

Electromagnetic Calorimeters (EC) for SoLID

FENG Cunfeng Shandong University

On behalf of the SoLID EC Working Group

Contents:

- Structure of EM Cal.
- Simulation performance
- Prototype study

Hadron 2015, Duke Kunshan University August 3-7,2015

SoLID EC Coverage

Play multiple roles, provide key e/π separation and triggering

	θ(deg)	z (cm)	R(cm)	P (GeV/c)	Μαχ π/ε	Area (m²)
PVDIS FAEC	22 - 35	(320,380)	(110,265)	2.3 - 6	~200	~ 18.3
SIDIS FAEC	8 - 14.8	(417,475)	(105,230)	1 - 7	~200	~ 13.6
SIDIS LAEC	16.3 - 24	(-65,-5)	(83,140)	3-6	~20	~ 4.0

EC Design Requirements

- 1. Provide trigger: Shower portion coincidence with LGCC, suppress background
- 2. Electron-hadron separation:
 - → >50:1 π rejection above Cherenkov threshold (~4) to 7GeV/c;
 - Electron efficiency > 95%;
- 3. Provide shower position to help tracking/suppress background $\sigma \sim 1 \text{ cm}$
- 4. Radiation resistance: > (4-5)×10⁵ rad
- 5. B~1.5 T
- 6. high neutron background
- 7. Modules easily swapped and rearranged for PVDIS \leftrightarrow SIDIS;

Design Consideration 1: Longitudinal

- Preshower: 2X₀ lead + 20mm scintillator
- Shower: 0.5 mm Pb/1.5mm scintillator sampling
- Total length: 20X₀ (<2% leakage)</p>

Design Consideration 2: Lateral

Design Consideration 2: Lateral

- Hexagon preferred by support design: 100cm² → 6.25cm side
- Aluminum support before Preshower and Shower; May need carbon fiber between Preshower and Shower to minimize effect on PID.

Design Consideration 3: Radiation Dose

Design Consideration 4: Fiber Choice

WLS fibers	Kuraray Y11	Saint Gobain BCF91A, BCF92 (faster)
wavelength	~420 → 494nm	~430 → 476nm
1/e length	>3.5m	>3.5m
mechanical property	less bending loss	
radiation hardness	13% light loss at 100krad (30% at 700krad)	15% light loss at 100krad (50% at 700krad)
light yield		2-3 times less than Y11
Clear fibers	Kuraray clear-PSM	Saint Gobain BCF98

Will use Y11 for Preshower and FASPD, BCF91A for Shower; Clear fiber yet to be tested.

SPD: scintillator pad detector

- SPD help to reduce calorimeter based trigger rates for high energy charged particles
- ✓ Only in SIDIS, include forward angle SPD (FASPD), and Large argle SPD (LASPD) R=230cm FASPD (240 pieces) (4 sizes, 60 pieces each) 1mm wide, 6mm deep grooves R=98cm 44.4 35.6 28.823.2 6.0 deg 15.00cm 23.0cm 9.80cm 12.12cm 18.56cm LASPD couple to light guide (60 pieces) R=83cm 6 deg

14cm

R=140cm

8.3cm

Performance Simulation — Offline PID

Performance Simulation — PID, SIDIS LAEC

Background

Performance — PID, SIDIS

Most inner radius region shown - worse case situation

Forward Calorimeter

* Intrinsic * W/ Background

Performance - PID, PVDIS

Background rate significantly higher

Performance – PID, PVDIS (high γ)

 Background worsens PID. Will require full waveform recording if better PID is desired.

Performance Simulation — Online Triggering

Performance — Triggering SIDIS, LAEC, electron trigger

Most inner radius region shown - worse case situation

threshold: 2.6 GeV \rightarrow 3 GeV momentum

Performance — Triggering SIDIS, FAEC

Performance — Triggering SIDIS, FAEC MIP trigger

Pion trigger: 2-sigma below MIP Coincidence with SPD to suppress bkg trigger rate

Performance — **Triggering** PVDIS, higher photon background region

Pre-R&D: Prototyping

Pre-R&D: LASPD prototype testing

- Setup: "3-bar" setting (Ref FTOF12 testing), 5x5x30cm EJ200 reference bars, PMT R9779
- Results: 58ps for reference bars, 98ps for 2-cm LASPD (two-side readout). [Single-side readout expected to be ~(84-170)ps, looking for further testing with tracking.]

