Physics with the energy－momentum tensor

Xiang－Song Chen，HUST
陈相松 华中科技大学物理学院 Aug 4 ${ }^{\text {th }}$＠Hadron 2015，DKU

Contents:

$>T^{\text {ab }}$ and nucleon structure
$>T^{\text {ab }}$ and spin
$>T^{\mathrm{ab}}$ and quantum measurement
$>T^{\mathrm{ab}}$ and "far" beyond the Standard Model

more components, more interesting

$$
\overrightarrow{\vec{P}_{\text {toal }}}=\int d^{3} x \psi^{+} \frac{1}{i} \vec{D} \psi+\int d^{3} x \vec{E} \times \vec{B}
$$

T^{02} : momentum, $\sim \mathbf{5 0 \%}$ by the gluon

Tzz : momentum flow, = ???

Tzo energy flow, = ???

Even the momentum alone can be tricky!

$$
\begin{aligned}
& \left\{\begin{array}{l}
\vec{P}_{q}=\int d^{3} x \psi^{+}+\frac{1}{i} \vec{D} \psi \\
\vec{P}_{g}=\int d^{3} x \vec{E} \times \vec{B}
\end{array} Q^{2} \frac{d}{d Q^{2}}\binom{P_{q}}{P_{g}}=\frac{\alpha_{g}}{2 \pi}\left(\begin{array}{cc}
-\frac{2 n_{g}}{9} & \frac{n_{f}}{3} \\
\frac{2 n_{g}}{9} & -\frac{n_{f}}{3}
\end{array}\right)\binom{P_{q}}{P_{g}}\right. \\
& \left\{\begin{array}{l}
\hat{P}_{q}=\int d^{3} x \psi^{+} \frac{1}{i} \vec{D}_{\text {pure }} \psi \\
\vec{P}_{g}=\int d^{3} x E^{E} \stackrel{\rightharpoonup}{D}_{\text {pure }} A_{\text {puys }}^{t}
\end{array} Q^{2} \frac{d}{d Q^{2}}\binom{P_{q}}{P_{g}}=\frac{\alpha}{2 \pi}\left(\begin{array}{cc}
-\frac{n_{g}}{18} & \frac{n_{f}}{3} \\
\frac{n_{g}}{18} & -\frac{n_{f}}{3}
\end{array}\right)\binom{P_{q}}{P_{g}}\right. \\
& P_{g} \rightarrow \frac{2 n_{g}}{2 n_{g}+3 n_{f}} P_{N} \sim \frac{1}{2} P_{N}\left(n_{f}=5\right) \text { vs } P_{g} \rightarrow \frac{n_{g}}{n_{g}+6 n_{f}} P_{N} \sim \frac{1}{5} P_{N}\left(n_{f}=5\right)
\end{aligned}
$$

$T^{a b}$ and Spin: $S_{q}+L_{q}+S_{g}+L_{g}=1 / 2$

Jaffe-Manohar [NPB337:509 (1990)]
$\vec{J}_{\text {total }}=\int d^{3} x \psi^{+} \frac{1}{2} \vec{\Sigma} \psi+\int d^{3} x \vec{x} \times \psi^{+} \frac{1}{i} \vec{\nabla} \psi+\int d^{3} x \vec{E} \times \vec{A}+\int d^{3} x \vec{x} \times E^{i} \vec{\nabla} A^{i}$

Ji [PRL78:610 (1997)], Chen-Wang [CTP27:212 (1997)]
$\stackrel{\vec{J}_{\text {total }}}{ }=\int d^{3} x \psi^{+} \frac{1}{2} \vec{\Sigma} \psi+\int d^{3} x \vec{x} \times \psi^{+} \frac{1}{i} \vec{D} \psi+\int d^{3} x \vec{x} \times(\vec{E} \times \vec{B})$

