}-\phi_S)}$	Excl. ρ^0 production on NH ₃
	$A_{Siv,d}^{g}$	preliminary

Lanhzou 20-24/2014

Test of universality

T-odd character of the Boer-Mulders and Sivers functions

In order not vanish by time-reversal invariance T-odd SSA require an interaction phase generated by a rescattering of the struck parton in the field of the hadron remnant

Time reversal

these functions are process dependent, they change sign to provide the gauge invariance

$$\boldsymbol{h}_{1}^{\perp}(\boldsymbol{SIDIS}) = -\boldsymbol{h}_{1}^{\perp}(\boldsymbol{DY})$$

 $f_{1T}^{\perp}(SIDIS) = -f_{1T}^{\perp}(DY)$

Boer-Mulders

Sivers

Lanhzou 20-24/2014

Q^2 vs x phase space at COMPASS

The phase spaces of the two processes overlap at COMPASS
 → Consistent extraction of TMD DPFs in the same region

Compass Collins and Sivers for different Q² ranges

Lanhzou 20-24/2014

VI Hadron 2014

Mean TMD SSA for the four Q^2

Lanhzou 20-24/2014

The Collins mechanism

Collins angle $\mathbf{k} \times \mathbf{P}_h \cdot \mathbf{S}_T \propto \cos\left(\frac{\pi}{2} - \phi\right) = \sin\phi$ transverse motion of hadron

spin analyzer of fragmenting quark single-spin asymmetry \rightarrow convolution $A_{UT}^{\sin(\phi)} \propto \left[h_1^q \otimes H_1^{\perp q \rightarrow h}\right]$ TMD factorization

[M. Radici, IWHSS2013]

The Di-hadron Fragm. Funct. mechanism

Collins, Heppelman, Ladinsky, NP B420 (94) $\overline{P_1}$ $\overline{\gamma} 2 \mathbf{R}_T \mathbf{P}_h$ k $\mathbf{P}_{hT}=0$ ST collinear! $\mathbf{P}_h \times \mathbf{R}_T \cdot \mathbf{S}'_T \propto \cos(\phi_{\mathbf{S}'_T} - (\phi_{R_T} + \pi/2))$ $= \cos(\pi - \phi_S - (\phi_{R_T} + \pi/2))$ $\sin(\phi_{R_T} + \phi_S)$ azimuthal orientation of hadron pair spin analyzer of fragmenting quark single-spin asymmetry \rightarrow product $A_{UT}^{\sin(\phi_R + \phi_S)} \propto h_1^q(x) H_1^{\triangleleft q \to h_1 h_2}(z, R_T^2)$ Radici, Jakob, Bianconi PR D65 (02); Bacchetta, Radici, PR D67 (03) collinear factorization evolution equations understood Ceccopieri, Radici, Bacchetta, P.L. B650 (07)

Lanhzou 20-24/2014

Interplay between Collins and IFF asymmetries

Hint to a at a common physical origin for the H_1^{\perp} and the H_1^{\triangleleft} as suggested by different models

COMPASS

Sivers asymmetry on deuteron for Gluons

 $A_{UT}^{\sin(\phi_{2h}-\phi_S)}(x) = R_{LO}A_{LO}^{\sin(\phi_{2h}-\phi_S)}(x) + R_{QCDC}A_{QCDC}^{\sin(\phi_{2h}-\phi_S)}(x_C) + R_{PGF}A_{PGF}^{\sin(\phi_{2h}-\phi_S)}(x_g)$

Correlation between azimuthal angle of the gluon ϕ_g and azimuthal angle of the two hadrons ϕ_{2h} (assumption $\vec{p}_g \approx \vec{p}_{h1} + \vec{p}_{h2}$)

Sivers asymmetry on deuteron for Gluons

First extraction of the Sivers function for gluons

 $A_{PGF}^{\sin(\phi_{2h}-\phi_S)}(x_g \approx 0.126) = -0.14 \pm 0.15 \pm 0.06$

Measured asymmetry is small in agreement with expectations

• Based on deuteron COMPASS data, Brodsky and Gardner [Phys.Lett.B643:22-28,2006] foresaw gluon Sivers $f_{1T,g}^{\perp} = 0$

• From the analysis of PHENIX data at mid rapidity, Anselmino et al. [Phys.Rev.D74:094011,2006] put constrains to $f_{1T,a}^{\perp}$ at small x