LASPD with 55 degree fishtail light guide

LASPD Counter (83 cm to 140 cm x 2 cm x 57 cm)

LASPD Gounter (83 cm to 140 cm s 2 cm x 57 cm) after TWD and GOD cuts-

LASPD prototype test in SDU

LASPD(Kedi) couple to PMT directly.

LASPD prototype test in SDU

Number of photon electron for MIP (each bin size 1cm*1cm). Signal read from left.

Relative response time. Signal read from left.

Time delay found in the left up and down corner due to multiple reflection.

Pre-R&D: preshower prototype testing

- Tested: IHEP, Beijing Kedi, CNCS (similar yield)
- WLS fiber: Y11, BCF91A(55% relative), BCF92(35% relative)
- wrapping: printer paper, Tyvek 1055B(10% higher), Al-mylar (17% higher)
- Fiber routing: optimized to double φ -1mm fiber, 2.5 turns each
- Test results (printer paper, Y11, 2x 2.5-turn): ~80 p.e. for all samples

•To do:

ofiber connector design;

•PID simulation with 40 p.e. (after fiber connector and 2-m long clear fiber)

Pre-R&D: Shashlyk Prototyping

Physicist's design": use 6x 2.5-mm dia brass or stainless steel rods to support all layers, fix to 6mm-thick Al endcaps using hex nuts.

Skeleton of Shashlyk tile.

SDU has provided initial funding for 4 shashlyk prototypes.

Primary idea for pressure testing. The shashlyk module is inside the pressure module. The endcap plate of the pressure module is little big, six ϕ 6mm rods will provide the pressure. Seven pressure meters on the top of shashlyk to monitor the pressure.

scintillator Production

Vendor	polymer base	light yield anthracene	Price for preshower mass production (20mm)
Russia IHEP	polysterene	40% from CERN data	\$216k tot + 30%, or \$156 each
高能科迪科技有限 公司 (Kedi)	unknown (but looks the same as CNCS)	40% from UVa data	(\$100)*1800=\$180k, or \$100 each w/o overhead
中核控制系统工程 有限公司 (CNCS)	ST401 phenylethene	40%	(\$100)*1800=\$180k, or \$100 each w/o overhead
Eljen Technology	EJ200 polyvinyltoluene	64%	[\$77 (no groove)/\$204 (grooved)] *1800; or \$204 each
Saint Gobain Crystal	BC408 polyvinyltoluene	64%	\$430x2 no groove

Workshop of Kedi (科迪) company

Can provide 400k pieces (for all modules) shashlyk scintillators within 5 months by using molds.

The "New" Component - 3D Printing

- Three existing 3D printing methods:
 - ✤ FDM
 - Resin-printing (polyjet)
 - metal sintering
- We have already experimented with Polyjet-printing scintillators [G. Ron (Hebrew U.), W. Deconinck (W&M)]
 - Published results show plausible light yield (30% of commercial polysterene-based scintillators, currently improving compound design, comparable to commercial, need more study)
 - Need mechanical data to see if they are suitable for shashlyk Ecal construction

http://arxiv.org/abs/1406.4817

Potentials of 3D Printing

fast and cost-effective prototyping;

- "easy" construction of projective shape modules;
- may provide better layer thickness uniformity (~10-20 μm, better than injection molding) → better energy resolution;
- possible simplification of assembly process.

Construction plan

- SDU(China): Preshower+FASPD construction/testing, PMT testing, possibly Shower construction
- UVa: LASPD, and Preshower+FASPD construction/testing, possibly Shower construction, general installation
 - W&M: MAPMT testing, general construction and installation
- LANL: general construction and installation

Welcome more man power join us !

SoLID EM calorimeter has been well defined

- EM calorimeter has the capability to provide PID, trigger and position
- Prototype study have started

Thanks for your attention!

