DE LA RECHERCHE À L'INDUSTRIE

Jefferson Lab's Generalized Parton Distributions program & new γ / π⁰ results !

F. Sabatié – CEA Saclay

Introduction

Generalized Parton Distributions

 $\square ep \rightarrow ep(\gamma/\pi^0)$ to access GPDs

□ New DVCS analysis & results

D New π^0 analysis & results

□ The JLab GPD program at 12 GeV

□ Summary & Conclusion

CEA-Saclay

Generalized Parton Distributions

 $(x + \xi)$ and $(x - \xi)$: longitudinal momentum fractions of quarks

The structure of the nucleon can be described at leading-twist by

4 chiral-even Generalized Parton Distributions : $H, \widetilde{H}, E, \widetilde{E}(x, \xi, t; \mu_F^2)$ 4 chiral-odd $H_T, \widetilde{H}_T, E_T, \widetilde{E}_T(x, \xi, t; \mu_F^2)$ > They enter the $\gamma^* p \to (\gamma \text{ or } M) p$ amplitude

as convolution integrals : no direct access

> Forward limit
$$(t=\xi=0)$$
 of H and \widetilde{H} : PDFs

> First moment in x : Form Factors

> Second moment of (H+E) when $t \rightarrow 0\,$: total angular (Ji's sum rule) momentum

 δz_{1} xp b_{1} z_{1} b_{1} b_{1} z_{1} b_{1} b_{1} $b_$

> Interpretation Burkardt, Diehl, ...

Deep Exclusive Processes Parton distributions in both coordinate and momentum space

Deeply Virtual Compton Scattering

- **u** Theory is under control : up to α_S^2 , twist-3, target mass corrections, etc.
- Sensitive to the quark combination : $\frac{4}{9}u + \frac{1}{9}d + \frac{1}{9}s$

Müller et al, Braun et al, ...

 $(x + \xi)P$

 $(1+\xi)P$

GPD

- At Jefferson Lab energies, mostly sensitive to valence quarks
 Moutarde, Pire,
 F.S., Wagner, ...
- Actually sensitive to gluon GPDs at NLO or beyond (even at somewhat large x)
- □ At LO, direct access the GPDs on the line $x = \xi$ through Beam Spin Asymmetries sensitive to the interference with known Bethe-Heitler process Diehl, Gousset, Pire, Ralston, ...

- □ Many channels available for flavor separation (ρ^0 , ρ^+ , π^0 , π^+ , ϕ , ...)
- □ J/ Ψ and ϕ access gluon GPDs. Surprises with the π^0 (later in this talk)
- Theory less under control : convolution with (unknown) meson WF,

potentially slow scaling, large power and NLO corrections

 $(1-\xi)P$

The DVCS Amplitude : Compton Form Factors

5

In the one-photon exchange approximation of QED,

the BH, DVCS and interference parts of the $e\!p
ightarrow e\!p\gamma$ cross section read :

Diehl et al

Experiment	Observable	Normalized CFF dependence
CLAS	$A_{ m LU}^{-,\sin\phi}$	$\mathrm{Im}\mathcal{H} + 0.06\mathrm{Im}\mathcal{E} + 0.21\mathrm{Im}\widetilde{\mathcal{H}}$
	$A_{ m UL}^{-,\sin\phi}$	${ m Im}\widetilde{\mathcal{H}}+0.12{ m Im}\mathcal{H}+0.04{ m Im}\mathcal{E}$
	$A_{\mathrm{UL}}^{-,\sin 2\phi}$	$\mathrm{Im}\widetilde{\mathcal{H}} - 0.79\mathrm{Im}\mathcal{H} + 0.30\mathrm{Im}\mathcal{E} - 0.05\mathrm{Im}\widetilde{\mathcal{E}}$
HALL A	$\Delta \sigma^{\sin \phi}$	$\mathrm{Im}\mathcal{H} + 0.07\mathrm{Im}\mathcal{E} + 0.47\mathrm{Im}\widetilde{\mathcal{H}}$
	$\sigma^{\cos 0 \phi}$	$1+0.05 \mathrm{Re}\mathcal{H}+0.007\mathcal{H}\mathcal{H}^*$
	$\sigma^{\cos\phi}$	$1 + 0.12 \mathrm{Re}\mathcal{H} + 0.05 \mathrm{Re}\widetilde{\mathcal{H}}$

Kroll, Moutarde, F.S., EPJC73 2278 (2013)

Cez

$$\frac{d^4\sigma}{dtd\phi dQ^2 dx_B} = \frac{1}{2\pi} \Gamma_{\gamma^*}(Q^2, x_B, E_e) \left[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{TL}}{dt} \cos(\phi) + \epsilon \frac{d\sigma_{TT}}{dt} \cos(2\phi) \right]$$

$$\Gamma_{\gamma^*}(Q^2, x_B, E_e) = \frac{\alpha}{8\pi} \frac{Q^2}{M^2 E_e^2} \frac{1-x_B}{x_B^3} \frac{1}{1-\epsilon}$$

$$\epsilon = \frac{1-y - \frac{Q^2}{4E_e^2}}{1-y + \frac{y^2}{2} + \frac{Q^2}{4E_e^2}}$$

Factorization proven for L cross section only.

