

IGI

Meson Transition Form Factorsexperimental results

Patrik Adlarson

Johannes Gutenberg Universität, Mainz, A2 collaboration Hadron-China Friday Aug 7, 2015

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

Introduction

Space Like TFF

Time Like TFF

Outline

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

Introduction

TFF and connection to $(g-2)_{\mu}$

Space Like TFF

Time Like TFF

Outline

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JG U

Introduction TFF and connection to $(g-2)_{\mu}$ ₩SI **Space Like TFF Time Like** TFF CELLO, CLEO, CMD-2, GLUEX, NA48, NA60, SINDRUM, SND

Space & Time-like Form Factors JOHANNES GUTENBERG

The Form Factor F(q²) expresses influence of hadronic internal structure on scattering cross-section Meson TFF accessed in kinematical regions of (transfered squared four-

momentum) q² through study of space- and time like processes

VMD

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

[G|L

In Vector Meson Dominance (VMD), virtual photon couples to intermediate vector meson state: ρ , ω , ϕ , ... $J^{P} = 1^{-1}$

Effect of VMD seen in annihilation process when q² approaches the resonant region of the vector meson

[L. G. Landsberg, Phys. Rept. 128, 301 (1985)]

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

[G|L

The anomalous magnetic moment of muon known to very high precision

$$a_{\mu}^{\exp} = 11\ 659\ 208.9 \pm 6.3 \cdot 10^{-10}$$
 BNL, PRD 73, 072(2006)
 $a_{\mu}^{SM} = 11\ 659\ 180.2 \pm 4.9 \cdot 10^{-10}$ Eur Phys J C71, 1515(2011)

10

$$\Delta a_{\mu}^{\exp-SM} = 28.7 \pm 8.0 \cdot 10^{-10}$$

3.6 *σ* **discrepancy...Beyond Standard Model Physics?**

$$(g-2)_{\mu}$$
 SM contribution

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Gl

$$a_{\mu}^{QED} = (11\ 658\ 471.809 \pm 0.015) \cdot 10^{-10}$$

$$a_{\mu}^{W,Z} = (15.4 \pm 0.2) \cdot 10^{-10}$$

$$a_{\mu}^{hadr} = (692.3 \pm 4.2) \cdot 10^{-10} + (10.5 \pm 2.6) \cdot 10^{-10} + \dots$$

Future experimental measurements at BNL and J-PARC expected to reduce uncertainty to $\delta a_{\mu} \sim$ 1.6 x 10^{-10}

The uncertainty of the SM calculation dominated by hadronic contributions and soon greatest limiting factor

$$(g-2)_{\mu} \text{ HVP contribution}$$

$$JOHANNES GUTENBERGUNIVERSITÄT MAINZ$$

$$a_{\mu}^{hadr} = (692.3 \pm 4.2) \cdot 10^{-10} + (10.5 \pm 2.6) \cdot 10^{-10} + \dots$$

Hadronic Vacuum Polarisation contribution to a_{μ} related to hadronic cross section in e^+e^- collisions via dispersion relations

$$a_{\mu}^{HVP} \cong \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} K(s) \sigma(e^+ e^- \to ha \, dr) \, ds$$

 2π contribution below 1 GeV dominating contribution

$(g-2)_{\mu}$ Recent HVP contribution

Precision data from Novosibirsk, BaBar, Belle, KLOE, BESIII

BESIII estimate of $a_{\mu}^{\pi\pi,LO}$ arXiv 1507.08188, Initial State Radiation (ISR) data

See Symmetry Breaking Hidden Local Symmetry Model (BHLS) for *one recent* theoretical evaluation 4.5₀ (BESIII data points not included) arXiv:1507.02943

Gll

JOHANNES GUTENBERG

UNIVERSITÄT

Interaction of virtual mesons with $\gamma^{(*)}$

No direct relation to measureable quantitiesmodel dependence

Off-shell P form factors not accessible experimentally...but any aspiring model should be able to correctly describe also the on-shell scenario

TFF used as experimental input

HLbL Data Driven Approaches

Gl

Based on dispersion relations

Provide direct link between HLbL contribution and experimental data

More reliable theoretical uncertainties

Approach based on analytic structure on HLbL tensor: G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer arXiv: 1402.7081v2, 1408.2517v2, 1410.491v2 [hep-ph]

Approach based on analytic properties of the EM vertex function of muon: V. Pauk and M. Vanderhaeghen arXiv: 1403.7503, 1409.0819 [hep-ph]

Approach based on analytic structure on HLbL tensor:

G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer arXiv: 1402.7081v2, 1408.2517v2, 1410.491v2 [hep-ph]

Transition Form Factors

[G|L

Largest individual HLbL contribution is π^0 pole, single and double virtual FF

Figure by A. Kupsc, Uppsala University

TFF F_{π}^{2} naïve VMD model where photons only couple to vector mesons, ρ , ...