Lanhzou 20-24/2014

Exclusive ρ⁰ production on p[↑]

Iarger effects for some asymmetries expected for exclusive
operative production, ongoing analysis

Lanhzou 20-24/2014

Physics from hadron beam

Rich program on hadron spectroscopy at COMPASS, search for exotic mesons

- Diffractive resonance production
- Central production

π, K, p beams - 190 GeV : large energy transfer spectrum t Spectrometer : flat acceptance, ECALs/ HCALs, RICH id. charged & neutral channels

Huge statistics

COMPASS

Major progress on analysis Potential for discovery of small intensity new states

Selected results

- Diffractive processes $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{recoil}$
- Pion polarisability $\pi^- \text{Ni} \rightarrow \pi^- \text{Ni} \gamma$ (2009 Primakoff)

Lanhzou 20-24/2014

VI Hadron 2014

13th International Conference Meson-Nucleon Physics and the Structure of the Nucleon September 30th - October 4th 2013, Rome, Italy

Topics:	
Meson-Nucleon Interactio	ns LOCAL ORGANIZI
Hadron Spectroscopy	M. Battaglieri - INFI
Nucleon Structure	A. D'Angelo - Univ. P. Do Vito - DVEN C
Few-Body Systems	A. Pascolini - Univ.
Fundamental Symmetries	G. Salmè - INFN Ro
Electroweak Probes	
Future Facilities and Direc	tions
INTERN	ATIONAL ADVISORY COMM
C. Alexandrou - Univ. of Cyprus	E. Klempt - Univ. of Bonn
M. Anselmino - INFN Turin	B. Meadows - Univ. of Cincinnati
D. Armstrong - W&M, Williamsburg (VA)	U. Meissner - Univ. of Bonn
A. Bracco - Univ. of Milan - NuPECC	S. Nagamiya - J-PARC
N. Brambilla - TUM	T. Nakano - Osaka Univ.
S. J. Brodsky - SLAC	B. Nefkens - UCLA
V. Burkert - Jlab	B. Pasquini - INFN Pavia
5. Eidelman - Novosibirsk	K, Peters - GSI
H. Gao - Duke Univ.	M. Ripani - INPN Genoa
If Compating INTEND AND	A Maharata ANI

LSA Jefferson Lab OCAEN

http://menu2013.roma2.infn.it

P. Rossi - Jlab and INFN-LNF P. Rossi - Jlab and INFN-LNF dati. E. Santopinto - INFN Genoa A. Schader - Univ. of Regensburg M. Soyver - CEA/Saclay H. Stroder- Forschungszentrum Jülic L. Tätter - Mainz Univ. W. van Oers - TRRUMF/Manitoba F. Wang - Narjing Univ. S. Zou - HEP, beijing COMPASS

Diffractive resonance production in $\pi^-p \rightarrow \pi^-\pi^+\pi^-$

P_{recoil}

Partial waves : J^{PC} M^ε [isobar] L

J^{PC}-exotic mesons

Partial Wave Analysis (PWA):

Step 1: In $(M_{3\pi}, t')$ bins, 88 PW, (27 with thresholds) Impose isobar description

Step 2: M_{3π} dependent fits on selected waves, combined fit of t' bins (same mass, width; different background and couplings) Extract resonance parameters

A look to major waves

Good agreement between charged $\pi^-\pi^+\pi^-$ and mixed $\pi^-\pi^0\pi^0$ final states

Lanhzou 20-24/2014

COMPASS

New iso-vector meson $a_1(1420)$

We have identified a new iso-vector axial-vector meson with of $J^{PC} = 1^{++}$, the $a_1(1420)$:

- mass of 1420 MeV/ c^2 , a (rather small) width of 140 MeV/ c^2 .
- Exotic (non- $q\bar{q}$) features since only decay as $f_0(980)\pi$ ($f_0(980)$) superposition of $q\bar{q}$ and $s\bar{s}$ states).

Lanhzou 20-24/2014

Interpretation

The $a_1(1420)$ signal inside the $1^{++}0^+f_0(980)\pi P$ wave has a strength about 100 times less than the main wave, $1^{++}0^+\rho\pi S$ (it can be the reason why escaped detection in previous experiments).