 $\frac{d\sigma_L}{dt}$ is mostly sensitive to \widetilde{H} :

$$\frac{d\sigma_L}{dt} \propto \frac{1}{Q^6} \left[(1 - \xi^2) \left| \left\langle \widetilde{H} \right\rangle \right|^2 + \dots \right]$$

However, exciting results in the last few years

- Hall A and CLAS π⁰ un-separated cross section data overshoot chiral-even GPD models by a factor ~10 (Figure: Hall A data, similar findings at CLAS)
- Q^2 dependence is too large for γ_L - π transition and actually compatible with a γ_T - π transition (Hall A)

Hard π^0 electroproduction: higher-twist trick?

Goloskokov, Kroll, EPJA, 47:112 (2011) See also: Ahmad, Goldstein, Liuti, PRD79 054014 (2009)

Explanation: chiral-odd GPD may contribute to transverse part

HADRON'15, DKU

Hard π^0 electroproduction: higher-twist trick?

F. Sabatié – CEA Saclay

Cez

HADRON'15, DKU

Cea

Jefferson Lab Hall A DVCS/ π^0 experiment

Two run periods:

F. Sabatié – CEA Saclay

HADRON'15, DKU

Trigger formed by 1 electron in Hall A Left HRS (99% pure) + 1 cluster above 1GeV in calo

 $ep
ightarrow ep \gamma \; {
m process}$ selected by a cut on the missing mass of the $e \gamma X$ system

Significant π^0 background subtracted using π^0 data of the very same experiment (not MC !) Some accidentals to subtract as well (out-of-time events)

Trigger formed by 1 electron in Hall A Left HRS (99% pure) + 1 cluster above 1GeV in calo

 $ep
ightarrow ep \gamma\,$ process selected by a cut on the missing mass of the $e\gamma X$ system

Significant π^0 background subtracted using π^0 data of the very same experiment (not MC !) Some accidentals to subtract as well (out-of-time events)

DVCS cross section extraction

$x_B = 0.37, \quad Q^2 = 2.36 \text{ GeV}^2, \quad t = -0.32 \text{ GeV}^2$

Extraction of CFF and cross sections :

Fit of the the harmonic structure including kinematic dep., convoluted with MC acceptance to the data (parameters = a choice of CFFs)

$$d^4\sigma = \mathcal{T}_{\mathsf{BH}}^2 + \mathcal{T}_{\mathsf{BH}}\mathcal{R}e(\mathcal{T}_{\mathsf{DVCS}}) + \mathcal{T}_{\mathsf{DVCS}}^2$$

$$\begin{split} \mathcal{R}e(\mathcal{T}_{\text{DVCS}}) &\sim c_0^{\mathcal{I}} + c_1^{\mathcal{I}} \cos \phi + c_2^{\mathcal{I}} \cos 2\phi \\ \mathcal{T}_{\text{DVCS}}^2 &\sim c_0^{\text{DVCS}} + c_1^{\text{DVCS}} \cos \phi \end{split}$$

$$\Delta^{4}\sigma = \frac{d^{4}\overrightarrow{\sigma} - d^{4}\overleftarrow{\sigma}}{2} = \mathcal{I}m(\mathcal{T}_{\text{DVCS}})$$
$$\mathcal{I}m(\mathcal{T}_{\text{DVCS}}) \sim s_{1}^{\mathcal{I}}\sin\phi + s_{2}^{\mathcal{I}}\sin 2\phi$$

F. Sabatié – CEA Saclay

HADRON'15, DKU

Cross sections at Q²=2.3 GeV²

KM10a: parametrization adjusted on HERA & CLAS asymmetries (Kumericki, Mueller, 2010) TMC: Target-Mass Corrections (up to Twist-4) (Braun, Pirnay, Manashov, Mueller, 2014)

HADRON'15, DKU

Cross sections at Q²=1.9 GeV²

Significant deviation from BH, significant deviation from pure Leading-Twist models STRONG HINTS: **DVCS² is large**, and **higher-twists** are at play at Jefferson Lab

F. Sabatié – CEA Saclay

Most accurate DVCS cross section data set available

Beam energy: 5.8 GeV Beam Polarization: 75-85% Integ. Luminosity: 45 fb⁻¹ 2nd half of data under analysis

cea

Trigger: 1 good electron (TOF, CC, EC)

Fully Exclusive Analysis: add 1 good proton (TOF) + 1 photon in IC or EC (no track, $\beta \approx 1$)

 $ep \rightarrow ep\gamma$ exclusivity cuts in the case where the photon is detected in the IC