Space- and Time- like processes used to access different kinematical regions

Kinematically forbidden regions shaded

π⁰ Dalitz Decay

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Gll

Observable: slope parameter a_{π} FF = $(1 - a_{\pi}x)^{-1} \sim 1 + a_{\pi}x$ for small a_{π}

"...we think that a precise measurement of a_{π} which would not rely on any kind of extrapolation remains an interesting issue."

 Extrapolation from space-like region

 CELLO
 +0.0326(26)stat(26)syst

 Behrend et al (CELLO) Z. Phys.C 49 (1991) 401

 CLEO
 +0.0303(8)stat(9)syst(12)

 Gronberg et al (CLEO) Phys.Rev.D 57 (1998) 33

In search of a dark photon in $\pi^0 \rightarrow \gamma U \rightarrow e^+e^- \gamma$

Data sample can be used to determine π^0 TFF

~5.0 x 10⁵ events in final event sample. To be analysed ~8.0 x 10⁶ π^0 Dalitz Based on 1.7 x 10⁷ π^0 Dalitz decays TFF measurement in progress

V-P Transition Form Factors

Since Vector mesons act as intermediate states for TFF of Pseudoscalar mesons, also information obtained by studying TFF of Vector mesons to Pseudoscalar mesons are of interest.

NA60[Phys. Lett. B 677, 260 (2009)]SND[Phys. Lett. B 486, 29 (2000)]CMD-2[Phys. Lett. B 562, 173 (2003)]KLOE[Phys. Lett. B 669, 223 (2008)]

7th Workshop HPCOW- Duke Kunshan University, Aug. 1-8, 2015

[G|L

UNIVERSITÄT MAINZ

JOHANNES GUTENBERG

π^0 Transition Form Factors

[G|L

NA60 and effective field theory

|F_{π⁰}(q²₁,q²₂)|² ⁷-1.2 ⁹-1 ⁵-8⁻¹ $\phi \rightarrow \pi^0 \gamma$ 10² $\theta = \pm - 2^{\circ}$ VMD 0.8 $\omega \rightarrow \pi^0 \gamma$...but NA60 dimuon 0.6 data finds better agreement in another 10¹ 0.4 effective field theory $e^+e^- \rightarrow \pi^0 \gamma$ approach which 0.2 includes both P nonet and light V nonet 0 $e^+e^- \rightarrow \pi^0 \gamma$ $\gamma \gamma \rightarrow \pi$ 10⁰ -0.2 0.2 0.4 0.6 0.0 -0.4 q [GeV] -0.2 0 0.4 -0.4 0.2 0.6 0.8 1 1.2 q₁² [GeV²] [Terschlüsen, Leupold, Lutz, EPJ. A48 (2012) 190] $\pi^0 \rightarrow \gamma^{(*)} \gamma^{(*)}$

Figure by A. Kupsc, Uppsala University

7th Workshop HPCOW- Duke Kunshan University, Aug. 1-8, 2015

[G|L

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

π^0 Transition Form Factors

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

[G|L

KLOE arXiv:1501.05434 [hep-ex]

First measurement of $\phi \pi^0 \gamma^*$ TFF under way 9000 signal events based on 1.7 fb⁻¹ MC (green) based on constant TFF

Figure by A. Kupsc, Uppsala University

[G|L

π^0 SL TFF Single Tag BESIII

Analysis based on 2.9 pb⁻¹ Ψ (3770) data (simulation shown in figure)

Possible to extract TFF in region $Q^2 (Q = -q) 0.3 - 3.1 \text{ GeV}^2$

Projected statistical uncertainty shown

Systematical studies on data currently being performed

[G|L

MAINZ

JOHANNES GUTENBERG UNIVERSITÄT

π^0 SL TFF Single Tag KLOE-2

Makes it possible to extract TFF in region $Q^2 (Q = -q) < 0.1 \text{ GeV}^2$

With 5fb⁻¹ integrated luminosity Stat. unc 6% per data point

HET

Scintillator hodoscope 11m from the Interaction Point 420 < E_e < 495 (MeV)

7th Workshop HPCOW- Duke Kunshan University, Aug. 1-8, 2015

Gl

UNIVERSITÄT MAINZ

JOHANNES GUTENBERG

IGIL

[G|L

Several anomalous η decay channels analysed with same analysis scheme Norm. to $\eta \rightarrow \pi^+\pi^-\pi^0$

