A_1^n/d_2^n Measurement with JLab 12 GeV

Jie Liu

University of Virginia

Outline

- Introduction
- Jlab 12GeV A_1^n/d_2^n Experiment
- Jlab Polarized ³He Target Upgrade
- Summary

08/04/2015

For Hadron 2015, Kunshan, China

Jie Liu <jie@jlab.org>

1

Electron Scattering

• Invariant Mass
$$W^2 = M^2 + 2M\nu - Q^2$$

- Four momentum transfer squared $Q^2 = -q^2$
- Bjorken variable $x = Q^2/2M\nu$ for fixed target

 g_1, g_2 : polarized nucleon Spin structure function

$$\frac{d^2\sigma}{d\Omega dE'} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left(\alpha F_1(x,Q^2) + \beta F_2(x,Q^2) + \gamma g_1(x,Q^2) + \delta g_2(x,Q^2)\right)$$

08/04/2015

For Hadron 2015, Kunshan, China

Structure Functions

 \Box At the Bjorken limit, F_1 , F_2 and g_1 related to

$$F_{1}(x) = 1/2 \sum_{i} e_{i}^{2} (q_{i}^{\uparrow}(x) + q_{i}^{\downarrow}(x)) \qquad F_{2}(x) = 2xF_{1}(x)$$
$$g_{1}(x) = 1/2 \sum_{i} e_{i}^{2} (q_{i}^{\uparrow}(x) - q_{i}^{\downarrow}(x))$$

- No simple interpretation for g_2 in naive parton model
- g_2 can be separated into leading and higher-twist components :

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \overline{g_2}(x,Q^2)$$

$$\overline{g_2}(x,Q^2) = -\int_x^1 \frac{\partial}{\partial y} \left[\frac{m_q}{M} h_T(y,Q^2) + \varsigma(y,Q^2) \right] \frac{dy}{y}$$

- $h_T(y,Q^2)$: from quark transverse momentum contribution, suppressed by nucleon mass
- $\varsigma(y, Q^2)$: from quark gluon interaction

08/04/2015

For Hadron 2015, Kunshan, China

What is A_1

□Virtual photon-nucleon asymmetry Photon Spin Nucleon Spin Opposite helicity $\sigma_{1/2}$ Same helicity $\sigma_{3/2}$ $A_{1} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{g_{1} - \gamma^{2}g_{2}}{F_{1}} \approx \frac{g_{1}}{F_{1}} \quad \text{at large } Q^{2} \qquad \gamma^{2} = \frac{Q^{2}}{\nu^{2}} = \frac{4M^{2}x^{2}}{Q^{2}}$

□ Flavor decomposition to obtain $\Delta u/u$ and $\Delta d/d$ in the large x valence quark region from A_I^p , A_I^n

08/04/2015

For Hadron 2015, Kunshan, China

What is d_2

□ The 2nd moment of a sum of the spin structure functions

$$d_2(Q^2) = \int_0^1 x^2 \left(2g_1(x, Q^2) + 3g_2(x, Q^2) \right) dx = 3 \int_0^1 x^2 \left(\overline{g_2}(x, Q^2) \right) dx$$

- d₂ is the average transverse Lorentz color force acting on a quark immediately after being struck by a virtual photon
- □ Can be calculated in lattice QCD
- d₂ is a clean probe of higher twist effects, quantify quark-gluon correlations.

08/04/2015

More Neutron A_1 and d_2 Data Needed

• Various Model predictions eg. pQCD predicts $\lim_{x\to 1} A_I^n(x, Q^2) = 1$ Basic SU(6) model $A_I^n = 0$

X. Zheng et al., PRL **92**, 012004 (2004) D.S.Parno, PLB 744 (2015) 309-314

- discrepancy between data and theories at average $Q^2 \approx 5 \text{ GeV}^2$
- Need large x

M.Posik et al., PRL 113, 022002 (2014)

08/04/2015

A_1^n/d_2^n Measurement

- Polarized ³He target Effective polarized neutron target
- A_1 : through the double-spin asymmetries

$$A_1 = \frac{1}{D(1+\eta\xi)}A_{\parallel} - \frac{\eta}{d(1+\eta\xi)}A_{\perp}$$

• d_2 : through the measurement spin dependent cross sections differences

$$\widetilde{d_2} = x^2 (2g_1 + 3g_2) = \frac{MQ^2 v}{4\alpha^2} \frac{Ex^2 (4 - 3y)}{E'(E + E')} \left[\left(\frac{(4 - y)}{(1 - y)(4 - 3y)\sin\theta} - \cot(\theta) \right) \Delta \sigma_{\perp} + \Delta \sigma_{\parallel} \right]$$

• Here $\Delta \sigma_{\parallel} = \sigma^{\downarrow\uparrow} - \sigma^{\uparrow\uparrow}$ and $\Delta \sigma_{\perp} = \sigma^{\downarrow\Rightarrow} - \sigma^{\uparrow\Rightarrow}$

□ Experiments approved in JLab 12 GeV:

- A_I^n Hall A (E12-06-122) and A_I^n Hall C (E12-06-110)
- d_2^n Hall C (E12-06-121)