Still unclear the origin; possible

explanations:

- It can be associated with the $f_1(1420)$, an iso-scalar resonance with strong coupling to $K\bar{K}^*$ final state, often interpreted as a molecular state: almost equal masses and similar narrow widths (first time that an isospin partners of exotic states were discovered).
- Another possibility is a dynamic generation through the strong coupling of the systems $a_1(1420), f_0(980)\pi$, and $K\bar{K}^*$.

parediminates		Mass Range	Width Range	PDG V	Values
		$[MeV/c^2]$	$[MeV/c^2]$	$m[{\rm MeV}/c^2]$	Γ [${\rm MeV}/c^2$]
		"Esta	ablished" states		
$a_1(1260)$	1^{++}	1260-1290	360-420	1230 ± 40	250-600
$a_2(1320)$	2^{++}	1312-1315	108-115	$1318.3_{-0.6}^{+0.5}$	107 ± 5
$a_4(2040)$	4^{++}	1928–1959	360-400	1996^{+10}_{-9}	255^{+28}_{-24}
$\pi_2(1670)$	2^{-+}	1635–1663	265-305	1672.2 ± 3.0	260 ± 9
$\pi(1800)$	0^{-+}	1768-1807	212-280	1812 ± 12	208 ± 12
$\pi_2(1880)$	2^{-+}	1900–1990	210-390	1895 ± 16	235 ± 34
States not in PDG summary table					
$a_1(1420)$	1^{++}	1412-1422	130-150	_	—
a'_1	1^{++}	1920-2000	155-255	1930^{+30}_{-70}	155 ± 45
a'_2	2^{++}	1740-1890	300-555	1950^{+30}_{-70}	180^{+30}_{-70}

Pion polarisabilities -Primakoff 2009 data

Polarisabilities: deviation from pointlike particle electric (α) and magnetic (β)

Predictions from Ch PT:

$\alpha_{\pi} + \beta_{\pi}$	=	$(0.2 \pm 0.1) \cdot 10^{-4} \text{fm}^3$
$\alpha_{\pi} - \beta_{\pi}$	=	$(5.7 \pm 1.0) \cdot 10^{-4} \text{fm}^3$
$lpha_{\pi}$	=	$(2.9 \pm 0.5) \cdot 10^{-4} \text{fm}^3$

Experiments inconclusive:

 $\alpha_{\pi} - \beta_{\pi} = 4 - 14 \cdot 10^{-4}$ assuming $(\alpha_{\pi} + \beta_{\pi} = 0)$

At LO, Compton cross section is proportional to $\alpha_{\pi} - \beta_{\pi}$

 $\pi \gamma \rightarrow \pi \gamma$ measured via $\pi Z \rightarrow \pi Z \gamma$

Pion polarisability - result

2009 data $\pi^- Ni \rightarrow \pi^- Ni \gamma$ exclusive reaction

- high resolution vertexing, precise calorimetry, calibrations, alignment
- precise MC description of spectrometer performance,

 $\alpha_{\pi} - \beta_{\pi}$ extracted from comparison of data to MC(pointlike)

COMPASS

Near COMPASS future is defined:

□ 2014-2015: Transversely polarized DY to check pseudouniversality $([f_{1T}^{\perp}(x,Q^2)]_{DY} \approx -[f_{1T}^{\perp}(x,Q^2)]_{SIDIS})$

2016-2017: Unpolarised DVCS/HVMP

(B slope and GPD H)

and unpolarised SIDIS on LH₂

 $dn^h/(dN^\mu dz dp_T^2)$ i.e. p_T dependent multiplicities, and h_{1T}^{\perp} Boer-Mulders TMD PDF

2018 to be discussed having in hand the performances in the previous years

After SIDIS, polarized Drell-Yan to study TMDs

Drell – Yan $\mathbf{\pi} p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$

Cross sections:

COMPASS

In SIDIS: convolution of a TMD with a fragmentation function

In DY: convolution of 2 TMDs

 \rightarrow complementary information and $\sigma^{DY} \propto f_{\overline{u}|\pi^-} \otimes f_{u|p}$ test

Lanhzou 20-24/2014

Why DY πp^{\uparrow} is very favourable at COMPASS?

