PVDIS: 6 GeV Results and the SoLID Program

Xiaochao Zheng (郑晓超) (Univ. of Virginia)

August 5th, 2015

PVDIS and electron-quark effective couplings
The 6 GeV PVDIS experiment
PVDIS with SoLID

Three Kinematics Regions of Electron Scattering

"Elastic": W=M_t or M_p (form factors – fourier transformation of the charge distribution in the nucleon)

"Resonance": 1<W<2GeV u

"Deep Inelastic": W>2 GeV, (structure functions, parton distribution functions)

In weak interaction, all elementary fermions behave differently under parity transformation

They have a preferred chiral state when coupling to the Z⁰

Unlike electric charge, need two charges (couplings) for weak interaction: g_L, g_R

or "vector" and "axial" weak charges: $g_V \sim (g_L + g_R) = g_A \sim (g_L - g_R)$

fermions	$g_A^f = I_3$	$g_V^f = I_3 - 2Q\sin^2\theta_W$
$\nu_{_{e}}, \nu_{_{\mu}}$	$\frac{1}{2}$	$\frac{1}{2}$
e-, μ-	$-\frac{1}{2}$	$-\frac{1}{2}+2\sin^2\theta_W$
И, С	$\frac{1}{2}$	$\frac{1}{2} - \frac{4}{3}\sin^2\theta_W$
<i>d</i> , <i>s</i>	$-\frac{1}{2}$	$-\frac{1}{2}+\frac{2}{3}\sin^2\theta_W$

Unlike electric charge, need two charges (couplings) for weak interaction: g_L, g_R

or "vector" and "axial" weak charges: $g_V \sim (g_L + g_R) = g_A \sim (g_L - g_R)$ PVES asymmetry comes from V(e)xA(targ) and A(e)xV(targ)

Effective Couplings in the Standard Model

Unlike electric charge, need two charges (couplings) for weak interaction: g_L, g_R

or "vector" and "axial" weak charges: $g_V \sim (g_L + g_R)$ $g_A \sim (g_L - g_R)$ PVDIS asymmetry comes from: $C_{1q} \equiv 2 g_A^e g_V^q$, $C_{2q} \equiv 2 g_V^e g_A^q$

"electron-quark effective couplings"

Effective Couplings and New Contact Interactions

Unlike electric charge, need two charges (couplings) for weak interaction: g_L, g_R

or "vector" and "axial" weak charges: $g_V \sim (g_L + g_R) \quad g_A \sim (g_L - g_R)$ PVDIS asymmetry comes from: $C_{1q} \equiv 2 g_A^e g_V^q, \quad C_{2q} \equiv 2 g_V^e g_A^q$

"electron-quark effective couplings"

Effective Couplings and New Contact Interactions

Unlike electric charge, need two charges (couplings) for weak interaction: g_L, g_R

or "vector" and "axial" weak charges: $g_V \sim (g_L + g_R) = g_A \sim (g_L - g_R)$ PVDIS asymmetry comes from: $C_{1q} \equiv 2g_A^{e}g_V^{q}, C_{2q} \equiv 2g_V^{e}g_A^{q}$

V-A

"electron-quark effective couplings"

$$C_{1q} = g_{AV}^{e q}, C_{2q} = g_{VA}^{e q}$$

Erler&Su, Prog. Part. Nucl. Phys. 71, 119 (2013)

V-A

Accessing C_{1q,2q}

- Need electron beam on hadronic target
- In elastic PVES
 - directly probes C_{1q}, electrons' parity-violating property;
 - quarks' parity-violation is represented by the nucleon axial form factor G_A , and extracting C_{2q} from G_A is model-dependent
- Only in PVDIS, electron probes the quark and PVDIS asymmetry depends on C_{2q} directly.

Formalism for Parity Violation in DIS

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2} \pi \alpha} [a(x) + Y(y)b(x)]$$

$$x \equiv x_{Bjorken} \qquad y \equiv 1 - E'/E$$

$$q_i^+(x) \equiv q_i(x) + \overline{q}_i(x)$$

$$q_i^-(x) \equiv q_i^V(x) \equiv q_i(x) - \overline{q}_i(x)$$

 $b(x) = \frac{3}{10} \left(2C_{2u} - C_{2d} \right) \left(\frac{u_V + d_V}{u^+ + d^+} \right)$

$$a(x) = \frac{1}{2} g_{A}^{e} \frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma}} = \frac{1}{2} \frac{\sum_{i} C_{1i} Q_{i} q_{i}^{+}(x)}{\sum_{i} Q_{i}^{2} q_{i}^{+}(x)} \qquad b(x) = g_{V}^{e} \frac{F_{3}^{\gamma Z}}{F_{1}^{\gamma}} = \frac{1}{2} \frac{\sum_{i} C_{2i} Q_{i} q_{i}^{-}(x)}{\sum_{i} Q_{i}^{2} q_{i}^{+}(x)}$$
For an isoscalar target
(²H), structure functions
largely simplifies:

$$a(x) = \frac{3}{10} \left(2C_{1u} - C_{1d} \right) \left(1 + \frac{0.6 s^+}{u^+ + d^+} \right)$$

Best Data on C_{1q} (eq AV couplings) from PVES+APV

Androic et al., PRL 111, 141803 (2013);

Projecting to C_{1q} vs C_{2q} (e-q AV vs. VA couplings)

Add E122

and combine them

19

PVDIS at 6 GeV (JLab E08-011)

- Staff: ~700
- User community: ~1300
- Beam first delivered in 10/95
- ~1/3 of US PhDs in Nuclear Physics
- Energy: 6 GeV, 12 GeV ongoing
- The largest superconducting RF accelerator in the world, the highest polarized luminosity.

