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Tab	  and	  nucleon	  structure:	  	  
more	  components,	  more	  interesMng	  
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T0z	  :	  momentum,	  ~	  50%	  by	  the	  gluon	  
	  
Tzz	  :	  momentum	  flow,	  =	  ???	  
	  
Tz0	  :	  energy	  flow,	  =	  ???	  
 

   

!
Ptotal = d 3xψ + 1

i

!
Dψ +∫ d 3x

!
E ×
!
B∫



Even	  the	  momentum	  alone	  can	  be	  tricky!	  
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!̂
Pq = d 3xψ + 1

i

!
Dpureψ∫

!
Pg = d 3xEi

!
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Pg = d 3x
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E ×
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 Pg →

2ng

2ng + 3nf

PN ∼
1
2

PN (nf = 5) vs Pg →
ng

ng + 6nf

PN ∼
1
5

PN (nf = 5)

New Tab	   can give new pictures!  
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Jaffe-Manohar [NPB337:509 (1990)]
!
J total = d 3xψ + 1

2

!
Σψ∫ + d 3x!x ×ψ + 1

i

!
∇ψ +∫ d 3x

!
E ×
!
A∫ + d 3x!x × Ei

!
∇Ai∫

Ji [PRL78:610 (1997)],  Chen-Wang [CTP27:212 (1997)]
!
J total = d 3xψ + 1

2

!
Σψ∫ + d 3x!x ×ψ + 1

i

!
Dψ∫ + d 3x!x ×

!
E ×
!
B( )∫

Chen-L""u-Sun-Wang-Goldman [PRL100:232002 (2008); 103:062001 (2009)]
!
J total = d 3xψ + 1

2

!
Σψ∫ + d 3x

!
x ×ψ + 1

i

!
Dpureψ +∫ d 3x

!
E ×
!
Aphys∫ + d 3x

!
x × Ei

!
Dpure Aphys

i∫

Tab	  and	  Spin:	  Sq	  +	  Lq+	  Sg+	  Lg	  =	  1/2	  



Symmetric  
Tab	  =Tba	  : 

Canonical  
Tab	  ≠Tba	  : 

  
!r ×
!
P =
!
J

   
r ×

P =

L,    

J =

L +

S

The	  Key	  issue： Tab	  =Tba	  or	  Tab	  ≠Tba 

   Example :  
!
J = !r × (

!
E ×
!
B)?
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PrimiMve	  physics	  with	  Tab 

   


F = G

mG MG

r 2

̂r  ⇒ Rµν − 1
2

Rgµν = −8πGTG
µν

   


F = mI

a  ⇒ f µ =
dpI

µ

dτ
 for a particle

∂νTI
νµ  for a field

⎧

⎨
⎪

⎩
⎪
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Canonical:    pi =
∂L(qi , qi )

∂ qi

,    H = pi qi − L

By Nother's theorem: TC
µν (x) =

∂L(φi ,∂µφi )

∂(∂µφi )
∂νφi − gµν L

Symmetric:  Θµν (x) = 1

−g

δ I M

δ gµν (x)
(needed by Einstein)

Awkwardness：Symmetry	  and	  gauge	  variance 
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Conserved Tab	  and its “arbitrariness” 

   

∂µT µν = 0⇒ Pν ≡ T 0ν dV∫

T µν = T µν + ∂ρ B[ρµ]ν ⇒ ∂µ
T µν = 0

Pν ≡ T 0ν dV∫ = (T 0ν + ∂ρ B[ρ0]ν )dV∫ = Pν

1.	  Different	  Tab,	  same	  conservaMon	  laws	  
and	  conserved	  4-‐momentum	  

2.	  InerMal	  Tab	  is	  unfixed：       	  
9    f

µ = ∂νTI
νµ = ∂ν !TI

νµ



	  Constrains	  on	  Tab	  from	  	  
quantum	  measurement	  (new!)	  

10 

If a quantum wave is in mutual eigenstates 
of more than one observables, then the 

associated currents must be proportional 
to each other 

   

E.g. :  
!
jE ∝
!
jpi

∝
!
jsi
∝
!
jq

Ĥψ = Eψ , P̂iψ = piψ , Ŝiψ = siψ ,Q̂ψ = qψ
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The	  Symmetric	  Tab	  stands	  no	  chance! 