 σ^{DY} dominated by the annihilation of a valence anti-quark from the pion and a valence quark from the polarised proton

$$\sigma^{\scriptscriptstyle DY} \!\propto\! f_{\overline{u}|\pi^-} \!\otimes\! f_{u|p}$$

Lanhzou 20-24/2014

COMPASS

Competitive experiments atRHIC (STAR, PHENIX) collider $p^{\uparrow\uparrow}p$ Fermilab fixed target $p^{\uparrow\uparrow\Rightarrow}H, pH^{\uparrow\Rightarrow}$ J-PARC fixed target $pp^{\uparrow\uparrow}, \pi p^{\uparrow\uparrow}$ FAIR (PAX) collider $\overline{p}^{\uparrow\uparrow}p^{\uparrow\uparrow}$ NICA collider $p^{\uparrow\uparrow}p^{\uparrow\uparrow}, d^{\uparrow\uparrow}d^{\uparrow\uparrow}$

large acceptance of COMPASS in the valence quark region for p and π where SSA are expected to be larger

COMPASS has the chance to be the first experiment to collect single polarized DY

VI Hadron 2014

18

Drell-Yan setup

EXAMPLES Importance of unpolarized SIDIS For TMDs

- The cross-section dependence from p_T^h results from:
 - intrinsic k_T of the quarks
 - p_{\perp} generated in the quark fragmentation
- The azimuthal modulations in the unpolarized cross-sections comes from:
 - Intrinsic k_T of the quarks
 - The Boer-Mulders PDF

These are difficult measurements requiring to take into account apparatus acceptance

- COMPASS has
 - results on ${}^{6}LiD(\sim d)$ from 2004/6 data
 - No measurements on p since on NH₃ (~p) nuclear effects may be important

• \Rightarrow COMPASS-II, measurements on LH₂ in parallel with DVCS

COMPASS⁶LiD (25% of 2004 data) preliminary

many data collected and still to be collected in SIDIS with GPD program

Lanhzou 20-24/2014

Upgrades of the COMPASS spectrometer

DVCS : $\mu p \rightarrow \mu' p \gamma$

New equipements: > 2.5m LH2 target > 4m ToF Barrel CAMERA > ECAL0

COMPASS

ECAL0

CAMERA recoil proton detector surrounding the 2.5m long LH2 target

10-22012

ECALO

Kinematic domain (Q², x_B) for GPDs

COMPASS

COMPASS unique for GPDs CERN High energy muon beam ✓ 100 - 190 GeV ✓µ^{+↓} and µ^{-↑} available ✓ 80% Polarisation with opposite polarization

> →Lumi= 10³² cm⁻² s⁻¹ with 2.5m LH2 target

√4.6 10⁸ μ⁺

Explore the intermediate x_{Bj} region

 Uncovered region between ZEUS+H1 & HERMES + Jlab
 before new colliders may be available

It's time to show the impact of COMPASS => goal of the 2012 DVCS pilot run **Deeply Virtual Compton Scattering** $d\sigma_{(\mu\rho\to\mu\rho\gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol}$ $+ \rho_{\mu} a^{BH} Re A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$

Phase 1: the transverse imaging

with $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam + unpolarized 2.5m long LH2 (proton) target

$$S_{CS,U} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto d\sigma^{BH} + d\sigma_{unpol}^{DVCS} + K \cdot s_1^{Int} \sin \varphi$$
Using S_{cs,U} and BH subtraction
and integration over ϕ

Transverse imaging $d\sigma^{DVCS}/dt \sim exp(-B|t|)$

2 years of data 160 GeV muon beam 2.5m LH₂ target $\varepsilon_{global} = 10\%$

ansatz at small x_B inspired by Regge Phenomenology:

 $B(x_B) = b_0 + 2 \alpha' \ln(x_0/x_B)$

a' slope of Regge traject

COMPASS **Deeply Virtual Compton Scattering** $d\sigma_{(\mu p \to \mu p \gamma)} = d\sigma^{H} + d\sigma^{DVC}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol}$ + e_u a^{BH} Re A^{DVCS} + e_u Im Phase 1: DVCS experiment to constrain GPD H with $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam + unpolarized 2.5m long LH2 (proton) target

$$\mathcal{D}_{cs,u} \equiv d\sigma(\mu^{+\downarrow}) = d\sigma(\mu^{-\uparrow}) \propto \begin{bmatrix} c_0^{Int} + c_1^{Int} \cos \phi \\ 0 \end{bmatrix} \text{ and } c_{0,1}^{Int} \sim \mathcal{R}_e(\mathcal{F}_1 \mathcal{H})$$

$$\mathcal{S}_{cs,u} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto d\sigma^{BH} + c_0^{DVCS} + K \cdot s_1^{Int} \sin \phi \text{ and } s_1^{Int} \sim Im(\mathcal{F}_1 \mathcal{H})$$