PRELIMINARY RESULTS			
Channel	Branching Ratio		
$\eta ightarrow \pi^+\pi^-\gamma$	$(4.68 \pm 0.07_{stat/fit} \pm 0.19_{sys}) \times 10^{-2}$		
$\eta ightarrow e^+ e^- \gamma$	$(6.75 \pm 0.06_{stat/fit} \pm 0.29_{sys}) \times 10^{-3}$		
$\eta ightarrow \pi^+\pi^-e^+e^-$	$(2.7 \pm 0.2_{stat} \pm 0.1_{sys}) \times 10^{-4}$		
$\eta \to e^+ e^- e^+ e^-$	$(3.2 \pm 0.9_{stat} \pm 0.4_{sys}) \times 10^{-5}$		

MAINZ

UNIVERSITÄT

η/η' SL TFF Single Tag BESIII

At the level of accuracy needed for (g-2) $_{\mu}$ contributions from η and η ' cannot be neglected.

Analysis based on 2.9 pb⁻¹ Ψ (3770) data (simulation shown in figure)

η SL TFF GLUEX

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

GLUEX projected FF data points complementary to BESIII

Talk Liping Gan Wednesday 10.00

η' Dalitz decay

First observation of η ' Dalitz decay Based on 1.3 x 10^9 J/ ψ events

BR($\eta' \rightarrow e + e - \gamma$) = (4.69 ± 0.20 ± 0.23) x 10⁻⁴

Pole is inside kinematical boundary Form Factor parametrisation

$$\left|F(q^2)\right|^2 = \frac{\Lambda^2(\Lambda^2 + \gamma^2)}{(\Lambda^2 - \gamma^2)^2 + \Lambda^2 \gamma^2}$$

Events/ (5 MeV/c²

300

200

100

Ŏ.85

0.9

7th Workshop HPCOW- Duke Kunshan University, Aug. 1-8, 2015

1.05

Ġl

MAINZ

JOHANNES GUTENBERG UNIVERSITÄT

Phys. Rev. D 92, 012001 (2015)

0.95

M(ye⁺e⁻) (GeV/c²)

η' Dalitz decay

First observation of η' Dalitz decay Based on 1.3 x 10⁹ J/ ψ events

BR($\eta' \rightarrow e+e-\gamma$) = (4.69 ± 0.20 ± 0.23) x 10⁻⁴

Pole is inside kinematical boundary Form Factor parametrisation

$$\left|F(q^2)\right|^2 = \frac{\Lambda^2(\Lambda^2 + \gamma^2)}{(\Lambda^2 - \gamma^2)^2 + \Lambda^2 \gamma^2}$$

 Λ , γ : mass and width of Breit-Wigner effective contributing V meson

Future experimental results from A2 and CLAS

7th Workshop HPCOW- Duke Kunshan University, Aug. 1-8, 2015

Gll

$\eta' \rightarrow \omega e^+e^-$ first observation

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Gll

First observation of $\eta' \rightarrow \omega e^+e^-$ Based on 1.3 x 10⁹ J/ ψ events

BR($\eta' \rightarrow \omega e + e -) = (1.97 \pm 0.34 \pm 0.17) \times 10^{-4}$

Theory: 2.0 x 10⁻⁴ [Faessler, Fuchs, Krivoruchenko, Phys. Rev. C 61, 035206 (2000)] 1.69±0.56 x 10⁻⁴ [Terschlüsen, Leupold, Lutz, EPJ. A48 (2012) 190]

arXiv:1507.06734

$J/\psi \rightarrow Pe^+e^-$ Theory input

[G|L

EM Dalitz decays of light unflavored mesons studied by many experiments

What about experimental input for charmonium states interacting with EM field?

Theoretical prediction assuming simple pole approximation [Fu, Li, Qin, Yang, Mod. Phys. Lett. A 27 1250223 (2012)]

$$|F_{\psi P}(q^2)| = \frac{1}{1 - q^2 / \Lambda^2}$$
 ($\Lambda = m_{\psi}, = 3.686 \text{ GeV}$

Decay mode	e^+e^-	$\mu^+\mu^-$
$\psi ightarrow \pi^0 l^+ l^-$	$(3.89^{+0.37}_{-0.33}) \times 10^{-7}$	$(1.01^{+0.10}_{-0.09}) \times 10^{-7}$
$\psi ightarrow \eta l^+ l^-$	$(1.21 \pm 0.04) \times 10^{-5}$	$(0.30 \pm 0.01) imes 10^{-5}$
$\psi o \eta' l^+ l^-$	$(5.66 \pm 0.16) \times 10^{-5}$	$(1.31 \pm 0.04) \times 10^{-5}$

$J/\psi \rightarrow Pe^+e^-$ Theory input

[G|L

EM Dalitz decays of light unflavored mesons studied by many experiments

What about experimental input for charmonium states interacting with EM field?

