$5^{\text {th }}$ Workshop on Hadron Physics in China and Opportunities in US, Huangshan, July 2-5, 2013

Gunar.Schnell @ DESY.de

Disclaimer

- very active field!
- too many results to be covered

Disclaimer

- very active field!
- too many results to be covered
- have to make a choice:
- highlight published results
- preliminary results if outstanding
- focus on leading-twist TMDs
- skip as much phenomenology as possible (apologies to the theorists, but also two theory overviews on TMDs at the workshop)

A tribute to some founding figures

Comprehensive review of data by A.D. Panagiotou (Int.J.Mod.Phys.A 5 (1990) 1197)

founding figures

- pQCD: single-spin asymmetries (SSA) heavily suppressed:

$$
\mathbf{A}_{\mathbf{N}} \propto \alpha_{\mathbf{S}} \frac{\mathbf{m}_{\mathbf{q}}}{\mathbf{Q}^{\mathbf{2}}} \quad \text { [Kane, Repko, Pumplin, 1978] }
$$

founding figures

- pQCD: single-spin asymmetries (SSA) heavily suppressed:

$$
\mathbf{A}_{\mathbf{N}} \propto \alpha_{\mathbf{S}} \frac{\mathbf{m}_{\mathbf{q}}}{\mathbf{Q}^{\mathbf{2}}} \quad \text { [Kane, Repko, Pumplin, 1978] }
$$

- BUT: large SSA in pp collision and semi-inclusive DIS

1976

2002

|99|

2008

founding figures

- pQCD: single-spin asymmetries (SSA) heavil suppressed:

$$
\mathbf{A}_{\mathbf{N}} \propto \alpha_{\mathbf{S}} \frac{\mathbf{m}_{\mathbf{q}}}{\mathbf{Q}^{2}}
$$

p

p

Spin-momentum structure of the nucleon

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}+\lambda \gamma^{+} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+\lambda \Lambda g_{1}+\lambda S^{i} k^{i} \frac{1}{m} g_{1 T}\right] \\
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}-s^{j} i \sigma^{+j} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+s^{i} \epsilon^{i j} k^{j} \frac{1}{m} h_{1}^{\perp}+s^{i} S^{i} h_{1}\right. \\
& \left.+s^{i}\left(2 k^{i} k^{j}-\boldsymbol{k}^{2} \delta^{i j}\right) S^{j} \frac{1}{2 m^{2}} h_{1 T}^{\perp}+\Lambda s^{i} k^{i} \frac{1}{m} h_{1 L}^{\perp}\right]
\end{aligned}
$$

$\begin{aligned} & \text { ó } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \ddot{Z} \end{aligned}$		U	L	T
	U	f_{1}		h_{1}^{\perp}
	L		$g_{1 L}$	$h_{1 L}^{\perp}$
	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

Spin-momentum structure of the nucleon

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}+\lambda \gamma^{+} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+\lambda \Lambda g_{1}+\lambda S^{i} k^{i} \frac{1}{m} g_{1 T}\right] \\
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}-s^{j} i \sigma^{+j} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+s^{i} \epsilon^{i j} k^{j} \frac{1}{m} h_{1}^{\perp}+s^{i} S^{i} h_{1}\right. \\
& \left.+s^{i}\left(2 k^{i} k^{j}-\boldsymbol{k}^{2} \delta^{i j}\right) S^{j} \frac{1}{2 m^{2}} h_{1 T}^{\perp}+\Lambda s^{i} k^{i} \frac{1}{m} h_{1 L}^{\perp}\right]
\end{aligned}
$$

	L	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers

- each TMD describes a particular spin-

Boer-Mulders

- functions in black survive integration over transverse momentum
- functions in green box are chirally odd pretzelosity ed are naive T-odd

Collins fctn. - chiral-odd fragmentation

- spin-dependence in fragmentation
- left-right asymmetry in hadron direction transverse to both quark spin and momentum

Collins fctn. - chiral-odd fragmentation

- spin-dependence in fragmentation
- left-right asymmetry in hadron direction transverse to both quark spin and momentum
- extracted from SIDIS and $e^{+} e^{-}$ annihilation data