08/04/2015

E12-06-110: A_I^n At 12 GeV

- Approved with A rating 36 days in Hall C
- Electron beam 11 GeV, $P_{beam} = 0.85$
- ³He target: 60cm length, pol = 60%, 3% uncertainty, at $60\mu A$ beam

- Use HMS + SHMS simultaneously
- Push to high x, up to 0.77

Spokespeople: G. Cates J.-P. Chen Z.-E. Meziani X. Zheng

08/04/2015

E12-06-122: A₁ⁿ At 12 GeV

- Approved with A- rating 23 days in Hall A
- Electron beam 6.6, 8.8 GeV, $P_{beam} = 0.8$
- ³He target: 40cm length, pol = 65%, 3% uncertainty, at $30\mu A$ beam
- Third set of Q^2 values for interpolation

- BigBite: Primary measurement
- LHRS: Cross-check (lower statistics)
- Test of open-geometry measurement technique

Spokespeople:

- T. Averett
- G. Cates
- N. Liyanage
- G. Rosner
- B. Wojtsekhowski
- X. Zheng

08/04/2015

E12-06-122: d_2^n At 12 GeV

- Approved with A- rating 29 days in Hall C
- Electron beam 11 GeV, $P_{beam} = 0.8$
- ³He target: 40cm length, pol = 55%, 3% uncertainty, at $30\mu A$ beam
- Directly Measure at 4 constant Q2 values

- SHMS: large x range at nearly constant Q2
- HMS: fill in gaps at low x< 0.5

Spokespeople: T. Averett W. Korsch Z.-E. Meziani B. Sawatzky

08/04/2015

For Hadron 2015, Kunshan, China

Polarized ³He target

□Why ³He target

- Polarized targets essential for nucleon spin structure study
- Free neutrons, short lifetime < 15 minutes

□How to polarize ³He Target

- Spin-exchange optical pumping (SEOP)
 - Polarize the alkali metal atoms
 - Exchange spin with ³He

 \Box 6GeV era: In-beam target polarization 60% with 5% uncertainty at 15 μ A

08/04/2015

For Hadron 2015, Kunshan, China

2000 2002 2004 2006

Year

An Effective Polarized

> Neutron Target

> > SLAC

E154

Figure of Merit (µA)

E142

35% @ fei

Figure of Merit ≡ (Target Polarization)² × Beam Current

E94-01

Jefferson Lab

E06-010 60% @ 15 μA

2008

E02-013

³He target Upgrade

□Firstly upgrade the target with a factor of 2~3 in FOM of the best achieved, to satisfy A_1^n -Hall A (d_2^n -Hall C) requirements/plan:

- 30 uA on 40 cm convection cell, 60% in beam, 3% polarimetry
- Use transversity setup with convection cell
 - Uniform polarization between target and pumping chambers
 - \rightarrow 60% achievable
 - \rightarrow Eliminate diffusion uncertainty
- Pulsed NMR, calibrated with EPR and AFP NMR/water ,
- k₀ measurements (UVa and W&M)

• Secondly upgrade to meet the need for A₁ⁿ in Hall C

08/04/2015

For Hadron 2015, Kunshan, China

³He Convection Speed Test

Convection can be much fast than diffusion (~40mins)

Convection from pumping chamber A to target chamber: ~1 min Convection from pumping chamber A, through target chamber, back to B: ~8 mins

08/04/2015

For Hadron 2015, Kunshan, China

AFP Loss Study

NMR Amplitude Versus Time: Red (up) Green (down)

NMR Amplitude Versus Time: Red (up) Green (down)

AFP Loss Per Sweep	Target Chamber	Pumping Chamber
AFP Without Convection	0.16%	0.72%
AFP With Convection	0.85%	0.87%

08/04/2015

For Hadron 2015, Kunshan, China

Jie Liu <jie@jlab.org>

14

³He target Upgrade

³He Target Polarimetry

□Adiabatic Fast Passage (AFP) - NMR

- AFP-NMR works for both 3He and water
- AFP loss significant for longer/larger cell due to field gradient
- Will not work for metal target chambers or hybrid glass/metal cells

Electron Paramagnetic Resonance (EPR)

EPR will still work

Pulsed NMR

- Send a pulse tuned at Larmor Frequency
- Spin presses tipping from holding field
- $\theta_{tip} = \frac{1}{2} \gamma H_1 t_{pulse}$
- Spin components orthogonal to holding field,
- Have free-induction-decay, Amplitude $\propto M_z \sin(\theta_{tip})$ •

Pulsed NMR @JLab

□ Pulsed NMR Set Up

08/04/2015

For Hadron 2015, Kunshan, China

Jie Liu <jie@jlab.org>

16

Summary

The JLab 12GeV A_1^n / d_2^n experiments will push kinematics to large x and cover a wide Q^2 region

- test pQCD and Lattice QCD
- probe higher-twist effects/quark gluon correlation
- Explore nucleon spin structure
- Explore Q^2 evolution
- □ Polarize ³He Target R&D in progress

Goal: full system ready for 12GeV A₁ⁿ -Hall A experiment by 2016

08/04/2015

For Hadron 2015, Kunshan, China

Thanks