But the canonical Tab	  is not fully OK 

  

TC
µν (x) =

∂L(φa ,∂µφa )
∂(∂µφa )

∂νφa − gµν L

TC
i0 =

∂L(φa ,∂µφa )
∂(∂iφa )

∂0φa ,   TC
ii(x) =

∂L(φa ,∂µφa )
∂(∂iφa )

∂iφa + L
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An	  improved	  Tab:	  free	  field	  

   

Trevised
µν =

∂L(φa ,∂µφa )
∂(∂µφa )

!
∂νφa ,  

!
∂ν ≡ 1

2

"
∂ν −
#
∂ν( )

TC
µν =

∂L(φa ,∂µφa )
∂(∂µφa )

∂νφa − gµν L

   

Trevised
µν = −F µρ

!
∂ν Aρ

TC
µν = −F µρ ∂ν Aρ +

1
4

gµν F 2

Tsymm
µν = −F µρ Fν

  ρ +
1
4

gµν F 2

E.g. photon 
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	  Proof	  of	  validness	  (general	  free	  fields)	  

  

L(φa ,∂µφa ) is quadratic in and ∂µφ  (φ,  φ *independent)

= ∑a

1
2

∂L
∂φa

φa +
∂L

∂(∂ρφa )
∂ρφa

⎛

⎝
⎜

⎞

⎠
⎟ = ∑a

1
2
∂ρ

∂L
∂(∂ρφa )

φa

⎛

⎝
⎜

⎞

⎠
⎟

TC
µν = ∂L

∂(∂µφa )
∂νφa − gµν L,   Trevised

µν = TC
µν + ∂ρ B[ρµ]ν

B[ρµ]ν = ∑a

1
2
∂ρ gµν ∂L

∂(∂ρφa )
φa − g ρν ∂L

∂(∂µφa )
φa

⎛

⎝
⎜

⎞

⎠
⎟
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Proof	  of	  validness	  (parMcular	  free	  fields)	  

  

L = 1
2
∂µφ ∂

µφ − 1
2

m2φ 2 ,    (∂µ∂
µ + m2 )φ = 0

L = 1
2
∂µ (φ ∂µφ)− 1

2
φ ∂µ∂

µφ 1
2

m2φ 2 = 1
2
∂µ (φ ∂µφ)

L = − 1
4

Fµν F µν ,    ∂µ F µν = 0

L = − 1
4

(∂µ Aν − ∂ν Aµ )F µν

= − 1
4

∂µ ( Aν F µν )− ∂ν ( AµF µν )⎡⎣ ⎤⎦ +
1
4

Aν ∂µ F µν − Aµ ∂ν F µν⎡⎣ ⎤⎦

= − 1
2
∂µ ( Aν F µν )
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	  Experimental	  test	  -‐I：momentum	  flux	  (radiaMon	  pressure!)	  

   
Trevised

µν = −F µρ
!
∂ν Aρ ,TC

µν = −F µρ ∂ν Aρ +
1
4

gµν F 2 ,Tsymm
µν = −F µρ Fν

  ρ +
1
4

gµν F 2

   
!
A = !ey sin(kxx + kz z −ωt)+ sin(−kxx + kz z −ωt)⎡⎣ ⎤⎦ =

!ey cos(kxx)sin(kz z −ωt)

  

Trevised
z0   = TC

z0 = Tsymm
z0  =kzω[1+ cos(2kxx)]

Trevised
zz   =k 2

z[1+ cos(2kxx)]

TC
zz = Tsymm

zz  =kz
2[1+ cos(2kxx)]+ kx

2 cos(2kxx)

Observable Effects! Backward 
flow 
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	  SchemaMc	  set	  up	  

   
!
A = !ey sin(kxx + kz z −ωt)+ sin(−kxx + kz z −ωt)⎡⎣ ⎤⎦ =

!
ey cos(kxx)sin(kz z −ωt)

  

T z0 =kzω[1+ cos(2kxx)],   Trevised
zz   =k 2

z[1+ cos(2kxx)]

TC
zz = Tsymm

zz  =kz
2[1+ cos(2kxx)]+ kx

2 cos(2kxx)
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BRIEF REPORTS PHYSICAL REVIEW A 85, 035804 (2012)

FIG. 1. (Color online) The scheme of the problem we considered.
The K system attached in the input field with its propagation direction
along the z axis. The K′ system attached in the detection plane with
its normal along the z′ axis. The input field is tilted by an angle θ

to be incident on the detection plane. The y axis in the K system is
parallel to the y ′ axis in the K′ system (y∥y ′).

and ψ
q
p (ξ )|p=0 = ψq(ξ ) = (q + 1) arctan ξ , Eq. (3) becomes

U (x,y,z) ∝ e−jqφ

w(ξ )

[
r

w(ξ )

]|q|
exp

[
− r2

w2
0(1+jξ )

−jψq(ξ )
]

.