Collins fctn. - chiral-odd fragmentation

- spin-dependence in fragmentation annihilation data

Collins fctn. - chiral-odd fragmentation

 fragmentation

- left-right asymmetry in hadron direction transverse to both quark spin and momentum
- extracted from SIDIS and $e^{+} e^{-}$ annihilation data
- spin average gives "ordinary" D_{1}

a QCD laboratory

a QCD laboratory

hadron structure
(distribution functions)

a QCD laboratory

a QCD laboratory

- data from COMPASS, HERMES, and JLab: planned for future EIC
- convolutes parton distribution (Φ) and fragmentation (Δ) functions $\Phi \otimes \Delta$
- need fragmentation function to extract distribution functions

a QCD laboratory

- data from COMPASS, HERMES, and JLab: planned for future EIC
- ideal place to study hadronization
- convolutes parton fragmentation functions $\Delta \otimes \Delta$
- wealth of ("raw") data from Belle and BaBar, possibly BESIII

a QCD laboratory

- convolutes parton distribution functions
$\Phi \otimes \Phi$
- testing ground for sign reversal of naive-T-odd distributions
- hardly any data
- convolutes parton distribution (Φ) and fragmentation (Δ) functions $\Phi \otimes \Delta$
- need fragmentation function to extract distribution functions

Drell-Yan

- ideal place to study hadronization
- convolutes parton fragmentation functions $\Delta \otimes \Delta$
- wealth of ("raw") data from Belle and BaBar, possibly BESIII

Probing TMDs in semi-inclusive DIS

U	L	T
f_{1}		h_{1}^{\perp}
	$g_{1 L}$	$h_{1 L}^{\perp}$
$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

in SIDIS*) couple PDFs to:
*) semi-inclusive DIS with unpolarized final state

Probing TMDs in semi-inclusive DIS

*) semi-inclusive DIS with unpolarized final state

Probing TMDs in semi-inclusive DIS

	uark pol.				*
		U	L	T	\sim
흘	U	f_{1}		$h_{\stackrel{1}{\perp}}$	PDF FF
\%	L		$g_{1 L}$	$h_{1 L}^{\perp}$	in SIDIS*) couple PDFs to:
首	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\prime}$	Collins FF

*) semi-inclusive DIS with unpolarized final state

Probing TMDs in semi-inclusive DIS

\author{

quark pol.				
	U	L	T	
U	f_{1}		h_{1}^{\perp}	

}
$" \rightarrow$ give rise to characteristic azimuthal dependences
*) semi-inclusive DIS with unpolarized final state

1-Hadron production (ep $\rightarrow e h X)$

$$
\begin{array}{r}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}^{6}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{array}
$$

$$
\begin{array}{cc}
\sigma_{X Y} & +\frac{1}{Q}\left(\sin \left(2 \phi-\phi_{S}\right) d \sigma_{U T}^{11}+\sin \phi_{S} d \sigma_{U T}^{12}\right) \\
\begin{array}{c}
\text { Beam Target } \\
\text { Polarization }
\end{array} & \left.+\lambda_{e}\left[\cos \left(\phi-\phi_{S}\right) d \sigma_{L T}^{13}+\frac{1}{Q}\left(\cos \phi_{S} d \sigma_{L T}^{14}+\cos \left(2 \phi-\phi_{S}\right) d \sigma_{L T}^{15}\right)\right]\right\}
\end{array}
$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

1-Hadron production (ep $\rightarrow e h X$)

$$
\begin{array}{r}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{{\left.\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}^{6}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\}}_{+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.}\right.
\end{array}
$$

$$
+\frac{1}{Q}\left(\sin \left(2 \phi-\phi_{S}\right) d \sigma_{U T}^{11}+\sin \phi_{S} d \sigma_{U T}^{12}\right)
$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

1-Hadron production (ep $\rightarrow e h X$)

$$
\begin{gathered}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}^{6}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{gathered}
$$

$$
+\frac{1}{Q}\left(\sin \left(2 \phi-\phi_{S}\right) d \sigma_{U T}^{11}+\sin \phi_{S} d \sigma_{U T}^{12}\right)
$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Momentum density

- plenty of data available
- but mainly for integrated version of f_{1} from incl. DIS

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Momentum density

- plenty of data available
- but mainly for integrated version of f_{1} from incl. DIS
- all azimuthal asymmetries involve unintegrated f_{1} (at least) in denominator!