Lanhzou 20-24/2014

Note: dominance of H at COMPASS kinematics

$$Im \mathcal{H}(\xi,t) = H(x = \xi,\xi,t)$$

$$\mathcal{R}e \mathcal{H}(\xi,t) = \mathcal{P} \int dx H(x,\xi,t) = \mathcal{P} \int dx H(x,x,t) + D(t)$$

$$\frac{1}{x-\xi} = \mathcal{R}e \text{ part of the Compton Form Factors linked to the D term}$$

$$VI \text{ Hadron 2014} = 50$$

✓ Vector Meson $\rho^0, \rho^+, \omega, \Phi$

✓ Pseudo-saclar π^0

Using the 2007-10 data: transv. polarized NH₃ target without RPD In a future addendum > 2017: transv. polarised NH₃ target with RPD (phase 2) ✓ the Transverse Target Spin Asymm → GPD E and chiral-odd (transverse) GPDs

More in the FUTURE:

physics item	key aspects of the measurement
glueballs	280 GeV beam, higher intensity, π , K and \bar{p} separation
Е	transversely polarized proton target
h_1^d with same accuracy as h_1^u	transversely polarized deuteron target
f_1^{\perp} evolution	100 GeV and transversely polarized proton target
universality of TMD PDFs	higher statistics with transversely polarized proton target
flavor separation	transversely polarized deuteron target
test of the Lam-Tung relation	hydrogen target
EMC effect in DY	different nuclear targets
_	physics itemglueballsE h_1^d with same accuracy as h_1^u f_1^\perp evolutionuniversality of TMD PDFsflavor separationtest of the Lam-Tung relationEMC effect in DY

For the next 10 years

- before any collider is available,
- and complementary to Jlab 12 GeV

COMPASS@CERN can be a major player in QCD physics using its unique high energy both:

- hadron beam and
- positive and negative muon beams

Looking even further...a polarized leptonnucleon collider well be a mandatory tool

Thank You

6000

-

E EUM

SIDIS x-Section

$$\frac{d\sigma}{dxdydzdP_{hL}^{2}d\varphi_{h}d\psi} = \left[\frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{y^{2}}{2x}\right)\right] \times \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \times \qquad \varepsilon = \frac{1-y-\frac{1}{4}y^{2}y^{2}}{1-y+\frac{1}{2}y^{2}+\frac{1}{4}y^{2}y^{2}}, \ \gamma = \frac{2xM}{Q}$$

$$\left[1 + \cos\varphi_{h} \times \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\sin\varphi_{h}} + \cos(2\varphi_{h}) \times \varepsilon A_{UU}^{\cos(2\varphi_{h})} + \lambda \sin\varphi_{h} \times \sqrt{2\varepsilon(1-\varepsilon)}A_{LU}^{\sin\varphi_{h}} + \frac{1}{2}\right] \times \left[\frac{1 + y + \frac{1}{4}y^{2}y^{2}}{1-\varepsilon}, \ \gamma = \frac{1 + y + \frac{1}{4}y^{2}y^{2}}{1-\varepsilon}\right] + \frac{1 + y + \frac{1}{2}y^{2} + \frac{1}{4}y^{2}y^{2}}{1-\varepsilon}, \ \gamma = \frac{2xM}{Q}$$

$$\left[1 + \cos\varphi_{h} \times \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\varphi_{h}} + \cos(2\varphi_{h}) \times \varepsilon A_{UU}^{\cos(2\varphi_{h})} + \lambda \sin\varphi_{h} \times \sqrt{2\varepsilon(1-\varepsilon)}A_{LU}^{\sin\varphi_{h}} + \frac{1}{2}\right] + \frac{1 + y + \frac{1}{2}y^{2}}{1-\varepsilon}, \ \gamma = \frac{1 + y + \frac{1}{4}y^{2}y^{2}}{1-\varepsilon}, \ \gamma = \frac{2xM}{Q}$$

$$\left[1 + \cos\varphi_{h} \times \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\varphi_{h}} + \cos(2\varphi_{h}) \times \varepsilon A_{UU}^{\cos(2\varphi_{h})} + \lambda \sin\varphi_{h} \times \sqrt{2\varepsilon(1-\varepsilon)}A_{UU}^{\sin\varphi_{h}} + \frac{1}{2}\right] + \frac{1 + y + \frac{1}{2}y^{2}}{1-\varepsilon}, \ \gamma = \frac{1 + y + \frac{1}{4}y^{2}y^{2}}{1-\varepsilon}, \ \gamma = \frac{2xM}{Q}$$