Chen-Lü-Sun-Wang-Goldman [PRL100:232002 (2008); 103:062001 (2009)]
$\vec{J}_{\text {total }}=\int d^{3} x \psi^{+} \frac{1}{2} \vec{\Sigma} \psi+\int d^{3} x \vec{x} \times \psi^{+} \frac{1}{i} \vec{D}_{\text {pure }} \psi+\int d^{3} x \vec{E} \times \vec{A}_{\text {phys }}+\int d^{3} x \vec{x} \times E^{i} \overrightarrow{\mathrm{D}}_{\text {pure }} A_{\text {phys }}^{i}$

The Key issue: $\quad \mathrm{T}^{\mathrm{ab}}=\mathrm{T}^{\mathrm{ba}}$ or $\mathrm{T}^{\mathrm{ab}} \neq \mathrm{T}^{\mathrm{ba}}$
Symmetric $T^{\text {ab }}=T^{\text {ba }}$:

$$
\vec{r} \times \vec{P}=\vec{J}
$$

$$
\begin{gathered}
M^{\lambda \mu \nu}=x^{\mu} T^{\nu \lambda}-x^{\nu} T^{\mu \lambda}, \quad \partial_{\lambda} M^{\lambda \mu \nu}=0 \\
\text { Example }: \vec{J}=\vec{r} \times(\vec{E} \times \vec{B}) ?
\end{gathered}
$$

Canonical
$\mathrm{T}^{\mathrm{ab}} \neq \mathrm{T}^{\text {ba }}$:

$$
\vec{r} \times \vec{P}=\vec{L}, \quad \vec{J}=\vec{L}+\vec{S}
$$

Primitive physics with $T^{\text {ab }}$

$$
\vec{F}=G \frac{m_{\mathrm{G}} M_{\mathrm{G}}}{r^{2}} \hat{\vec{r}} \Rightarrow R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=-8 \pi G T_{\mathrm{G}}^{\mu \nu}
$$

$\vec{F}=m_{\mathrm{I}} \vec{a} \Rightarrow f^{\mu}=\left\{\begin{array}{l}\frac{d p_{\mathrm{I}}^{\mu}}{d \tau} \text { for a particle } \\ \partial_{v} T_{\mathrm{I}}^{v \mu} \text { for a field }\end{array}\right.$

Awkwardness: Symmetry and gauge variance

Canonical: $\quad p_{i}=\frac{\partial L\left(q_{i}, \dot{q}_{i}\right)}{\partial \dot{q}_{i}}, \quad H=p_{i} \dot{q}_{i}-L$
By Nöther's theorem: $T_{C}^{\mu v}(x)=\frac{\partial L\left(\phi_{i}, \partial_{\mu} \phi_{i}\right)}{\partial\left(\partial_{\mu} \phi_{i}\right)} \partial^{v} \phi_{i}-g^{\mu v} L$
Symmetric: $\Theta^{\mu \nu}(x)=\frac{1}{\sqrt{-g}} \frac{\delta I_{M}}{\delta g_{\mu \nu}(x)}$ (needed by Einstein)

$$
\begin{gathered}
T_{\text {symm }}^{\mu \nu}=F^{\mu \rho} F_{\rho}{ }^{\nu}+\frac{1}{4} g^{\mu \nu} F^{2} \longrightarrow \vec{P}=\vec{K}=\vec{E} \times \vec{B} \\
T_{\text {cano }}^{\mu \nu}=-F^{\mu \rho} \partial^{\nu}\left(A_{\rho}\right)+\frac{1}{4} g^{\mu \nu} F^{2} \longrightarrow \vec{P}=E^{i} \vec{\partial} A^{i}, \vec{K} \rightarrow \vec{E} \times \vec{B}
\end{gathered}
$$

Conserved $T^{\text {ab }}$ and its "arbitrariness"

$$
\begin{aligned}
& \partial_{\mu} T^{\mu v}=0 \Rightarrow P^{v} \equiv \int T^{0 v} d V \\
& \tilde{T}^{\mu v}=T^{\mu v}+\partial_{\rho} B^{[\rho \mu] v} \Rightarrow \partial_{\mu} \tilde{T}^{\mu v}=0 \\
& \tilde{P}^{v} \equiv \int \tilde{T}^{0 v} d V=\int\left(T^{0 v}+\partial_{\rho} B^{[\rho 0] v}\right) d V=P^{v}
\end{aligned}
$$