(4)

In the case of p = 0, the intensity distribution of the light
field is a function of r only independent of φ. In particular, the
light field carries the spiraling phase front of e−jqφ and then
the optical OAM of qh̄.

With the Maxwell’s equations, the electric field E and
magnetic field B satisfy E = jωA + j (c2/ω)∇(∇ · A) and
B = ∇ × A, respectively. Under the paraxial limit and the
Lorenz gauge, we have

E ∝
{
αU êx +βU êy + j

[
∂(αU )

∂x
+ ∂(βU )

∂y

]
êz

}
exp(−jkz),

(5a)

B ∝
{
−βU êx +αU êy − j

[
∂(βU )

∂x
− ∂(αU )

∂y

]
êz

}
exp(−jkz),

(5b)

where êx , êy , and êz stand for the unit vectors in the directions
of the x, y, and z axes. For the sake of convenience, let
U (x,y,z) = u (x,y,z) e−jqφ . With Eq. (5), the time-averaged
momentum density P ∝

[
(E∗ × B) + (E × B∗)

]
can be classi-

fied into three transverse components (P(1)
⊥ , P(2)

⊥ and P(3)
⊥ ) and

a longitudinal component (P∥) as follows:

P(1)
⊥ ∝ j (u∇⊥u∗ − c.c.) + σ∇ × (u∗uêz), (6a)

P(2)
⊥ ∝ u∗u[j (α∇⊥α∗ + β∇⊥β∗ − c.c.) + ∇ × (σ êz)], (6b)

P(3)
⊥ ∝ 2u∗u∇⊥(qφ), (6c)

P∥ ∝ 2kuu∗êz. (6d)

Here a parameter σ = j (αβ∗ − α∗β) also denotes the distri-
bution of states of polarization or SAM [23].

Here we concentrate on the following two cases. (i) When
α and β are both spatially invariant, the light field described by

Eq. (2) combining with Eq. (4) is a homogeneously polarized
field. For instance, σ ≡ 0, +1, and −1 indicate the lin-
ear, right-circular and left-circular polarizations, respectively.
(ii) When α and β (or σ ) are spatially varying, the light fields
we are concerned about are the vector fields [23–25], which are
classified into two subcases. (a) When α and β are real-valued
functions, the light fields are locally linearly polarized vector
fields (such as a radially or azimuthally polarized field).
(b) When α and β are the spatially varying complex-valued
functions, the light fields are the vector fields with distribution
of the variant SAM.

Homogeneously polarized fields with spiraling phase front.
In this case, α and β are both spatially invariant, the light field
described by Eqs. (2) and (4) is a homogeneously polarized
field and carries the optical OAM of qh̄. Clearly, P(2)

⊥ ≡ 0 in
Eq. (6). Substituting Eq. (4) into Eq. (6) except for Eq. (6b)
and transforming P to the K′ system using Eq. (1), we obtain
the z′ component of P′ when x ′ = 0 and z′ = 0,

P ′
z′ (0,y ′,0) ∝ y ′2|q|e−2y ′2/w2

0

×
[

1 + tan θ

k

(
2σy ′

w2
0

+ q

y ′ − σ |q|
y ′

)]
. (7)

When q = 0, the result will be back to that in Ref. [20].
Due to I ′

z′ (0,y ′,0) ∝ P ′
z′ (0,y ′,0), by using the definition of the

intensity barycenter of the beam as follows:

⟨y ′⟩ ∝
∫ +∞
−∞ y ′P ′

z′ (0,y ′,0)dy ′
∫ +∞
−∞ P ′

z′ (0,y ′,0)dy ′
, (8)

we obtain the shift ⟨y ′⟩ in the y ′ direction,

⟨y ′⟩ ∝ σ
tan θ

2k
+ 2q

tan θ

2k
. (9)

It can be seen that the transverse shifts described by the first
and second terms in the right side of Eq. (9) originate from
the contributions of SAM and OAM carried by the light field,
respectively.