$$\left[1 + \cos\varphi_{h} \times \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\varphi_{h}} + \cos(2\varphi_{h}) \times \varepsilon A_{UU}^{\sin(2\varphi_{h})} + \lambda \sin\varphi_{h} \times \sqrt{2\varepsilon(1-\varepsilon)}A_{UU}^{\cos\varphi_{h}} + \frac{1}{2}\right] + \frac{1 + y + \frac{1}{2}y^{2}}{1-\varepsilon}, \ \gamma = \frac{1 + y + \frac{1}{4}y^{2}y^{2}}{1-\varepsilon}, \ \gamma = \frac{1 + y + \frac{1}{4}y^{2}y^{2}}, \ \gamma = \frac{2xM}{Q}$$

$$\left[1 + \cos\varphi_{h} \times \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\varphi_{h}} + \cos(2\varphi_{h}) \times \varepsilon A_{UU}^{\sin(2\varphi_{h})} + \frac{1}{2}\right] + \frac{1 + y + \frac{1}{2}y^{2}}{1-\varepsilon}, \ \gamma = \frac{1 + y + \frac{1}{4}y^{2}y^{2}}{1-\varepsilon}, \ \gamma = \frac{1 + y + \frac{1}{4}y^{2}}{1-\varepsilon}, \ \gamma =$$

The search for $Z_{C}(3900)$

 $Z_C(3900)$ was recently discovered by the BES-III and Belle Collaborations in $e^+e^- \rightarrow (Z_C^{\pm} \rightarrow J/\psi \pi^{\pm})\pi^{\mp}$ at $\sqrt{s} = 4.26$ GeV

incoming photon with a virtual charged pion provided by the target nucleon (expected $\sigma \sim 50 \div 100$ nb in kinematic region close to COMPASS)

 $Z_{c}(3900)$

Emits on Z_c (3900) **in COMPASS**

Expected mass resolution ~15 MeV/ c^2 (as for $\psi(2S)$ in the spectra of J/ $\psi\pi^+\pi^-$)

Upper limit for $N_{Z_c}^{UL} = 13$, while for the reference process we counted $N_{I/\psi} = 11.6 \times 10^3$

 $\frac{\sigma_{\gamma N \to Z_{\overline{C}}^{\pm}(3900)N} \times BR(J/\psi\pi)}{\sigma_{\gamma N \to J/\psi N}} = \frac{1}{0.5} \cdot \frac{N_{Z_{C}}^{UL}}{N_{\underline{J/\psi}}} < 2.2 \times 10^{-3} \text{ or } \sigma_{\gamma N \to Z_{C}^{\pm}(3900)N} \times BR(J/\psi\pi) < 31 \text{ pb}$

 $\Gamma_{J/\psi\pi} < 1.8 \text{ MeV}/c^2$ since $\Gamma_{tot} = 46 \text{ MeV}/c^2$ What is the main decay mode?

$\sqrt{s_{\gamma N}}$	$\langle \sqrt{s_{\gamma N}} \rangle$,	$\sigma_{Z_c}/\sigma_{J\!/\!\psi} imes$
range (GeV)	GeV	$BR(J/\psi\pi), 10^{-3} \text{ (CL=90\%)}$
Full	13.8	2.2
< 12.3	10.8	7.0
[12.3, 14.1)	13.2	2.2
[14.1, 15.4)	14.7	6.6
≥ 15.4	16.4	4.4

Lanhzou 20-24/2014

LO content

SIDIS

$$\begin{aligned} A_{UU}^{\cos\phi_h} & \propto \quad \frac{1}{Q} \Big(f_1^q \otimes D_{1q}^h - h_1^{\perp q} \otimes H_{1q}^{\perp h} + \cdots \Big) \\ A_{UU}^{\cos 2\phi_h} & \propto \quad h_1^{\perp q} \otimes H_{1q}^{\perp h} + \frac{1}{Q} \Big(f_1^q \otimes D_{1q}^h + \cdots \Big) \\ A_{UT}^{\sin(\phi_h - \phi_S)} & \propto \quad f_{1T}^{\perp q} \otimes D_{1q}^h \\ A_{UT}^{\sin(\phi_h + \phi_S)} & \propto \quad h_1^q \otimes H_{1q}^{\perp h} \\ A_{UT}^{\sin(3\phi_h - \phi_S)} & \propto \quad h_1^{\perp q} \otimes H_{1q}^{\perp h} \end{aligned}$$