1. Different T^{ab}, same conservation laws and conserved 4-momentum
2. Inertial T^{ab} is unfixed: $f^{\mu}=\partial_{v} T_{\mathrm{I}}^{v \mu}=\partial_{v} \tilde{T}_{\mathrm{I}}^{v \mu}$

Constrains on $T^{\text {ab }}$ from

quantum measurement (new!)

If a quantum wave is in mutual eigenstates of more than one observables, then the associated currents must be proportional to each other
$E . g .: \vec{j}_{E} \propto \vec{j}_{p_{i}} \propto \vec{j}_{s_{i}} \propto \vec{j}_{q}$
$\hat{H} \psi=E \psi, \hat{P}_{i} \psi=p_{i} \psi, \hat{S}_{i} \psi=s_{i} \psi, \hat{Q} \psi=q \psi$

The Symmetric T^{ab} stands no chance!

$$
\begin{gathered}
j^{\mu}=e \bar{\psi} \gamma^{\mu} \psi \\
T_{\text {symm }}^{\mu \nu}=\frac{i}{4} \bar{\psi}\left(\gamma^{\mu} \partial^{\nu}+\gamma^{\nu} \partial^{\mu}\right) \psi+\text { h.c. } \quad T_{\text {cano }}^{\mu \nu}=\frac{i}{2} \bar{\psi} \gamma^{\mu} \partial^{\nu} \psi+h . c . \\
P^{i}=T_{\text {cano }}^{0 i}=\frac{i}{2} \bar{\psi} \gamma^{0} \partial^{i} \psi+h . c . \quad K^{i}=T_{\text {cano }}^{i 0}=\frac{i}{2} \bar{\psi} \gamma^{i} \partial^{0} \psi+h . c . \approx \frac{\mathcal{E}}{e} j^{i} \\
\text { But the canonical Tab is not fully OK } \\
T_{C}^{\mu \nu}(x)=\frac{\partial L\left(\phi_{a}, \partial_{\mu} \phi_{a}\right)}{\partial\left(\partial_{\mu} \phi_{a}\right)} \partial^{\nu} \phi_{a}-g^{\mu \nu} L \\
T_{C}^{i 0}=\frac{\partial L\left(\phi_{a}, \partial_{\mu} \phi_{a}\right)}{\partial\left(\partial_{i} \phi_{a}\right)} \partial^{0} \phi_{a}, \quad T_{C}^{i i}(x)=\frac{\partial L\left(\phi_{a}, \partial_{\mu} \phi_{a}\right)}{\partial\left(\partial_{i} \phi_{a}\right)} \partial^{i} \phi_{a}+L
\end{gathered}
$$

An improved $T^{\text {ab }}$: free field

$$
\begin{aligned}
& T_{\text {revised }}^{\mu v}=\frac{\partial L\left(\phi_{a}, \partial_{\mu} \phi_{a}\right)}{\partial\left(\partial_{\mu} \phi_{a}\right)} \partial^{v} \phi_{a}, \vec{\partial}^{v} \equiv \frac{1}{2}\left(\vec{\partial}^{v}-\bar{\partial}^{v}\right) \\
& T_{C}^{\mu v}=\frac{\partial L\left(\phi_{a}, \partial_{\mu} \phi_{a}\right)}{\partial\left(\partial_{\mu} \phi_{a}\right)} \partial^{v} \phi_{a}-g^{\mu v} L
\end{aligned}
$$

