5th Workshop on Hadron Physics in China and Opportunities in US, Huangshan, July 2-5, 2013

Experimental data on

pp, and et e

Gunar.Schnell @ DESY.de

del País Vasco Ur

Disclaimer

- very active field!
 - too many results to be covered

Disclaimer

- very active field!
 - too many results to be covered
- have to make a choice:
 - highlight published results
 - preliminary results if outstanding
 - focus on leading-twist TMDs

skip as much phenomenology as possible (apologies to the theorists, but also two theory overviews on TMDs at the workshop)

A tribute to some founding figures

... founding figures

pQCD: single-spin asymmetries (SSA) heavily suppressed: $\mathbf{A_N} \propto lpha_{\mathbf{S}} \frac{\mathbf{m_q}}{\mathbf{O^2}}$

[Kane, Repko, Pumplin, 1978]

 π

... founding figures

pQCD: single-spin asymmetries (SSA) heavily suppressed: $\mathbf{A_N} \propto lpha_{\mathbf{S}} rac{\mathbf{m_q}}{\mathbf{\Omega^2}}$

BUT: large SSA in pp collision and semi-inclusive DIS

Gunar Schnell Only two models consistently describing the data: Hadron Physics in China 2013, Huangshan

 π

[Kane, Repko, Pumplin, 1978]

... founding figures

factorization pQCD: single-spin asymmetries (SSA) heavily suppressed:

collinear $\mathbf{m}_{\mathbf{q}}$ $\mathbf{A_N} \propto lpha_{\mathbf{S}}$ Ko, Pumplin, 1978]

semi-inclusive DIS

Gunar Schnell Only two models consistently describing the data:

Spin-momentum structure of the nucleon $\frac{1}{2} \operatorname{Tr} \left[\left(\gamma^{+} + \lambda \gamma^{+} \gamma_{5} \right) \Phi \right] = \frac{1}{2} \left| f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + \lambda \Lambda g_{1} + \lambda S^{i} k^{i} \frac{1}{m} g_{1T} \right|$ $\frac{1}{2} \operatorname{Tr} \left[(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5}) \Phi \right] = \frac{1}{2} \left| f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right|$

quark pol.				pol.	$+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} \mathbf{h}_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} \mathbf{h}_{1L}^{\perp}$		
nucleon pol.		U	L	Т	each TMD describes a particular spin-		
	U	f_1		h_1^\perp	momentum correlation		
	L		g_{1L}	h_{1L}^{\perp}	functions in black survive integration over transverse momentum		
	Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$	functions in green box are chirally odd		

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

- *q* →
 *s*pin-dependence in
- fragmentation
- left-right asymmetry in hadron direction transverse to both quark spin and momentum

- spin-dependence in fragmentation
- left-right asymmetry in hadron direction transverse to both quark spin and momentum
- extracted from SIDIS and e⁺e⁻ annihilation data

 π

 fragmentation
 left-right asymmetry in hadron direction transverse to both quark spin and momentum

spin-dependence in

extracted from SIDIS and e⁺e⁻ annihilation data

 π

 fragmentation
 left-right asymmetry in hadron direction transverse to both quark spin and momentum

spin-dependence in

- extracted from SIDIS and e⁺e⁻ annihilation data
- spin average gives "ordinary" D1

Gunar Schnell

6

hadron structure (distribution functions)

- data from COMPASS, HERMES, and JLab; planned for future EIC
- convolutes parton distribution (Φ) and fragmentation (Δ) functions $\Phi \otimes \Delta$
- need fragmentation function to extract distribution functions

- data from COMPASS, HERMES, and JLab; planned for future EIC
- convolutes parton distribution (Φ) and fragmentation (Δ) functions $\Phi \otimes \Delta$
- need fragmentation function to extract distribution functions

- ideal place to study hadronization
- convolutes parton fragmentation functions $\Delta \otimes \Delta$
- wealth of ("raw")
 data from Belle and
 BaBar, possibly
 BESIII

