STAR Heavy Flavor Tracker (HFT) and HFT+ Upgrade Plan

Xin Dong Lawrence Berkeley National Laboratory for the STAR Collaboration

1

STAR Physics Program

Cold QCD

Hot QCD

Study QCD Emergent Properties

Heavy Quarks for Measuring sQGP Properties

Heavy quarks created at early stage of HIC, and sensitive to the partonic rescatterings

Heavy quark collectivity/flow – more sensitive to thermalization and medium transport properties

Experimental Challenges

<u>Direct</u> - f - k - s - r combir	- throug ull charme hard to trigg maller bra heed precis hatorial bac - dN _{ch} /d	gh exclusive d hadron kine ger nching ratios sion vertex de ckground $\eta \sim 700$ in cent	channels $c\tau \sim 123 \ \mu m$ collisions $c\tau \sim 123 \ \mu m$ $c\tau \sim 123 \ \mu m$ $c\tau \sim 123 \ \mu m$ $c\tau \sim 123 \ \mu m$	
	Hadron	Abundance	c τ (μm)	c
	D ⁰	56%	123	
	D+	24%	312	KEE S
	D _s	10%	150	D ⁰
	$\Lambda_{\sf c}$	10%	60	no second s
	B+	40%	491	K / π+
	B ⁰	40%	456	

4

Heavy Flavor Tracker for STAR

HFT Design

• HFT consists of 3 sub-detector systems inside the STAR Inner Field Cage

	Detector	Radius (cm)	Hit Resolution R/φ - Z (μm - μm)	Thickness	
	SSD	22	30 / 860	1% X ₀	
	IST	14	170 / 1800	1.32 %X ₀	
	PIXEL	8	6.2 / 6.2	~0.52 %X ₀	
		2.8	6.2 / 6.2	~0.39% X ₀	

> **SSD** existing single layer detector, double side strips (electronic upgrade)

IST one layer of silicon strips along beam direction, guiding tracks from the SSD through PIXEL detector - proven pad technology

PIXEL double layers, 20.7x20.7 mm pixel pitch, 2 cm x 20 cm each ladder, 10 ladders, delivering ultimate pointing resolution. - new active pixel technology

Monolithic Active Pixel Sensors (MAPS) - PXL

MAPS pixel cross-section (not to scale)

Properties:

- Standard commercial CMOS technology
- Sensor and signal processing are integrated in the same silicon wafer
- Signal is created in the low-doped epitaxial layer (typically ~10-15 $\mu m) \rightarrow MIP$ signal is limited to <1000 electrons
- Charge collection is mainly through thermal diffusion (~100 ns), reflective boundaries at p-well and substrate

MAPS and competition	MAPS	Hybrid Pixel Sensors	CCD
Granularity	+	-	+
Small material budget	+	-	+
Readout speed	+	++	-
Radiation tolerance	+	++	-

7

Some pixel features and specifications

Pointing resolution	(12 ⊕ 19GeV/p·c) μm			
Layers	Layer 1 at 2.8* cm radius			
	Layer 2 at 8 cm radius	critical		
Pixel size	20.7 μm X 20.7 μm		and difficult	
Hit resolution	6.2 μ m rms			
Position stability	8 μm (30 μm envelope)			
Radiation thickness per	X/X ₀ € 0.39% Al-cable			
layer	0.52% Cu-sable fac		ore than a ctor of 3 better	
Number of pixels	360 M ti		nan hybrid	
· · · · · · · · · · · · · · · · · · ·		ve	rtex detectors	
Integration time				
(affects pileup)	186 μs			
Radiation requirement	20-90 kRad			
Rapid detector replacement	< 12 Hours			

HFT Commission and Operation in STAR

2013 May 2013 Sept 2014 Jan 2014 Jan-Feb 2014 March

2014 Sept

- PXL prototype engineering run with 3 sectors (out of 10 in total)
- IST, SSD fully installed into STAR
- PXL fully installed into STAR (within 12 hours)
- cosmic runs for detector commissioning, data for alignment calibration
- Commissioning in Au+Au 200 GeV collisions. Physics mode since then
- HFT project closeout. Project finished on time and under budget

STAR HFT – first application of MAPS pixel detector at a collider

9

Detector Hit Efficiency and Noise

Goal: > 98% at 10^{-4} noise rate

Efficiency measured with cosmic ray data - ~ 97.2% average efficiency over all sensors

Pointing Resolution and D⁰ from Au+Au Collisions

Physics datasets collected with STAR-HFT

	Beam Species	Data sets	Physics goals	
2014	Au+Au 200 GeV	1.2B minbias	D-meson v ₂ , R _{cp}	
2015 Al-cable	p+p 200 GeV	1.1B minbias, 12 pb ⁻¹	D-meson R _{AA} baseline	
	p+Au 200 GeV	0.5B minbias, 42 nb ⁻¹	D-meson R _{pA}	
2016* Al-cable	Au+Au 200 GeV	2B minbias, 1 nb ⁻¹	Λ_{c} , bottom, D-meson v ₂ , R _{AA}	
	Au+Au 62.4 GeV	1B minbias	\sqrt{s} dependent D-meson v ₂ , R _{cp}	

* 2016 requests accommodated by the STAR Beam-Use-Request

Physics Goals with HFT

HF-II Program at 2020+ for Bottom Production

- verify CNM for precision interpretation of Upsilon suppression

HFT+ Upgrade for Bottom Production Measurements

Next generation fast MAPS sensors – integration time reduced from 186µs to <20µs *R&D projects under development for ALICE ITS upgrade*