E.g. photon $T_{\text {revised }}^{\mu \nu}=-F^{\mu \rho} \vec{\partial}^{\nu} A_{\rho}$

$$
\begin{aligned}
& T_{C}^{\mu \nu}=-F^{\mu \rho} \partial^{\nu} A_{\rho}+\frac{1}{4} g^{\mu \nu} F^{2} \\
& T_{s y m m}^{\mu \nu}=-F^{\mu \rho} F_{\rho}^{v}+\frac{1}{4} g^{\mu \nu} F^{2}
\end{aligned}
$$

Proof of validness (general free fields)

$L\left(\phi_{a}, \partial_{\mu} \phi_{a}\right)$ is quadratic in and $\partial_{\mu} \phi\left(\phi, \phi^{*}\right.$ independent $)$

$$
=\Sigma_{a} \frac{1}{2}\left(\frac{\partial L}{\partial \phi_{a}} \phi_{a}+\frac{\partial L}{\partial\left(\partial_{\rho} \phi_{a}\right)} \partial_{\rho} \phi_{a}\right)=\Sigma_{a} \frac{1}{2} \partial_{\rho}\left(\frac{\partial L}{\partial\left(\partial_{\rho} \phi_{a}\right)} \phi_{a}\right)
$$

$$
T_{C}^{\mu v}=\frac{\partial L}{\partial\left(\partial_{\mu} \phi_{a}\right)} \partial^{v} \phi_{a}-g^{\mu v} L, T_{\text {revised }}^{\mu v}=T_{C}^{\mu v}+\partial_{\rho} B^{[\rho \mu] v}
$$

$$
B^{[\rho \mu] v}=\sum_{a} \frac{1}{2} \partial_{\rho}\left(g^{\mu \nu} \frac{\partial L}{\partial\left(\partial_{\rho} \phi_{a}\right)} \phi_{a}-g^{\rho \nu} \frac{\partial L}{\partial\left(\partial_{\mu} \phi_{a}\right)} \phi_{a}\right)
$$

Proof of validness (particular free fields)

$$
\begin{aligned}
& L=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}, \quad\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi=0 \\
& L=\frac{1}{2} \partial_{\mu}\left(\phi \partial^{\mu} \phi\right)-\frac{1}{2} \phi \partial_{\mu} \partial^{\mu} \phi \frac{1}{2} m^{2} \phi^{2}=\frac{1}{2} \partial_{\mu}\left(\phi \partial^{\mu} \phi\right) \\
& L=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}, \quad \partial_{\mu} F^{\mu \nu}=0 \\
& L=-\frac{1}{4}\left(\partial_{\mu} A_{v}-\partial_{v} A_{\mu}\right) F^{\mu \nu} \\
& =-\frac{1}{4}\left[\partial_{\mu}\left(A_{\nu} F^{\mu \nu}\right)-\partial_{v}\left(A_{\mu} F^{\mu \nu}\right)\right]+\frac{1}{4}\left[A_{v} \partial_{\mu} F^{\mu \nu}-A_{\mu} \partial_{\nu} F^{\mu \nu}\right] \\
& =-\frac{1}{2} \partial_{\mu}\left(A_{v} F^{\mu \nu}\right)
\end{aligned}
$$

Experimental test -I: momentum flux (radiation pressure!)

$$
\begin{aligned}
& T_{\text {revised }}^{\mu \nu}=-F^{\mu \nu} \ddot{\partial}^{\nu} A_{\rho}, T_{C}^{\mu \nu}=-F^{\mu \nu} \partial^{\nu} A_{\rho}+\frac{1}{4} g^{\mu \nu} F^{2}, T_{\text {syym }}^{\mu \nu}=-F^{\mu \rho} F^{v}{ }_{\rho}+\frac{1}{4} g^{\mu \nu} F^{2} \\
& \vec{A}=\vec{e}_{y}\left[\sin \left(k_{x} x+k_{z} z-\omega t\right)+\sin \left(-k_{x} x+k_{z} z-\omega t\right)\right]=\vec{e}_{y} \cos \left(k_{x} x\right) \sin \left(k_{z} z-\omega t\right)
\end{aligned}
$$

$$
\bar{T}_{\text {revised }}^{z 0}=\bar{T}_{C}^{z 0}=\bar{T}_{\text {symm }}^{z 0}=k_{z} \omega\left[1+\cos \left(2 k_{x} x\right)\right]
$$

$$
\bar{T}_{\text {revised }}^{z z}=k_{z}^{2}\left[1+\cos \left(2 k_{x} x\right)\right]
$$

$$
\bar{T}_{C}^{z z}=\bar{T}_{s y m m}^{z z}=k_{z}^{2}\left[1+\cos \left(2 k_{x} x\right)\right]+k_{x}^{2} \cos \left(2 k_{x} x\right)
$$