Under the conditions of λ = 532 nm and w0 = 10.2 µm,
the numerical results are shown in Fig. 2. When the homo-
geneously polarized field carries SAM (+h̄,0, − h̄ implying
σ = +1,0, − 1) while no OAM (q = 0), the dependence of the
shift ⟨y ′⟩ on the tilted angle θ is shown in Fig. 2(a). When the
homogeneously polarized fields carry simultaneously SAM
(+h̄,0, − h̄) and OAM (10h̄, i.e., q = 10), the shifts are shown
as a function of the tilted angle θ in Fig. 2(b). It is found that
the shift caused by SAM is too small and the shift caused
by the combination of SAM and OAM can be very large as
OAM (q) enlarges. Figure 2(c) plots the dependence of the
ratio ⟨y ′⟩qσ=0/⟨y ′⟩q=0

σ=+1 on q at θ = 45◦, where ⟨y ′⟩qσ=0 and
⟨y ′⟩q=0

σ=+1 are the shifts caused by OAM and SAM. The result
reveals ⟨y ′⟩qσ=0/⟨y ′⟩q=0

σ=+1 ≡ 2q. The above results reveal the
fact that the orbital angular momentum originating from a
spiraling phase front with an azimuthal phase gradient can
cause a shift in addition to (and independent of) the shift
caused by the spin.

Vector fields without spiraling phase front. When α and
β are spatially variant (σ is spatially variant), the light field
described by Eq. (2) is a vector field [23–25]. To generate the

035804-2

the polarization of the beam itself, and that a linearly
polarized beam splits into its two left- and right-circularly
polarized components. It is worth noting that since the two
noncollinear axes z and z0 define uniquely a ‘‘plane of
incidence,’’ then the barycenter of the tilted beam is shifted
in a direction orthogonal to such plane of incidence. In this
respect, this effect has the flavor of the spin Hall effect of
light. However, here the split or shift has a purely geomet-
ric origin being generated by the existence, in the detector
frame, of a nonzero transverse angular momentum J?.
This is our main result that will be illustrated in the
remainder of this Letter by considering the representative
example of a tilted fundamental Gaussian beam.

Let us parametrize the axis of propagation ẑ0 of the beam
as ẑ0 ¼ x̂ sin!þ ẑ cos!, and switch to dimensionless co-
ordinates "0 ¼ x0=w0, #

0 ¼ y0=w0, $
0 ¼ z0=L, where L ¼

kw2
0=2 and w0 are, respectively, the Rayleigh range and the

waist of the beam [13]. Then, let c ð"0;#0; $ 0Þ ¼
exp½&ð"02 þ #02Þ=ð1þ i$ 0Þ'=ð1þ i$ 0Þ denote the funda-
mental solution of the scalar paraxial wave equation in
the beam frame. The electric and magnetic vector fields are
expressible in terms of c as [21]

E / eið2$
0=!20Þ½x̂0%þ ŷ0&þ i!0ẑ

0ð%@"0 þ &@#0Þ=2'c ;

(9)

B / eið2$
0=!20Þ½&x̂0&þ ŷ0%& i!0ẑ

0ð&@"0 & %@#0Þ=2'c ;

(10)

where û ¼ %x̂0 þ &ŷ0 is a complex unit vector perpen-
dicular to z0 that determines the polarization of the beam,
and !0 ¼ 2=ðkw0Þ is the angular spread of the beam [22].
From Eq. (1a), it follows that

p 0ðr0Þ / jc j2
!
ẑ0 þ !0

"
x̂0 "

0$ 0 & '#0

1þ $ 02
þ ŷ0

#0$ 0 þ '"0

1þ $ 02

#$
;

where ' ¼ ið%&( & %(&Þ denotes the helicity of the
beam. Finally, we transform p0ðr0Þ to the detector frame
K via the map p0ðr0Þ ! p0ðrÞ ¼ Rð!Þp0ðR&1ð!ÞrÞ, where
Rð!Þ is the orthogonal matrix that maps ẑ into ẑ0: ẑ0 ¼
Rð!Þẑ. The resulting expression for pðrÞ is cumbersome
and it will not be reported here; the only quantity of interest
is [23]

pzð";#;0Þ /
e&2½ð"2cos2!þ#2Þ=ð1þ!20"

2cos2!Þ'

ð1þ!20"
2cos2!Þ2 ð1þ!0'# tan!Þ:

(11)

Finally, by substituting Eq. (11) into Eq. (2) and regaining
unscaled coordinates fx; y; zg, we obtain

hyijz¼0 ¼ (ð'=2Þ tan!þOð!0Þ2; (12)

in agreement with our previous qualitative argument.
As a test for Eq. (12), we have performed numerical

simulations by using the program POLFOCUS [24] that
simulates the intensity distribution in the focus of an
arbitrary numerical aperture lens using the Debye integral