PVDIS at 6 GeV (JLab E08-011, ran in Oct-Dec. 2009)
Measured two DIS points: Q²=1.085 and 1.901 (GeV/c)²
Collected 170 billion (E9) electrons in total

Students: Xiaoyan Deng, Kai Pan, Diancheng Wang (PhD)

- Postdoc: Ramesh Subedi
- X. Zheng, Hadron 2015

From Measured to Physics Asymmetry (Unblinded in 2012)

Compare to Standard Model?

$$A_{Q^{2}=1.085, x=0.241}^{phys} = -91.10 \pm 3.11 \pm 2.97 \ ppm$$
$$A^{SM} = (1.156 \times 10^{-4}) \Big[\Big(2 C_{1u} - C_{1d} \Big) + 0.348 \Big(2 C_{2u} - C_{2d} \Big) \Big] = -87.7 \ ppm$$

$$A_{Q^{2}=1.901,x=0.295}^{phys} = -160.80 \pm 6.39 \pm 3.12 \, ppm$$
$$A^{SM} = (2.022 \times 10^{-4}) \left[\left(2 C_{1u} - C_{1d} \right) + 0.594 \left(2 C_{2u} - C_{2d} \right) \right] = -158.9 \, ppm$$

Extracting Effective Couplings

$$A_{Q^{2}=1.085,x=0.241}^{phys} = -91.10 \pm 3.11 \pm 2.97 \ ppm$$

$$A^{SM} = (1.156 \times 10^{-4}) [(2C_{1u} - C_{1d}) + 0.348 (2C_{2u} - C_{2d})] = -87.7 \ ppm$$
uncertainty due to PDF: 0.5% 5%
uncertainty due to HT: 0.5%/Q², 0.7ppm

$$A_{Q^{2}=1.901,x=0.295}^{phys} = -160.80 \pm 6.39 \pm 3.12 \ ppm$$

$$A^{SM} = (2.022 \times 10^{-4}) \left[\left(2 C_{1u} - C_{1d} \right) + 0.594 \left(2 C_{2u} - C_{2d} \right) \right] = -158.9 \ ppm$$
uncertainty due to PDF: 0.5% 5%
uncertainty due to HT: 0.5%/Q^{2}, 1.2ppm

X. Zneng, mauron zuro

X. Zneng, mauron 2015

BSM Mass Limit on eq VA contact interaction

32

Coherent PVDIS Program with SoLID @ 11 GeV

SoLID Physics topics:

- PVDIS
- SIDIS
- **9** J/ψ

Coherent PVDIS Program with SoLID @ 11 GeV

Goal on C_{2q} : one order of magnitude improvement over 6 GeV X. Zheng, Hadron 2015

Coherent PVDIS Program with SoLID @ 11 GeV

What do you expect a biologist to get from reading your paper?

Wang et al., Nature 506, no. 7486, 67 (2014);

Marciano., Nature 506, no. 7486, 43 (2014);

Disclaimer: The following slides are for promoting curiosity and new ideas ONLY.

Well, the whole biological world is chiral

Chirality

An object that cannot be superimposed on its mirror image is called chiral

For physicists: do you know the difference between chirality and helicity?

X. Zheng, Hadron 2015

All living organisms contain almost only 'left-handed' amino-acids and 'right-handed' sugars

pharmaceuticals must be chirally correct to work.

Well, the whole biological world is chiral

Chirality

An object that cannot be superimposed on its mirror image is called chiral

Physicists are studying the same thing - chirality of elementary particles!

X. Zheng, Hadron 2015

All living organisms contain almost only 'left-handed' amino-acids and 'right-handed' sugars

(Only spiderman has lefthanded DNAs)

ŌH ŌH

pharmaceuticals must be chirally correct to work.

Why is the whole world chiral?

How does parity violation "show up" in the macroscopic world?

Why is the whole world chiral?

How does parity violation "show up" in the macroscopic world?

Chirality contributes to complexity of molecules, which is essential for the origin of life.

Why is the whole world chiral?

How does parity violation "show up" in the macroscopic world?

Symmetry in the macroscopic world comes from symmetry in the underlying building blocks and interactions. So what is the cause of the chiral structure of our biological world? Could it be explained from physics? Could it come partially from parity violation?

How does parity violation affect the macroscopic world?

Summary and Perspectives

The 6 GeV PVDIS from JLab:

- Improved world data on the eq VA effective coupling term 2C_{2u}-C_{2d} by factor of five
- agrees with the SM
- showed $2C_{2u}$ - C_{2d} is 2σ from zero indicating a nonzero contribution to PVDIS asymmetry due to quark's chirality preference
- BSM mass limits complimentary to collider experiments.

"New construction" experiments at JLab 12 GeV:

• Will improve C_{2q} by another order of magnitude.

Subedi et al, NIM-A 724, 90 (2013); Wang et al., PRL 111, 082501 (2013); Wang et al., Nature506,no.7486, 67 (2014); <u>long paper accepted by Phys. Rev. C.</u>