$$\begin{array}{ll} A_{U}^{\cos 2\varphi_{CS}} & \propto & h_{1,\pi}^{\perp q} \otimes h_{1,p}^{\perp q} \\ A_{T}^{\sin\left(2\varphi_{CS}-\varphi_{S}\right)} & \propto & h_{1,\pi}^{\perp q} \otimes h_{1}^{q} \end{array}$$

$$\begin{split} A_{LT}^{\cos(\phi_h - \phi_S)} & \propto \quad g_{1T}^q \otimes D_{1q}^h \\ A_{UT}^{\sin \phi_S} & \propto \quad \frac{1}{Q} \Big(h_1^q \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h + \cdots \Big) \\ A_{UT}^{\sin(2\phi_h - \phi_S)} & \propto \quad \frac{1}{Q} \Big(h_1^{\perp q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h + \cdots \Big) \\ A_{LT}^{\cos \phi_S} & \propto \quad \frac{1}{Q} \Big(g_{1T}^q \otimes D_{1q}^h + \cdots \Big) \\ A_{LT}^{\cos(2\phi_h - \phi_S)} & \propto \quad \frac{1}{Q} \Big(g_{1T}^q \otimes D_{1q}^h + \cdots \Big) \\ \end{split}$$

DY

 $A_T^{\sin \varphi_{CS}} \propto f_{1,\pi}^q \otimes f_{1T,p}^{\perp q}$ $A_T^{\sin\left(2\varphi_{CS}+\varphi_S
ight)} \propto h_{1,\pi}^{\perp q} \otimes h_{1T,p}^{\perp q}$

Gluon polarization via PGF: open charm

- Open Charm production
 - $\gamma^* g \rightarrow c\overline{c} \Rightarrow \underline{reconstruct D^0 mesons}$
 - Hard scale: M_c^2
 - No intrinsic charm in COMPASS kinematics
 - No physical background
 - Weakly Monte Carlo dependent
 - Low statistics

LSS: E. Leader, A.V. Sidorov, D.B. Stamenov, arXiv 1010.5742(2010)

- First extraction of △G at NLO
- Charm result can be included in global NLO fits: model independent asymmetries A_{LL}(p_{T,} E_D) available

PRD 87 (2013) 052018 $\Delta G/G(x=0.2) = -0.13 \pm 0.15 \pm 0.15$ COMPASS

Gluon polarization via PGF: high p_T

Caveat:

LO extractions of ΔG/G(x)
Can not directly be compared to NLO fits
Need for reliable NLO for high p_T in COMPASS c.m. energy range...
A_{LL}^{2h}/D(x,p_T) available for Q²>1 data

• High-p_T hadron pairs

- $\gamma^*g \rightarrow q\overline{q} \implies \underline{\text{reconstruct 2 jets or } h^+h^-}$
- Hard scale: Q^2 or Σp_T^2 [$Q^2 > 1$ or $Q^2 < 1$ (GeV/c)²]
- High statistics
- Physical background

• Strongly Monte Carlo dependent

A_{LL}^{1h}(p_T):polarized hadron γ-production

Projections by Jäger et al. for COMPASS with 1 fb⁻¹ (=1/4 COMPASS stat.)

Jäger, Stratmann & Vogelsang: EPJ C44 (2005) 533 So far, only NLO pQCD for polarized case (no resum.)

In perspective: constraining ΔG by $A_{LL}^{1h}(p_T)$ (working on)

Lanhzou 20-24/2014

COMPASS

Collins and Sivers asym.

• T polarized target, SIDIS:

Measure azimuthal asymmetries:

Collins: Outgoing hadron direction & <u>quark transverse spin</u> Sivers: Nucleon spin & <u>quark transverse momentum k_T</u>

at LO:

$$\begin{aligned}
&\text{Collins} \\
&\Delta_{T}q \text{ transverse spin distr.} \\
&\downarrow \\
&A_{Coll} = \frac{\sum_{q} e_{q}^{2} \cdot \Delta_{T}q \otimes \Delta_{T}D_{q}^{h}}{\sum_{q} e_{q}^{2}q \otimes D_{q}^{h}} \quad \text{Collins} \\
&\int_{\text{fragmentation function, depends on spin}} \Delta_{T}D_{q}^{h} \quad \text{Collins} \\
&\int_{\text{fragmentation function, depends on spin}} \Delta_{T}D_{q}^{h} \quad \text{Collins} \\
&\int_{\text{fragmentation function, depends on spin}} \Delta_{T}D_{q}^{h} \quad \text{Collins} \\
&\int_{\text{fragmentation function, depends on spin}} \Delta_{T}D_{q}^{h} \quad \text{Collins} \\
&\int_{\text{fragmentation function, depends on spin}} \Delta_{T}D_{q}^{h} \quad \text{Collins} \\
&\int_{\text{fragmentation function, depends on spin}} \Delta_{T}D_{q}^{h} \quad \text{Collins} \\
&\int_{\text{fragmentation function, depends on spin}} \Delta_{T}D_{q}^{h} \quad \text{Collins} \\
&\int_{\text{fragmentation function, depends on spin}} \Delta_{T}D_{q}^{h} \quad \text{Collins} \\
&\int_{\text{fragmentation function, depends on spin}} \Delta_{T}D_{q}^{h} \quad \text{Collins} \\
&\int_{\text{fragmentation function, depends on spin}} \Delta_{T}D_{q}^{h} \quad \text{Collins} \\
&\int_{\text{fragmentation function, depends on spin}} \Delta_{T}D_{q}^{h} \quad \text{Collins} \\
&\int_{\text{fragmentation function, depends on spin}} \Delta_{T}D_{q}^{h} \quad \text{Collins} \\
&\int_{\text{fragmentation function function, depends on spin}} \Delta_{T}D_{q}^{h} \quad \text{Collins} \\
&\int_{\text{fragmentation function funct$$

Sivers TMD

 $\mu p^{\uparrow} \rightarrow \mu p h^{+/-}$

Quark fragmentation function

 $A_{\text{Siv}} = \frac{\sum_{q} e_{q}^{2} \mathbf{f}_{1\text{Tq}}^{\perp} \otimes D_{q}^{h}}{\sum_{q} e_{q}^{2} q \otimes D_{q}^{h}}$

note: $\Delta_T q$ also measured using "Two hadron" fragmentation function

Collins Asymmetry on p - π , K id.

Correlation between outgoing hadron & <u>quark transverse spin</u> $\rightarrow \Delta_T u \& \Delta_T d$

Agreement HERMES/COMPASS (not shown)

→ no Q² dependence seen (factor of ~3 inQ²)

Now also produced in bins of z and y

Transversity from Collins

Combined analyses of HERMES, COMPASS and BELLE fragm.fct. data

Anselmino et al. arXiv: 1303.3822

Lanhzou 20-24/2014

Sivers Asymmetry on p - π , K id.

Correlation between nucleon spin & quark transverse momentum k_T

VI Hadron 2014

Lanhzou 20-24/2014

Sivers asymmetry on p, x > 0.032

charged pions (and kaons), 2010 data

Lanhzou 20-24/2014

2-hadron asymmetries

Another access to transversity h₁

• Also measured for the first time for K⁺K⁻ , π^+ K⁻ and K⁺ π^- pairs

Other Transverse Target spin asymmetries

 k_T effects \rightarrow modulations in SIDIS cross-section

Major progress in TMD measurement
Powerful tool to understand correlations

 $A_{LT}^{\cos(\varphi_h - \varphi_s)}$ shown as example

$$\mu p \uparrow \rightarrow \mu p h^{+/-}$$

In agreement with HERMES prelim., and with theoretical predictions

Lanhzou 20-24/2014

Spin exotics $J^{PC} = 1^{-+}$

Both analyses show a broad intensity distribution without a clear peak at 1.6 GeV/ c^2 .

However, slow phase motions of about 50 are observed

The region around 1.1 GeV/c^2 (no resonances expected), exhibits fit instabilities.

vs *a*₁(1260)

Spin exotics $J^{PC} = 1^{-+}$

Striking t' dependence of $J^{PC} =$

 $1^{-+} \rho \pi P$ spectrum.

COMPASS

low t' the wave exhibits a broad intensity distribution

Increasing t' the intensity shifts towards higher masses leaving a narrower peak at about 1.6 GeV/ c^2

i.e. spin-exotic influenced by nonresonant contributions (interpretation depends on non-resonant terms modelling)

Green points; modelling of Deck effect

140 days Drell-Yan at COMPASS

Lanhzou 20-24/2014