[25], as long as the Fresnel number F [26] is F ) 1. A set
of 100* 100 input plane waves and 201* 1001 sampling
points on the detector plane z ¼ 0 were used in our simu-
lations. For well-collimated beams (!0 ¼ 0:01 and !0 ¼
0:001) and )=2& ! * )=180 we found excellent agree-
ment between analytic and numerical expressions.
The physical origin of such a shift may also be qualita-

tively understood with the help of Fig. 2. Let ðx0; y0Þ ¼
ð0;+aÞ (a ¼ w0=2) be the coordinates of the maximum
and minimum of p0

x0ðx0; y0; 0Þ, respectively. From Fig. 2
it may be deduced that p0

x0ð0;+a; 0Þ ¼ ,jp0
x0ð0; a; 0Þj

and p0
z0ð0; a; 0Þ ¼ p0

z0ð0;&a; 0Þ > 0. Furthermore,

jp0
x0ð0;,a; 0Þ ’ 2* 10&3jp0

z0ðx0; a; 0Þj. Now, imagine tilt-

ing the beam by an angle !, and look at pzð0;,a; 0Þ.
Rotation mixes p0

x0 and p0
z0 to produce, for sufficiently

small angles !, pzð0;,a; 0Þ ’ p0
z0ð0; a; 0Þ cos!&

p0
x0ð0;,a; 0Þ sin!. Thus, at y ¼ &a the small term

jp0
x0ð0; a; 0Þj sin! will be subtracted from p0

z0ðx0; a; 0Þ*
cos!, while at y ¼ a it will be added. This slight imbal-
ance of the beam intensity distribution c2pz causes the
small shift (12) in the y direction.
Discussion and conclusions.—We have presented a quite

counterintuitive and intriguing phenomenon: The position
of the barycenter of the intensity distribution of a tilted
beam of light varies with the polarization of the beam
itself. According to the classical theory of light, we have
identified the beam intensity with the flux of the Poynting
vector density s ¼ c2p of the beam across the detector
surface [27]. However, in practice, the actually measured
intensity depends on the effective response function of the
detector (see, e.g., Chaps. 12 and 14 of Ref. [13]). For
example, many detectors are sensitive to the electric field
energy density / jEðrÞj2 rather than sz. In this case from
Eq. (6) it follows that the y coordinate of the electric field
energy-density barycenter of the beam, evaluated at z ¼ 0,
is

hyiEn ¼ (
ZZ

iE( - @E
@q

dpdq
%ZZ

jEj2dpdq; (13)

where the superscript ‘‘En’’ marks the distinction with
respect to hyi defined by Eq. (2). This result should be

FIG. 2 (color online). (a) Plot of the x0 component of the rela-
tive Poynting vector density p0

x0 ðx0; y0; 0Þ=p0
z0 ð0; 0; 0Þ (*103).

(b) Plot of the z0 component of the relative Poynting vector
density p0

z0 ðx0; y0; 0Þ=p0
z0 ð0; 0; 0Þ. In both cases the polarization is

right-circular.

PRL 103, 100401 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
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PRL 103, 100401 (2009); (theory)  
PRA 85, 035804 (2012) (experiment) 

Spiral energy 
flux for spin 

Geometric spin hall effect 

	  Experimental	  test	  -‐II：Energy	  flux	  



Photon energy flux does not tell two Tabs 

In	  symmetric	  Tab,	  PoynMng	  Vector	  is	  both	  
momentum	  and	  energy	  flow	  

The	  canonical	  expression	  is	  gauge	  dependent	  
In	  radiaMon	  gauge,	  PoynMng	  vector	  is	  energy	  flow,	  

but	  not	  momenum	  

18 



The	  Dirac	  ParMcle 

The	  two	  tensors	  give	  totally
	  different	  energy-‐flow	   

19 
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BRIEF REPORTS PHYSICAL REVIEW A 85, 035804 (2012)

FIG. 1. (Color online) The scheme of the problem we considered.
The K system attached in the input field with its propagation direction
along the z axis. The K′ system attached in the detection plane with
its normal along the z′ axis. The input field is tilted by an angle θ

to be incident on the detection plane. The y axis in the K system is
parallel to the y ′ axis in the K′ system (y∥y ′).

and ψ
q
p (ξ )|p=0 = ψq(ξ ) = (q + 1) arctan ξ , Eq. (3) becomes

U (x,y,z) ∝ e−jqφ

w(ξ )

[
r

w(ξ )

]|q|
exp

[
− r2

w2
0(1+jξ )

−jψq(ξ )
]

.

(4)

In the case of p = 0, the intensity distribution of the light
field is a function of r only independent of φ. In particular, the
light field carries the spiraling phase front of e−jqφ and then
the optical OAM of qh̄.