Observable Effects! Backward

Schematic set up

$\vec{A}=\vec{e}_{y}\left[\sin \left(k_{x} x+k_{z} z-\omega t\right)+\sin \left(-k_{x} x+k_{z} z-\omega t\right)\right]=\vec{e}_{y} \cos \left(k_{x} x\right) \sin \left(k_{z} z-\omega t\right)$

$$
\bar{T}^{z 0}=k_{z} \omega\left[1+\cos \left(2 k_{x} x\right)\right], \bar{T}_{\text {revised }}^{z z}=k_{z}^{2}\left[1+\cos \left(2 k_{x} x\right)\right]
$$

$$
\bar{T}_{C}^{z z}=\bar{T}_{s y m m}^{z z}=k_{z}^{2}\left[1+\cos \left(2 k_{x} x\right)\right]+k_{x}^{2} \cos \left(2 k_{x} x\right)
$$

Experimental test -II: Energy flux

Spiral energy flux for spin

Geometric spin hall effect

$\left.\langle y\rangle\right|_{z=0}=\lambda(\sigma / 2) \tan \theta+O\left(\theta_{0}\right)^{2}$,
PRL 103, 100401 (2009); (theory)
PRA 85, 035804 (2012) (experiment)

Photon energy flux does not tell two $T^{\text {ab }} \mathbf{s}$

$$
\begin{gathered}
T_{\mathrm{s} y m m}^{\mu \nu}=F^{\mu \rho} F_{\rho}{ }^{\nu}+\frac{1}{4} g^{\mu \nu} F^{2} \longrightarrow \vec{P}=\vec{K}=\vec{E} \times \vec{B} \\
T_{\text {cano }}^{\mu \nu}=-F^{\mu \rho} \partial^{\nu} A_{\rho}+\frac{1}{4} g^{\mu \nu} F^{2} \longrightarrow \vec{P}=E^{i} \vec{\partial} A^{i}, \vec{K} \rightarrow \vec{E} \times \vec{B}
\end{gathered}
$$

In symmetric T^{ab}, Poynting Vector is both momentum and energy flow
The canonical expression is gauge dependent In radiation gauge, Poynting vector is energy flow, but not momenum

The Dirac Particle

$$
\begin{gathered}
j^{\mu}=e \bar{\psi} \gamma^{\mu} \psi \\
T_{\text {symm }}^{\mu \nu}=\frac{i}{4} \bar{\psi}\left(\gamma^{\mu} \partial^{\nu}+\gamma^{\nu} \partial^{\mu}\right) \psi+\text { h.c. } \quad T_{\text {cano }}^{\mu \nu}=\frac{i}{2} \bar{\psi} \gamma^{\mu} \partial^{\nu} \psi+\text { h.c. } \\
P^{i}=T_{\text {cano }}^{0 i}=\frac{i}{2} \bar{\psi} \gamma^{0} \partial^{i} \psi+h . c . \quad K^{i}=T_{\text {cano }}^{i 0}=\frac{i}{2} \bar{\psi} \gamma^{i} \partial^{0} \psi+h . c . \approx \frac{\mathcal{E}}{e} j^{i} \\
T_{\text {cano }}^{\mu \nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)} \partial^{\nu} \phi_{i}-g^{\mu \nu} \mathcal{L} \\
\text { The two tensors give totally } \\
\text { different energy-flow }
\end{gathered}
$$