Hadron Physics in China 2013, Huangshan

Gunar Schnell

- data from COMPASS, HERMES, and JLab; planned for future EIC
- convolutes parton distribution (Φ) and fragmentation (Δ) functions $\Phi \otimes \Delta$
- need fragmentation function to extract distribution functions

- convolutes parton distribution functions $\Phi \otimes \Phi$
- testing ground for sign reversal of naive-T-odd distributions
- hardly any data

- ideal place to study hadronization
- convolutes parton fragmentation functions $\Delta \otimes \Delta$
- wealth of ("raw") data from Belle and BaBar, possibly BESIII

Hadron Physics in China 2013, Huangshan

Gunar Schnell

*) semi-inclusive DIS with unpolarized final state

Gunar Schnell

*) semi-inclusive DIS with unpolarized final state

*) semi-inclusive DIS with unpolarized final state

*) semi-inclusive DIS with unpolarized final state

1-Hadron production ($ep \rightarrow ehX$)

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} \\ + S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} \\ + S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \\ + \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right) \\ + \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\}$$

Bear

Pol

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 "Trento Conventions", Phys. Rev. D 70 (2004) 117504 9 Hadron Physics in China 2013, Huangshan

$$\begin{aligned} & \mathsf{I} - \mathsf{Hadron production}(ep \rightarrow ehX) \\ & d\sigma = d\sigma_{UU}^0 + \cos 2\phi \, d\sigma_{UU}^1 + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^2 + \lambda_e \frac{1}{Q} \sin \phi \, d\sigma_{LU}^3 \\ & + S_L \left\{ \sin 2\phi \, d\sigma_{UL}^4 + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^5 + \lambda_e \left[d\sigma_{LL}^6 + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^7 \right] \right\} \\ & + S_T \left\{ \sin(\phi - \phi_S) \, d\sigma_{UT}^3 + \sin(\phi + \phi_S) \, d\sigma_{UT}^9 + \sin(3\phi - \phi_S) \, d\sigma_{UT}^{10} \right\} \\ & + \frac{1}{Q} \left(\sin(2\phi - \phi_S) \, d\sigma_{UT}^{11} + \sin \phi_S \, d\sigma_{UT}^{12} \right) \\ & + \lambda_e \left[\cos(\phi - \phi_S) \, d\sigma_{TT}^{13} \right] + \frac{1}{Q} \left(\cos \phi_S \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_S) \, d\sigma_{LT}^{15} \right) \right] \right\} \\ & \mathsf{Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197} \\ & \mathsf{Boer and Mulders, Phys. Rev. D 57 (1998) 5780} \\ & \mathsf{Bacchetta et al., Phys. Lett. B 595 (2004) 309} \\ & \mathsf{Bacchetta et al., Phys. Lett. B 595 (2004) 309} \end{aligned}$$

9

"Trento Conventions", Phys. Rev. D 70 (2004) 117504

Gunar Schnell

 \mathcal{X}

Beam

k

y

$$\begin{aligned} & \textbf{1-Hadron production (ep->ehX)} \\ & d\sigma = \left(d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} \right) \\ & + S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} \\ & + S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \right) \\ & + \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right) \\ & + \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{TT}^{13} \right] + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \end{aligned}$$
Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 \end{aligned}

Bacchetta et al., JHEP 0702 (2007) 093

9

"Trento Conventions", Phys. Rev. D 70 (2004) 117504

Gunar Schnell

y

 σ_X

Beam 1

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Momentum density

Gunar Schnell

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Momentum density

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Momentum density

- plenty of data available
- but mainly for integrated version of f1 from incl. DIS
- all azimuthal asymmetries involve unintegrated f1 (at least) in denominator!
- need hadron multiplicities and fragmentation functions not only binned in z but also in $P_{h\perp}$