With the Maxwell’s equations, the electric field E and
magnetic field B satisfy E = jωA + j (c2/ω)∇(∇ · A) and
B = ∇ × A, respectively. Under the paraxial limit and the
Lorenz gauge, we have

E ∝
{
αU êx +βU êy + j

[
∂(αU )

∂x
+ ∂(βU )

∂y

]
êz

}
exp(−jkz),

(5a)

B ∝
{
−βU êx +αU êy − j

[
∂(βU )

∂x
− ∂(αU )

∂y

]
êz

}
exp(−jkz),

(5b)

where êx , êy , and êz stand for the unit vectors in the directions
of the x, y, and z axes. For the sake of convenience, let
U (x,y,z) = u (x,y,z) e−jqφ . With Eq. (5), the time-averaged
momentum density P ∝

[
(E∗ × B) + (E × B∗)

]
can be classi-

fied into three transverse components (P(1)
⊥ , P(2)

⊥ and P(3)
⊥ ) and

a longitudinal component (P∥) as follows:

P(1)
⊥ ∝ j (u∇⊥u∗ − c.c.) + σ∇ × (u∗uêz), (6a)

P(2)
⊥ ∝ u∗u[j (α∇⊥α∗ + β∇⊥β∗ − c.c.) + ∇ × (σ êz)], (6b)

P(3)
⊥ ∝ 2u∗u∇⊥(qφ), (6c)

P∥ ∝ 2kuu∗êz. (6d)

Here a parameter σ = j (αβ∗ − α∗β) also denotes the distri-
bution of states of polarization or SAM [23].

Here we concentrate on the following two cases. (i) When
α and β are both spatially invariant, the light field described by

Eq. (2) combining with Eq. (4) is a homogeneously polarized
field. For instance, σ ≡ 0, +1, and −1 indicate the lin-
ear, right-circular and left-circular polarizations, respectively.
(ii) When α and β (or σ ) are spatially varying, the light fields
we are concerned about are the vector fields [23–25], which are
classified into two subcases. (a) When α and β are real-valued
functions, the light fields are locally linearly polarized vector
fields (such as a radially or azimuthally polarized field).
(b) When α and β are the spatially varying complex-valued
functions, the light fields are the vector fields with distribution
of the variant SAM.

Homogeneously polarized fields with spiraling phase front.
In this case, α and β are both spatially invariant, the light field
described by Eqs. (2) and (4) is a homogeneously polarized
field and carries the optical OAM of qh̄. Clearly, P(2)

⊥ ≡ 0 in
Eq. (6). Substituting Eq. (4) into Eq. (6) except for Eq. (6b)
and transforming P to the K′ system using Eq. (1), we obtain
the z′ component of P′ when x ′ = 0 and z′ = 0,

P ′
z′ (0,y ′,0) ∝ y ′2|q|e−2y ′2/w2

0

×
[

1 + tan θ

k

(
2σy ′

w2
0

+ q

y ′ − σ |q|
y ′

)]
. (7)

When q = 0, the result will be back to that in Ref. [20].
Due to I ′

z′ (0,y ′,0) ∝ P ′
z′ (0,y ′,0), by using the definition of the

intensity barycenter of the beam as follows:

⟨y ′⟩ ∝
∫ +∞
−∞ y ′P ′

z′ (0,y ′,0)dy ′
∫ +∞
−∞ P ′

z′ (0,y ′,0)dy ′
, (8)

we obtain the shift ⟨y ′⟩ in the y ′ direction,

⟨y ′⟩ ∝ σ
tan θ

2k
+ 2q

tan θ

2k
. (9)

It can be seen that the transverse shifts described by the first
and second terms in the right side of Eq. (9) originate from
the contributions of SAM and OAM carried by the light field,
respectively.

Under the conditions of λ = 532 nm and w0 = 10.2 µm,
the numerical results are shown in Fig. 2. When the homo-
geneously polarized field carries SAM (+h̄,0, − h̄ implying
σ = +1,0, − 1) while no OAM (q = 0), the dependence of the
shift ⟨y ′⟩ on the tilted angle θ is shown in Fig. 2(a). When the
homogeneously polarized fields carry simultaneously SAM
(+h̄,0, − h̄) and OAM (10h̄, i.e., q = 10), the shifts are shown
as a function of the tilted angle θ in Fig. 2(b). It is found that
the shift caused by SAM is too small and the shift caused
by the combination of SAM and OAM can be very large as
OAM (q) enlarges. Figure 2(c) plots the dependence of the
ratio ⟨y ′⟩qσ=0/⟨y ′⟩q=0

σ=+1 on q at θ = 45◦, where ⟨y ′⟩qσ=0 and
⟨y ′⟩q=0

σ=+1 are the shifts caused by OAM and SAM. The result
reveals ⟨y ′⟩qσ=0/⟨y ′⟩q=0

σ=+1 ≡ 2q. The above results reveal the
fact that the orbital angular momentum originating from a
spiraling phase front with an azimuthal phase gradient can
cause a shift in addition to (and independent of) the shift
caused by the spin.