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Momentum density

- plenty of data available
- but mainly for integrated version of f_{1} from incl. DIS
- all azimuthal asymmetries involve unintegrated f_{1} (at least) in denominator!
- need hadron multiplicities and fragmentation functions not only binned in z but also in $\mathrm{P}_{\mathrm{h} \perp}$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Flavor dependence

Jefferson Lab Hall C

Gaussian

width

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Flavor dependence

Jefferson Lab Hall C

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Flavor dependence

- further flavor information via target variation and hadron ID

Muitipicities $\frac{d^{4} \mathcal{M}^{h}\left(x, y, z, P_{h \perp}^{2}\right)}{d x d y d z d P_{h \perp}^{2}} \propto \frac{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q \rightarrow h}\left(z, K_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)}$

Muitiplicities
 $\frac{d^{4} \mathcal{M}^{h}\left(x, y, z, P_{h \perp}^{2}\right)}{d x d y d z d P_{h \perp}^{2}} \propto \frac{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q \rightarrow h}\left(z, K_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)}$

- ($P_{h \perp}$-integrated) multiplicities ideal input for FF fits and tests

Muitiplicities
 $\frac{d^{4} \mathcal{M}^{h}\left(x, y, z, P_{h \perp}^{2}\right)}{d x d y d z d P_{h \perp}^{2}} \propto \frac{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q \rightarrow h}\left(z, K_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)}$

- ($P_{h_{\perp}}$-integrated) multiplicities ideal input for FF fits and tests
- kaons difficult to describe

Muitipicicities
 $\frac{d^{4} \mathcal{M}^{h}\left(x, y, z, P_{h \perp}^{2}\right)}{d x d y d z d P_{h \perp}^{2}} \propto \frac{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q \rightarrow h}\left(z, K_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)}$

- ($P_{h_{\perp}}$-integrated) multiplicities ideal input for FF fits and tests
- kaons difficult to describe
- charge-separation unlike e e^{-}data

Muitipicicities
 $\frac{d^{4} \mathcal{M}^{h}\left(x, y, z, P_{h \perp}^{2}\right)}{d x d y d z d P_{h \perp}^{2}} \propto \frac{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q \rightarrow h}\left(z, K_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)}$

- ($P_{\left.h_{\perp}-i n t e g r a t e d\right) ~ m u l t i p l i c i t i e s ~ i d e a l ~ i n p u t ~ f o r ~ F F ~ f i t s ~ a n d ~ t e s t s ~}^{2}$
- kaons difficult to describe
- charge-separation unlike e+e- data
- complemented by new high-precision data from $e^{+} e^{-}$by Belle and BaBar

Hadron production @ B-factories

- explore z-region not probed before
clear impact on available MC tunes

The quest for transversity

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity distribution (Collins fragmentation)

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity
Non-zero Collins function

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity distribution

 (Collins fragmentation)- significant in size and opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

- leads to various cancellations in SSA observables

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity Non-zero Collins function

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- wealth of new results:
- COMPASS
[PLB 692 (2010) 240,
PLB 717 (2012) 376]
- HERMES
[PLB 693 (2010) 11]
- Jefferson Lab
[PRL 107 (2011) 072003]

18
Hadron Physics in China 2013, Huangshan

- analyzed in different frames:

Collins FF from $e^{+} e^{-}$

- Collins-Soper

vs. Gottfried-Jackson
\Rightarrow different convolution over transverse momenta
$A_{12} \propto \cos \left(\phi_{1}+\phi_{2}\right) \frac{H_{1}^{\perp,[1]} \bar{H}_{1}^{\perp,[1]}}{D_{1}^{[0]} \bar{D}_{1}^{[0]}} \quad A_{0} \propto \cos \left(2 \phi_{0}\right) \frac{\mathcal{F}\left[\mathcal{W} H_{1}^{\perp} \bar{H}_{1}^{\perp}\right]}{\mathcal{F}\left[D_{1} \bar{D}_{1}\right]}$
$F^{[n]}=\int d\left|\mathbf{k}_{T}\right|^{2}\left[\frac{\left|\mathbf{k}_{T}\right|}{M_{h}}\right]^{n} F\left(z, \mathbf{k}_{T}^{2}\right)$
- analyzed in different frames:

Collins FF from $e^{+} e^{-}$

- Collins-Soper

vs. Gottfried-Jackson

\Rightarrow different convolution over transverse momenta

- analyzed in different frames:

Collins FF from $e^{+} e^{-}$

- Collins-Soper

vs. Gottfried-Jackson

\Rightarrow different convolution over transverse momenta

Collins FF from $e^{+} e^{-}$

- nonzero A^{UL} and A^{UC}
\Rightarrow only modest dependence on $\left(p_{t 1}, p_{t 2}\right)$
$\Rightarrow \mathrm{A}^{\mathrm{UC}}<\mathrm{A}^{\mathrm{UL}}$; complementary information on $\mathrm{H}_{1}{ }^{\perp}$, fav and $\mathrm{H}_{1}{ }^{\perp}$, dis
$\Rightarrow \mathrm{A}_{0}<\mathrm{A}_{12}$, but interesting structure in p_{t}
slide taken from [I. Garzia, DIS 2013]

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Collins FF and transversity fit

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity through

 2-hadron fragmentation

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity distribution (2-hadron fragmentation)

- HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign
- ${ }^{2} \mathrm{H}$ results consistent with zero
[A. Airapetian et al., JHEP 06 (2008) 017]
COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

COMPASS 2007/2010 proton data

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	f_{1}^{\perp}	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity distribution (2-hadron fragmentation)

[A. Airapetian et al., JHEP 06 (2008) 017]

- HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign
- ${ }^{2} \mathrm{H}$ results consistent with

zero	
[A. Vossen et al. PRL 10$]$	

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity distribution (2-hadron fragmentation)

[A. Airapetian et al., JHEP 06 (2008) 017]

- HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign
- ${ }^{2} \mathrm{H}$ results consistent with zero

$$
x h_{1}^{4 \mathrm{a}}(x)-x \mathrm{~h}_{1}^{\mathrm{h}^{\mathrm{d}}(x) / 4}
$$

- data from $e^{+} e^{-}$by BELLE allow first (collinear) extraction of transversity (compared to Anselmino et al.)

updated analysis, but no time today

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

First signal of transversity from polarized $p^{\uparrow} p->\pi^{+} \pi^{-} X$

- forward region -> valence effect from polarized (beam) proton
- dependence on cone cut due to underlying $\boldsymbol{p}^{\text {T }}$ dependence?

Transversity's friends

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Pretzelosity

- chiral-odd \rightarrow needs Collins FF (or similar)
- proton \& deuteron data consistently small
- cancelations? pretzelosity=zero? or just the additional suppression by two powers of P_{h}

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- again: chiral-odd
- evidence from CLAS (violating isospin symmetry?)
- consistent with zero at

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	f_{1}^{\perp}	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- again: chiral-odd
- evidence from CLAS (violating isospin symmetry?)
- consistent with zero at COMPASS and HERMES

S. Skoirala

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Worm-Gear II

- first direct evidence on:
- ${ }^{3} \mathrm{He}$ target at JLab
- H target at COMPASS \& HERMES

Hadron Physics in China 2013, Huangshan

"Wilson-line physics" naively T-odd distributions

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes for pions

$$
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}}=-\frac{\sum_{q} e_{q}^{2} f_{1 \mathrm{~T}}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes_{\mathcal{W}} D_{1}^{q}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)}
$$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes for pions

$$
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}}=-\frac{\sum_{q} e_{q}^{2} f_{1 T}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes_{\mathcal{W}} D_{1}^{q}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)}
$$

π^{+}dominated by u-quark scattering:

$$
\simeq-\frac{f_{1 T}^{\perp u}\left(x, p_{T}^{2}\right) \otimes \mathcal{W} D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}{f_{1}^{u}\left(x, p_{T}^{2}\right) \otimes D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}
$$

u-quark Sivers DF < 0

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes for pions

$$
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}}=-\frac{\sum_{q} e_{q}^{2} f_{1 T}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes_{\mathcal{W}} D_{1}^{q}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)}
$$

π^{+}dominated by u-quark scattering:

$$
\simeq-\frac{f_{1 T}^{\perp u}\left(x, p_{T}^{2}\right) \otimes \mathcal{W} D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}{f_{1}^{u}\left(x, p_{T}^{2}\right) \otimes D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}
$$

u-quark Sivers DF < 0
d-quark Sivers DF >0 (cancelation for π^{-})

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes

cancelation for D target supports opposite signs of up and down Sivers

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes

[courtesy of A. Bacchetta]

- cancelation for D target supports opposite signs of up and down Sivers
- new results from JLab using ${ }^{3} \mathrm{He}$ target and from COMPASS for proton target

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes Q^{2} dependence?