CLAS DVCS cross section results

arXiv:1504.02009

110 bins ! $Q^2=1 - 4.6 \text{ GeV}^2$ $x_B = 0.1 - 0.58$ $-t = 0.09 - 0.52 \text{ GeV}^2$

- Large kinematic domain
- Data compatible with most models
- Another ½ data set being analyzed

CLAS Target Spin Asymmetry A_{UL}

Inclusive electron trigger (99% pure) using Hall A Left HRS Require two clusters in the calorimeter

 $ep
ightarrow ep \pi^0 \,$ process cleanly selected by dual cut on $\, \gamma \gamma \,$ integration $\,$

invariant mass and *p* missing mass

Extraction of all the (unpolarized) responses by a simultaneous fit to the 2 beam energies

627

Extraction of all the (unpolarized) responses by a simultaneous fit to the 2 beam energies

C22

Large dominance of transverse cross section

TL-interference term found with opposite sign !?

 $d\sigma_{TI}/dt$ for Q²=1.75 GeV² and x_B=0.36 40 nbarn.GeV⁻² 30 20 10 -10 -20 -30 -40 0.02 0.04 0.06 0.08 0.2 0.1 0.12 0.14 0.16 0.18 0.22 t_{min}-t (GeV²)

Shaded area: 2% normalization uncertainty

Solid line: GK11 model (described earlier)

Dashed line: Goldstein-Liuti model (waiting for updated values)

TT-interference term found large

0.22

CLAS π^0 electroproduction results (un-separated)

> Data set in large kinematical domain

- > Large cross section,Large TT interference term
- > Compatible with Hall A results

- $\sigma_U = \sigma_T + \epsilon \sigma_L$ drops by a factor of 2.5 for η
- σ_{TT} drops by a factor of 10
- The GK GPD model (curves) follows the experimental data
- Global consistency with π^0 and η results very satisfying

CLAS Preliminary η/π^0 ratio

- The dependence on x_B and Q^2 is very weak.
- Chiral odd GPD models predict this ratio to be ~1/3 at CLAS kinematics
- Chiral even GPD models predict this ratio to be around 1 (at low –t).

Cea

Pinning down the valence GPDs at JLab12

Halls A & C

Precision measurements Very high Q² and x_B Rosenbluth separation

Hall B CLAS12

Large kinematical range Polarized targets (L/T) Nuclear targets

• Exciting times for DVCS in the valence region :

New analysis of 2004 Hall A DVCS data

→ Strong hint of a significant DVCS² and *Higher-Twist* contributions

New DVCS cross section data from CLAS

All these data will have a **huge** impact on global fits

 More data expected **soon** from Hall A 2010 data: Rosenbluth study to confirm large DVCS²

 Finally, Hall A gave proof that transverse π⁰ cross section is dominant Consistent π⁰ data from Hall A and CLAS (+ η) Cross sections are well described by GK model using Transversity GPDs and *Twist-3* pion wave function
 → Direct access to the elusive chiral-odd GPDs

• An **exciting future** ahead

12 GeV experiments at JLab A/B/C (Hall A experiment already started)

and then an exciting program at EIC to pin down gluon/sea quark GPDs

New analysis of 2004 data

What's new :

- Improved Monte Carlo simulation
- □ Improved treatment of Radiative Corrections
- □ Improved understanding of normalization (inclusive trigger)
- $\hfill\square$ Improved understanding of π^0 data for subtraction
- Improved systematic studies

Re-analysis of full data set, but in addition :

- Analysis of Q²=1.9 GeV² unpolarized cross section (only 2.3 GeV² in 2004)
- □ Analysis of x_B -dependence of cross section (only Q² dependence in 2004)

PhD Student : Maxime Defurne (CEA Saclay)

2004 analysis kinematics

Kin	Q^2	x_B
	$({\sf GeV}^2)$	
1	1.5	0.36
2	1.9	0.36
3	2.3	0.36

Additional kinematics

Name	$Q^2 \; (\text{GeV}^2)$	x_B
KinX2	2.1	0.4
KinX3	2.1	0.34

cea

Analysis of unpolarized Q²=1.9GeV² cross section

Spatial efficiency of the π^0 subtraction

Building on π^0 analysis published in Fuchey et al., Phys.Rev. C83 025201 (2011)

Efficient π^0 subtraction zone defined by *fiducial cut* at the surface of the calorimeter

Correction of Kin2 cross section is now possible !

Upgraded Monte-Carlo techniques : Improved agreement in the fiducial area between data and MC

F. Sabatié – CEA Saclay

HADRON'15, DKU

Systematic uncertainty	Value
HRS acceptance cut	1%
Electron ID	0.5%
HRS multitrack	0.5%
Multi-cluster	0.4%
Corrected luminosity	1%
Fit parameters	1%
Radiative corrections	2%
Beam polarization	2%
Total (helicity-independent)	2.8%
Total (helicity-dependent)	3.4%

Systematic Uncertainties : Exclusivity

Comparison with models : Q²=1.9 GeV², t=-0.23 GeV²

cea

HADRON'15, DKU