Geometric spin hall effect of the electron

Longitudinal polarization, tilted incidence

Prediction of the symmetric $\mathrm{T}^{\text {ab: }}$

Prediction of the canonical T^{ab} :

Geometric spin hall effect of the electron

Non-relativistic, transverse polarization, right incidence

Prediction of the symmetric $\mathrm{T}^{\text {ab: }}$

Prediction of the canonical $\mathrm{T}^{\text {ab: }}$

Issue with the Angular momentum tensor

$$
\begin{aligned}
& M^{\mu \nu \lambda}=x^{\mu} T_{\text {symm }}^{\lambda \nu}-x^{\nu} T_{\text {symm }}^{\lambda \mu} \\
& M_{C}^{\mu \nu \lambda}=x^{\mu} T_{C}^{\lambda v}-x^{v} T_{C}^{\lambda \mu}+\frac{\partial L}{\partial\left(\partial_{\lambda} \phi_{a}\right)} \Sigma_{a b}^{\mu \nu} \phi_{b} \\
& M_{\text {revised? }}^{\mu \nu \lambda}=x^{\mu} T_{\text {revised }}^{\lambda v}-x^{v} T_{\text {revised }}^{\lambda \mu}+\frac{\partial L}{\partial\left(\partial_{\lambda} \phi_{a}\right)} \Sigma_{a b}^{\mu \nu} \phi_{b} \\
& +\frac{1}{2} g^{\lambda \nu} \frac{\partial L}{\partial\left(\partial_{\mu} \phi_{a}\right)} \phi_{a}-\frac{1}{2} g^{\lambda \mu} \frac{\partial L}{\partial\left(\partial_{\nu} \phi_{a}\right)} \phi_{a}
\end{aligned}
$$

Our trick applies to longitudinal spin flux only, but not to transverse flux of angular momentum!

The interacting fields: scalar case

$$
\begin{gathered}
T^{\mu v}(x)=\frac{1}{\sqrt{-g}} \frac{\delta I_{M}}{\delta g_{\mu v}(x)} \\
I_{\phi}=\int d^{4} x \sqrt{-g}\left(\frac{-1}{2} D_{\mu} \phi D^{\mu} \phi+\frac{1}{8} R \phi^{2}\right) \\
\rightarrow T_{\text {new }}^{\mu v}=\frac{\partial L\left(\phi_{a}, \partial_{\mu} \phi_{a}\right)}{\partial\left(\partial_{\mu} \phi_{a}\right)} \vec{\partial}^{v} \phi_{a}
\end{gathered}
$$

This gives a gravitational theory different from Einstein's GR

T^{ab} and fundamental principles of physics

>Gauge principle: gauge dependence of the Hamiltonian in external gauge and gravitational fields

$$
H_{e}=\vec{\alpha} \cdot \frac{1}{i} \vec{D}_{e}+M_{e} \beta+q_{e} A^{0},
$$

$$
\vec{J}_{e}=\frac{1}{2} \vec{\Sigma}+\vec{x} \times \frac{1}{i} \vec{z}
$$

$>$ Equivalence principle: source of gravity

$$
I_{\phi}=\int d^{4} x \sqrt{-g}\left(\frac{-1}{2} D_{\mu} \phi D^{\mu} \phi+\frac{1}{8} R \phi^{2}\right)
$$

$>$ Reduction of a quantum wave $|\psi\rangle=\sum c_{i}\left|\psi_{i}\right\rangle \rightarrow\left|C_{i}\right|^{2}\left|\psi_{i}\right\rangle$

Challenging on any of the above would go far beyond the standard Model

Summary and further studies

$>$ Expression of T^{ab} is not arbitrary. It can be tested experimentally!
$>$ We are not even clear about the free fields
$>$ A new expression of T^{ab} derived from quantum conservation laws
$>$ Two experimental schemes: momentum flux and energy flux
$>$ Interacting fields and $M^{\text {abc }}$
$>$ Much work to do with hadron structure

Thank you!谢谢!