Vector fields without spiraling phase front. When α and
β are spatially variant (σ is spatially variant), the light field
described by Eq. (2) is a vector field [23–25]. To generate the
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FIG. 1. (Color online) The scheme of the problem we considered.
The K system attached in the input field with its propagation direction
along the z axis. The K′ system attached in the detection plane with
its normal along the z′ axis. The input field is tilted by an angle θ

to be incident on the detection plane. The y axis in the K system is
parallel to the y ′ axis in the K′ system (y∥y ′).

and ψ
q
p (ξ )|p=0 = ψq(ξ ) = (q + 1) arctan ξ , Eq. (3) becomes

U (x,y,z) ∝ e−jqφ

w(ξ )

[
r

w(ξ )

]|q|
exp

[
− r2

w2
0(1+jξ )

−jψq(ξ )
]
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(4)

In the case of p = 0, the intensity distribution of the light
field is a function of r only independent of φ. In particular, the
light field carries the spiraling phase front of e−jqφ and then
the optical OAM of qh̄.

With the Maxwell’s equations, the electric field E and
magnetic field B satisfy E = jωA + j (c2/ω)∇(∇ · A) and
B = ∇ × A, respectively. Under the paraxial limit and the
Lorenz gauge, we have

E ∝
{
αU êx +βU êy + j

[
∂(αU )

∂x
+ ∂(βU )

∂y
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êz

}
exp(−jkz),
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B ∝
{
−βU êx +αU êy − j
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∂(βU )
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− ∂(αU )
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êz
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exp(−jkz),
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where êx , êy , and êz stand for the unit vectors in the directions
of the x, y, and z axes. For the sake of convenience, let
U (x,y,z) = u (x,y,z) e−jqφ . With Eq. (5), the time-averaged
momentum density P ∝

[
(E∗ × B) + (E × B∗)

]
can be classi-

fied into three transverse components (P(1)
⊥ , P(2)

⊥ and P(3)
⊥ ) and

a longitudinal component (P∥) as follows:

P(1)
⊥ ∝ j (u∇⊥u∗ − c.c.) + σ∇ × (u∗uêz), (6a)

P(2)
⊥ ∝ u∗u[j (α∇⊥α∗ + β∇⊥β∗ − c.c.) + ∇ × (σ êz)], (6b)

P(3)
⊥ ∝ 2u∗u∇⊥(qφ), (6c)

P∥ ∝ 2kuu∗êz. (6d)

Here a parameter σ = j (αβ∗ − α∗β) also denotes the distri-
bution of states of polarization or SAM [23].

Here we concentrate on the following two cases. (i) When
α and β are both spatially invariant, the light field described by

Eq. (2) combining with Eq. (4) is a homogeneously polarized
field. For instance, σ ≡ 0, +1, and −1 indicate the lin-
ear, right-circular and left-circular polarizations, respectively.
(ii) When α and β (or σ ) are spatially varying, the light fields
we are concerned about are the vector fields [23–25], which are
classified into two subcases. (a) When α and β are real-valued
functions, the light fields are locally linearly polarized vector
fields (such as a radially or azimuthally polarized field).
(b) When α and β are the spatially varying complex-valued
functions, the light fields are the vector fields with distribution
of the variant SAM.

Homogeneously polarized fields with spiraling phase front.
In this case, α and β are both spatially invariant, the light field
described by Eqs. (2) and (4) is a homogeneously polarized
field and carries the optical OAM of qh̄. Clearly, P(2)

⊥ ≡ 0 in
Eq. (6). Substituting Eq. (4) into Eq. (6) except for Eq. (6b)
and transforming P to the K′ system using Eq. (1), we obtain
the z′ component of P′ when x ′ = 0 and z′ = 0,

P ′
z′ (0,y ′,0) ∝ y ′2|q|e−2y ′2/w2

0

×
[

1 + tan θ

k

(
2σy ′
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y ′

)]
. (7)

When q = 0, the result will be back to that in Ref. [20].
Due to I ′

z′ (0,y ′,0) ∝ P ′
z′ (0,y ′,0), by using the definition of the

intensity barycenter of the beam as follows:

⟨y ′⟩ ∝
∫ +∞
−∞ y ′P ′

z′ (0,y ′,0)dy ′
∫ +∞
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z′ (0,y ′,0)dy ′
, (8)

we obtain the shift ⟨y ′⟩ in the y ′ direction,

⟨y ′⟩ ∝ σ
tan θ

2k
+ 2q

tan θ

2k
. (9)

It can be seen that the transverse shifts described by the first
and second terms in the right side of Eq. (9) originate from
the contributions of SAM and OAM carried by the light field,
respectively.