Detector capable of being operated at high luminosity with good efficiency CAD projected L at 2020+ is 100x10²⁶ cm⁻²s⁻¹(ZDCx rate ~ 100kHz)

Preserve high detection efficiency in high luminosity environment

Physics Projection with STAR-HFT+

Curves – average of calculations from TAMU, Duke and CUJET

HFT+: aimed for precision open bottom measurements at RHIC - flavor dependent energy loss

- cleaner extraction of medium transport properties D_{HQ}

15

Summary

STAR Heavy Flavor Tracker (HFT)

- first application of MAPS pixel detector at a collider
- fully in operation and meet all performance goals
- physics results anticipated precision charm measurements

STAR HFT+

- next generation fast MAPS pixel detector
- aim for open bottom measurements at 2020+ period

	2014	2015	2016	2017	2018	2019	2020	2021	2022+
RHIC	STAR HFT PHENIX (F)VTX Precision charm		Spin		BES-II		STAR HFT+ sPHENIX Open bottom		
LHC	LS1	R	un 2 (x1)	0 statist	ics)	L	52	ALICE IT CMS/ATLA Run 3 (x10	S upgrade S upgrades 0 statistics)

Backups

Heavy Quarks to Probe Medium Thermalization

> Heavy quarks created at early stage of HIC, and sensitive to the partonic rescatterings.

Heavy quark collectivity/flow to experimentally quantify medium thermalization.

HQ propagation in QCD medium – Brownian Motion, described by Langevin Equation dp_i η_D / ξ – drag/diffusion coefficients $=\xi_i(t)-\eta_D p_i$ related to the medium transport properties 18

Heavy Quark Production in p+p Collisions

Charm/bottom hadron spectra well described by pQCD calculations (FONLL, MC@NLO etc.) - Similar for data at Tevetron, HERA etc.

Data precision provides inputs to constrain pQCD calculations

- R.E. Nelson et al, PRC 87(2013)014908

A Comparative Look on RHIC vs. LHC

Pixel Geometry

Intermediate Silicon Tracker (IST)

Silicon Strip Detector (SSD)

Uniqueness of HFT:

Fine pixel granularity provides ultimate hit resolution Thin detector design allows precision measurements down to low p_T State-of-art mechanical design retains detector stability Full azimuthal acceptance allows high statistics correlation measurements

HF measurements at RHIC – not just complementary to those at LHC

Uniqueness of HF measurements at RHIC

Heavy quarks are calibrated probes at RHIC - predominately created via initial gluon-gluon hard scatterings.

Heavy quarks are mostly created through the leading order 2->2 process at RHIC – clean physics interpretation of results, particularly correlation measurements.

- HFT to separate B decay J/ ψ from prompt J/ ψ
- \bullet MTD to reconstruct J/ ψ from di-muon decays

- MTD unique measurement of $e\text{-}\mu$ correlation
- HFT+MTD systematic measurement of e-e, e- μ , μ - μ with controlled charm contributions

Charm to Probe Nucleon/Nucleus Structure

Charm production

Sensitive to gluon distribution functions.

➤ A sensitive probe of low x gluons and QCD at an Electron lon Collider (201?/202?).

K.Kurek, Spin Workshop @LBL 2009

Heavy Flavor to Probe Gluon Spin Structure

 $W^+ \rightarrow c + \overline{s}$ higher decay B.R. than semi-leptonic decays

W reconstruction via full di-jets (one charm jet) - explored by UA1

Heavy flavor jet – intrinsic HF PDF in nucleon/nucleus

- Heavy flavor jet – good probe to study the hot QCD medium properties

Key Instruments

Pixel Silicon Detector at LHC/RHIC experiments

	ATLAS	CMS	ALICE	PHENIX	STAR
Sensor tech.	Hybrid	Hybrid	Hybrid	Hybrid	MAPS
Pitch size (µm²)	50x400	100x150	50x425	50x425	20x20
Radius of first layer (cm)	5.1	4.4	3.9	2.5	2.8
Thickness of first layer	~1%X ₀	~1%X ₀	1%X ₀	1%X ₀	0.4%X ₀

* physics results from PHENIX/STAR discussed here don't include data from silicon pixel detectors

A) How do energetic heav	A) How do energetic heavy quarks lose energy in sQGP medium?					
R _{AA} (h) ~ R _{AA} (e) ~ R _{AA} (D) < R _{AA} (J/ψ ^B) at high p _T - described by pQCD calculations including collisional and radiative energy loss - only revealed with heavy quark measurements						
<u>B) How do charm quark fl</u>	<u>ow?</u>					
low-intermediate p _T :						
"bump" structure in F	R. (D) at RHIC	– hint of charm flow + coalescence				
$v_2(D) \sim v_2(\pi)$ at LHC		 indication of large charm flow 				
C) Can we extract the medium transport properties (e.g. D _{HO})?						
Theory: Need to u	unify different models	– diff. in initial cond., medium evolution etc.				
Experiments Precision	Experiments: Precision data					
Future Measurements:						

- Precision charmed hadron data (particularly v_2) over a broad momentum range
- Open bottom production over a broad momentum range
- Heavy quark correlations

Calibration of charm/bottom total cross section Cold nuclear matter effects Next generation MAPS sensors with much shorter integration time (< 20 μ s)

Goals:

- precision charmed hadron (D^0, $\Lambda_c)$ measurements down to low p_T

- open bottom measurements