- slightly larger amplitudes at HERMES
- average Q^{2} about factor 3 larger at COMPASS

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes Q^{2} dependence?

- slightly larger amplitudes at HERMES

 average Q^{2} about factor 3 larger at COMPASS

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes Q^{2} dependence?

- slightly larger amplitudes at HERMES

is y-dependence a Q^{2} dependence? Evolution?
10^{-1} \mathbf{x}

Process dependence

simple QED example

DIS: attractive

Drell-Yan: repulsive

Process dependence

simple QED example

DIS: attractive

Drell-Yan: repulsive

result: Sivers/DIS $=-$ Sivers $\left.\right|_{\text {DY }}$

Process dependence

simple QED example

DIS: attract ${ }^{0} 0^{0}$
Drell-Yan: repulsive

result: Sivers|dIs $=-$ Sivers|Dy

Process dependence

need Drell-Yan experiments with transverse polarization: COMPASS, transverse SeaQuest, RHIC, ... ?
add color: QCD

result: Sivers|DIS $=-$ Sivers $\left.\right|_{\text {DY }}$

not quite Drell-Yan yet: jet SSA

- no sensitivity to fragmentation details: $\mathbf{p}^{\uparrow} \mathbf{p} \rightarrow$ jet $+\mathbf{X}$
- Sivers-type mechanism (use Sivers fctn from SIDIS fits)

Includes initial- and final-state color-charge interactions

Excludes initial- and final-state color-charge interactions

Boer-Mulders

spin-effects in unpolarized reactions

Unpolarized Drell-Yan

$$
\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]
$$

Unpolarized Drell-Yan

$$
\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right]
$$

Large deviations from Lam-Tung relation observed in DY [NA10 ('86/'88) \& E615 ('89)]

- "failure" of collinear PQCD

Unpolarized Drell-Yan

$$
\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right]
$$

Large deviations from Lam-Tung relation observed in DY [NA10 ('86/'88) \& E615 ('89)]

- "failure" of collinear PQCD
- possible source: Boer-Mulders effect

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Signs of Boer-Mulders

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Signs of Boer-Mulders

valence $B M$ fctn

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Signs of Boer-Mulders

valence and sea BM fctn

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Signs of Boer-Mulders

valence and sea BM fctn

similar BM fctn for up and down quarks?
valence $B M$ fctn

Modulations in spin-independent

 SIDIS cross section$$
\begin{aligned}
\frac{\mathrm{d}^{5} \sigma}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} \phi_{h} \mathrm{~d} P_{h \perp}^{2}}= & \frac{\alpha^{2}}{x y Q^{2}}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{A(y) F_{\mathrm{UU}, \mathrm{~T}}+B(y) F_{\mathrm{UU}, \mathrm{~L}}\right. \\
& \left.+C(y) \cos \phi_{h} F_{\mathrm{UU}}^{\cos \phi_{h}}+B(y) \cos 2 \phi_{h} F_{\mathrm{UU}}^{\cos 2 \phi_{h}}\right\}
\end{aligned}
$$

(Implicit sum over quark flavours)

signs of Boer-Mulders

[Airapetian et al., PRD 87 (2013) 012010]

- not zero!
[Airapetian et al., PRD 87 (2013) 012010]

- not zero!
- opposite sign for charged pions with larger magnitude for π^{-} -> same-sign BM-function for valence quarks?

signs of Boer-Mulders

[Airapetian et al., PRD 87 (2013) 012010]

- not zero!
- opposite sign for charged pions with larger magnitude for π^{-} -> same-sign BM-function for valence quarks?
- intriguing behavior for kaons

signs of Boer-Mulders

[Airapetian et al., PRD 87 (2013) 012010]

- not zero!
- opposite sign for charged pions with larger magnitude for π^{-} -> same-sign BM-function for valence quarks?
- intriguing behavior for kaons
- available in multidimensional binning both from HERMES and soon from COMPASS
signs of Boer-Mulders COMPASS ${ }^{6} \mathrm{LiD}$ (25% of 2004 data)
∇ h-