Backup Slides

Performance — Triggering SIDIS, trigger rates (whole EC)

region	FAEC	LAEC		
rate entering the EC (kHz)				
e^-	93.4	18.7		
π^{-}	$5.36 imes 10^3$	$1.55 imes 10^4$		
π^+	$5.96 imes10^3$	$1.66 imes 10^4$		
$\gamma(\pi^0)$	1.52×10^5	$2.43 imes 10^5$		
$e(\pi^0)$	$6.52 imes 10^3$	$2.04 imes 10^3$		
p	$1.86 imes 10^3$	$6.16 imes 10^3$		
elec	tron trigger ra	te (kHz)		
e^-	74.2	11.68		
π^{-}	500	5.16		
π^+	548	5.12		
$\gamma(\pi^0)$	896	12.5		
$e(\pi^0)$	43	0.14		
p	109	2.15		
sum	2170	36.75		
M	MIP trigger rate (kHz)			
e^-	93.4			
π^{-}	5240			
π^+	5800			
$\gamma(\pi^0)$	6760			
$e(\pi^0)$	772			
p	1732			
sum	2×10^4			

Performance — Triggering PVDIS, trigger rates (whole EC)

region	full	high	low	
rate entering the EC (kHz)				
e^{-} (DIS)	413	148	265	
π^{-}	$5.1 imes 10^5$	$2.7 imes 10^5$	$2.4 imes 10^5$	
π^+	$2.1 imes 10^5$	$1.0 imes 10^5$	$1.2 imes 10^5$	
$\gamma(\pi^0)$	$8.4 imes 10^7$	4.2×10^7	$4.3 imes 10^7$	
p	$5.5 imes 10^4$	$2.4 imes 10^4$	$3.1 imes 10^4$	
sum	$8.5 imes 10^7$	4.2×10^7	$4.3 imes 10^7$	
trigger rate for $p > 1$ GeV (kHz)				
e^{-} (DIS)	321	80	231	
π^{-}	$4.8 imes 10^3$	$3.4 imes 10^3$	$1.4 imes 10^3$	
π^+	0.28×10^3	$0.11 imes 10^3$	$0.17 imes10^3$	
$\gamma(\pi^0)$	4	4	0	
p	$0.18 imes 10^3$	$0.10 imes 10^3$	$0.08 imes 10^3$	
sum	$5.6 imes 10^3$	$3.7 imes 10^3$	$1.9 imes 10^3$	
trigger rate for $p < 1$ GeV (kHz)				
sum	$(3.1 \pm 0.7) \times 10^3$	$(1.6 \pm 0.4) \times 10^3$	$(1.5 \pm 0.4) \times 10^3$	
Total trigger rate (kHz)				
total	$(8.7 \pm 0.7) \times 10^3$	$(5.3 \pm 0.4) \times 10^3$	$(3.4 \pm 0.4) \times 10^3$	

Shashlyk Production (IHEP)

- Mold: \$30k x 2 (scintillator), \$15k (lead); plus
- \$1270 per module, see below
- Same prototyping and mass production
- Not including 30% overhead

Component	Cost per module
Scintillator	\$200
Lead	\$240
flanges, nuts	\$230
assembly	\$320
add fiber mirror, testing	\$110

Prototyping (8 modules): \$55k+30%, plus fiber (\$2,961) Mass production: \$2,361k + 30% = \$3,069k, plus fiber

Shashlyk Production (Alternate)

Component	3 modules	8 modules	1800 modules
scintillator (Kedi)	\$10k	\$27k	\$1k×1800=\$1.8M
lead (Kolgashield)	\$7,776	\$17k	\$488k
paper (Kolgashield)	\$1,152	\$2.5k	\$130k
flanges, nuts, rods	\$600	\$1.6k	\$150×1800=\$270k
fiber mirror, testing	?		
Total w/o assembly	\$19.5k	\$48.1k	\$2,688k

Chinese vendors: only Kedi can do injection molding

Total: \$2.7M + overhead (20% for SDU, varies for US manpower only)+ assembly + fiber

Forward

Photon-rejection scintillator response

SPD Segmentation

 Starting point: 60 azimuthal segments for LASPD to provide the required 10:1 photon rej; 60 azimuthal x 4 radial for FASPD to provide 5:1;

EC PMT Choice

Guide light to low-B region to be read by PMTs

- Shower: 100xφ 1mm fibers → φ-1in PMT (good area match), Hamamatsu R11102, custom divider with x5 preamp, 3E4
 PMT gain, dynamic range 45mV(MIP) - 1.5V(e- max)
- Preshower: (4)x φ 1mm fiber → 16-ch MAPMT, Hamamatsu R11265-100-M16, 8E3 PMT gain limited by anode current (1/10 of max), require x50 preamp, range 9mV(MIP) -260mV(e- max)

• Working with JLab detector group on PMT base/preamp design