Under the conditions of λ = 532 nm and w0 = 10.2 µm,
the numerical results are shown in Fig. 2. When the homo-
geneously polarized field carries SAM (+h̄,0, − h̄ implying
σ = +1,0, − 1) while no OAM (q = 0), the dependence of the
shift ⟨y ′⟩ on the tilted angle θ is shown in Fig. 2(a). When the
homogeneously polarized fields carry simultaneously SAM
(+h̄,0, − h̄) and OAM (10h̄, i.e., q = 10), the shifts are shown
as a function of the tilted angle θ in Fig. 2(b). It is found that
the shift caused by SAM is too small and the shift caused
by the combination of SAM and OAM can be very large as
OAM (q) enlarges. Figure 2(c) plots the dependence of the
ratio ⟨y ′⟩qσ=0/⟨y ′⟩q=0

σ=+1 on q at θ = 45◦, where ⟨y ′⟩qσ=0 and
⟨y ′⟩q=0

σ=+1 are the shifts caused by OAM and SAM. The result
reveals ⟨y ′⟩qσ=0/⟨y ′⟩q=0

σ=+1 ≡ 2q. The above results reveal the
fact that the orbital angular momentum originating from a
spiraling phase front with an azimuthal phase gradient can
cause a shift in addition to (and independent of) the shift
caused by the spin.

Vector fields without spiraling phase front. When α and
β are spatially variant (σ is spatially variant), the light field
described by Eq. (2) is a vector field [23–25]. To generate the
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Issue	  with	  the	  Angular	  momentum	  tensor	  

  

M µνλ = xµTsymm
λν − xvTsymm

λµ

MC
µνλ = xµTC

λν − xvTC
λµ + ∂L

∂(∂λφa )
Σab

µνφb

Mrevised ?
µνλ    = xµTrevised

λν   − xvTrevised
λµ    + ∂L

∂(∂λφa )
Σab

µνφb

+ 1
2

gλν ∂L
∂(∂µφa )

φa −
1
2

gλµ ∂L
∂(∂νφa )

φa

Our	  trick	  applies	  to	  longitudinal	  spin	  flux	  only,	  but	  not	  to
	  transverse	  flux	  of	  angular	  momentum! 
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	  The	  interacMng	  fields:	  scalar	  case	  

   

Iφ = ∫ d 4x −g (−1
2

DµφDµφ + 1
8

Rφ 2 )

→ Tnew
µν =

∂L(φa ,∂µφa )
∂(∂µφa )

!
∂νφa

  
T µν (x) = 1

−g

δ I M

δ gµν (x)

This	  gives	  a	  gravitaMonal	  theory
	  different	  from	  Einstein’s	  GR 



Ø Gauge	  principle:	  gauge	  dependence	  of	  the	  
Hamiltonian	  in	  external	  gauge	  and	  
gravitaMonal	  fields	  

Ø Equivalence	  principle:	  source	  of	  gravity	  

Ø ReducMon	  of	  a	  quantum	  wave	  

	  Tab	  and	  fundamental	  principles	  of	  physics	  
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Challenging on any of the above would 
go far beyond the standard Model 

  
Iφ = ∫ d 4x −g (−1

2
DµφDµφ + 1

8
Rφ 2 )

  ψ = Ci ψ i∑ → Ci

2
ψ i



Ø Expression	  of	  Tab	  is	  not	  arbitrary.	  It	  can	  be	  
tested	  experimentally!	  	  

Ø We	  are	  not	  even	  clear	  about	  the	  free	  fields	  
Ø A	  new	  expression	  of	  Tab	  derived	  from	  
quantum	  conservaMon	  laws	  

Ø Two	  experimental	  schemes:	  momentum	  flux	  
and	  energy	  flux	  

Ø InteracMng	  fields	  and	  	  Mabc	  
Ø Much	  work	  to	  do	  with	  hadron	  structure	  

Summary	  and	  further	  studies	  
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Thank you! 
谢谢! 
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