Theoretical prediction assuming simple pole approximation [Fu, Li, Qin, Yang, Mod. Phys. Lett. A 27 1250223 (2012)]

$$|F_{\psi P}(q^2)| = \frac{1}{1 - q^2 / \Lambda^2}$$
 ($\Lambda = m_{\psi} = 3.686 \text{ GeV}$

Decay mode	e^+e^-	$\mu^+\mu^-$
$\psi ightarrow \pi^0 l^+ l^-$	$(3.89^{+0.37}_{-0.33}) imes 10^{-7}$	$(1.01^{+0.10}_{-0.09}) \times 10^{-7}$
$\psi o \eta l^+ l^-$	$(1.21 \pm 0.04) \times 10^{-5}$	$(0.30 \pm 0.01) imes 10^{-5}$
$\psi o \eta' l^+ l^-$	$(5.66 \pm 0.16) imes 10^{-5}$	$(1.31\pm0.04) imes10^{-5}$

$J/\psi \Rightarrow Pe^+e^-$ first observation

[Phys. Rev. D 89, 092008 (2014)]

	Modes	N_S	N_B	ϵ
a)	$J/\psi \to \eta' e^+ e^- (\eta' \to \gamma \pi^+ \pi^-)$	983.3 ± 33.0	27.4 ± 1.0	24.8%
b)	$J/\psi \to \eta' e^+ e^- (\eta' \to \pi^+ \pi^- \eta)$	373.0 ± 19.9	8.5 ± 0.3	17.6%
c)	$J/\psi \to \eta e^+ e^- (\eta \to \pi^+ \pi^- \pi^0)$	84.2 ± 9.6	5.3 ± 0.3	14.9%
d)	$J/\psi ightarrow \eta e^+ e^- (\eta ightarrow \gamma \gamma)$	235.5 ± 16.4	8.7 ± 0.3	22.7%
e)	$J/\psi ightarrow \pi^0 e^+ e^- (\pi^0 ightarrow \gamma \gamma)$	39.4 ± 6.9	1.1 ± 0.1	23.4%

Red Blue	– data points – total MC fits
Yellow	– peaking bgd
Green	– non peaking bgd

M(e⁺e⁻) (GeV/c²) 7th Workshop HPCOW- Duke Kunshan University, Aug. 1-8, 2015 IGIL

UNIVERSITÄT MAINZ

JOHANNES GUTENBERG

$J/\psi \rightarrow Pe^+e^-$ first observation

7th Workshop HPCOW- Duke Kunshan University, Aug. 1-8, 2015

[G|U

UNIVERSITÄT MAINZ

JOHANNES GUTENBERG

Summary TFF

ίGΙ

TFF important as theoretical input to $(g-2)_{u}$

Data driven approaches next steps to reduce HLbL contribution

VMD good approximation to explain experimental data (except $\omega \rightarrow \pi^0 e^+ e^-$?)

Active field and many experiments can participate in this quest

Chinese perspective: BESIII plays important role in constraining the uncertainties to $(g-2)_{\mu}$

UNIVERSITÄT MAINZ

CELLO, CLEO, CMD-2, GLUEX, NA48, NA60, SINDRUM, SND

Thank you

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

IGIL

WASA at COSY

- Wire Chamber
- Calorimeter

-

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

IGlU

BESIII detector

BESIII four main components

Resolution @1 GeV/c $\sigma_{dE/dx}$ EMC E Resolution Barrol	0.5% 6% 2.5%
E Resolution End Cap	2.5% 5%
Barrel	80 ps
End caps	110 ps
<i>Muon chambers</i> Position resolution	~ 2 cm

JGU

KLOE detector

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Motivation TFF

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Ġll

TFF enters in $\gamma\gamma$ physics can improve measurement of radiative widths

Cross section for X production in $\gamma\gamma$ interactions with photon 4-mom q_n

$$\sigma(e^+e^- \to e^+e^-X) = \int \sigma_{\gamma\gamma \to X}(q_1, q_2) \Phi(q_1, q_2) \frac{d\vec{q}_1}{E_1} \frac{d\vec{q}_2}{E_2}$$

The formation cross section for a narrow spin 0 resonance is

$$\sigma_{\gamma\gamma \to X} = \frac{8\pi^2}{m_X} \Gamma_{X \to \gamma\gamma} \delta((q_1 + q_2)^2 - m_X^2) \left| F(q_1^2, q_2^2) \right|^2$$

Both radiative width and transition form factor plays role in formation