- available in multidimensional binning both from HERMES and soon from COMPASS
- first round of SIDIS measurements coming to an end

Summary

- precision data on fragmentation from $e^{+} e^{-}$annihilation
- transversity is non-zero and quite sizable
- can be measured, e.g., via Collins effect or s-p interference in 2hadron fragmentation
- Sivers and Boer-Mulders effects are also non-zero
- direct probe of "physics of the QCD Wilson line"
- possibly large evolution effects
- so far no sign of a non-zero pretzelosity distribution
- first evidences for non-vanishing worm-gear functions
- first round of SIDIS measurements coming to an end

Summary

- precision data on fragmentation from $e^{+} e^{-}$annihilation
- transversity is non-zero and quite sizable
- can be measured, e.g., via Collins effect or s-p interference in 2hadron fragmentation
- Sivers and Boer-Mulders effects are also non-zero
- direct probe of "physics of the QCD Wilson line"
- possibly large evolution effects
- so far no sign of a non-zero pretzelosity distribution
- first evidences for non-vanishing worm-gear functions
- let's prepare for
- precision measurements at ongoing and future facilities
- fundamental QCD tests in Drell-Yan experiments

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

A_{N}
$\mathrm{p}+\mathrm{p} \rightarrow \pi^{0}+\mathrm{X}$ t $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$

- Sivers fit to HERMES data nicely describes A_{N} in pp

Phys.Rev.Lett. 101 (2008) 222001.

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- Sivers fit to HERMES data nicely describes A_{N} in pp
- may also originate from Collins effect

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- Sivers fit to HERMES data nicely describes A_{N} in pp
- may also originate from Collins effect
- only sizable in forward direction

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- Sivers fit to HERMES data nicely describes A_{N} in pp
- may also originate from Collins effect
- only sizable in forward direction
- AN in pp persist over wide
 energy range:

Inclusive hadron electro-production

$e p^{\uparrow} \rightarrow e h X$

virtual photon going into the page
$e p^{\uparrow} \rightarrow h X$

lepton beam going into the page

Inclusive hadron electro-production

$$
e p^{\uparrow} \rightarrow h X
$$

Inclusive hadron electro-production

- scattered lepton undetected \Leftrightarrow lepton kinematics unknown

Inclusive hadron electro-production

- scattered lepton undetected \rightarrow lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$
- dominated by quasi-real photo-production (low Q ${ }^{2}$) \Rightarrow hadronic component of photon relevant?

Inclusive hadron electro-production

- scattered lepton undetected \Leftrightarrow lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$
- dominated by quasi-real photo-production (low Q^{2}) \Rightarrow hadronic component of photon relevant?
- cross section proportional to $S_{N}\left(k \times p_{h}\right) \sim \sin \phi$

Inclusive hadron electro-production

- scattered lepton undetected \Leftrightarrow lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$
- dominated by quasi-real photo-production (low Q ${ }^{2}$) \Leftrightarrow hadronic component of photon relevant?
- cross section proportional to $S_{N}\left(k \times p_{h}\right) \sim \sin \phi$ $A_{U T}\left(p_{T}, x_{F}, \phi\right)=$

$$
A_{U T}^{\sin \phi}\left(p_{T}, x_{F}\right) \sin \phi
$$

Inclusive hadron electro-production

- scattered lepton undetected \Leftrightarrow lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$
- dominated by quasi-real photo-production (low Q ${ }^{2}$) \rightarrow hadronic component of photon relevant?
- cross section proportional to $S_{N}\left(k \times p_{h}\right) \sim \sin \phi$ $A_{U T}\left(p_{T}, x_{F}, \phi\right)=$

$$
\begin{aligned}
A_{U T}^{\sin \phi}\left(p_{T}, x_{F}\right) \sin \phi & A_{\mathrm{N}}
\end{aligned} \quad \equiv \frac{\int_{\pi}^{2 \pi} \mathrm{~d} \phi \sigma_{\mathrm{UT}} \sin \phi-\int_{0}^{\pi} \mathrm{d} \phi \sigma_{\mathrm{UT}} \sin \phi}{\int_{0}^{2 \pi} \mathrm{~d} \phi \sigma_{\mathrm{UU}}}
$$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Inclusive hadrons in ep

behavior and size similar to SIDIS Sivers

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Inclusive hadrons in ep

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Inclusive hadrons in ep