Disentangle z and $P_{h\perp}$ -dependence

• study $P_{h\perp}$ -dependence -> access to TMDs

Gunar Schnell

Т

 h_1^\perp

U

 f_1

U

L

Disentangle z and $P_{h\perp}$ -dependence

Т

 h_1^\perp

 h_{1L}^{\perp}

U

 f_1

U

 \mathbf{L}

L

 g_{1L}

Disentangle z and $P_{h\perp}$ -dependence

• study $P_{h\perp}$ -dependence -> access to TMDs

• constant average (fragmentation) p_{\perp} excluded

difference in h⁺ and h⁻ behavior **r** flavor dependence

Gunar Schnell

Т

 h_1^\perp

 h_{1L}^{\perp}

 h_1, h_{1T}^{\perp}

U

 f_1

U

L

Т

L

 g_{1L}

 g_{1T}

Flavor dependence

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Jefferson Lab Hall C

12

Flavor dependence

Jefferson Lab Hall C

12

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

Flavor dependence

further flavor information via target variation and hadron ID

[Airapetian et al., PRD 87 (2013) 074029]

- (P_{h⊥}-integrated) multiplicities ideal input for FF fits and tests
- kaons difficult to describe

- ($P_{h\perp}$ -integrated) multiplicities ideal input for FF fits and tests
- kaons difficult to describe
- Charge-separation unlike e⁺e⁻ data

- (P_{h⊥}-integrated) multiplicities ideal input for FF fits and tests
- kaons difficult to describe
- Charge-separation unlike e⁺e⁻ data

complemented by new high-precision data from e⁺e⁻ by Belle and BaBar
 Gunar Schnell
 14
 Hadron Physics in China 2013, Huangshan

Hadron production @ B-factories

The quest for transversity

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$

Transversity distribution (Collins fragmentation)

Non-zero transversity Non-zero Collins function

	U	L	Т	
U	f_1		h_1^\perp	
L		g_{1L}	h_{1L}^{\perp}	
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp	

Transversity distribution (Collins fragmentation)

- significant in size and opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

leads to various cancellations in SSA observables

Non-zero transversity Non-zero Collins function

Gunar Schnell

Hadron Physics in China 2013, Huangshan

0.4

18

Collins FF from e^+e^-

Gunar Schnell

Collins FF from e^+e^-

Gunar Schnell

19

analyzed in different frames: Collins FF from e⁺e⁻

Gunar Schnell

19

Collins FF from e^+e^-

slide taken from [I. Garzia, DIS 2013]

	U	L	Т	
U	f_1		h_1^\perp	
L		g_{1L}	h_{1L}^{\perp}	
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp	

Transversity distribution (2-hadron fragmentation)

HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign

²H results consistent with zero [A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

	U	L	Т	
U	f_1		h_1^\perp	
L		g_{1L}	h_{1L}^{\perp}	
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp	

Transversity distribution (2-hadron fragmentation)

HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign

²H results consistent with zero

Gunar Schnell

[A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

data from e^+e^- by BELLE

Hadron Physics in China 2013, Huangshan

	U	L	Т	
U	f_1		h_1^\perp	
L		g_{1L}	h_{1L}^{\perp}	
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp	

Transversity distribution (2-hadron fragmentation)

HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign

²H results consistent with zero

[A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

data from e⁺e⁻ by BELLE allow first (collinear) extraction of transversity (compared to Anselmino et al.)

updated analysis, but no time today 23 Hadron Physics in China 2013, Huangshan

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

First signal of transversity from polarized $p^{\uparrow}p \rightarrow \pi^{+}\pi^{-}X$

forward region -> valence effect from polarized (beam) proton

dependence on cone cut due to underlying p_T dependence?

Gunar Schnell

Transversity's friends

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$

 10^{-2}

 10^{-1}

0.2

Х

0.4

0.6

0.8

Ζ

Pretzelosity

chiral-odd → needs Collins FF (or similar) 0.04 7.3% scale uncertainty 0.02 -0.02 0.05 π^0 0 cancelations? pretzelosity=zero? -0.05 or just the additional suppression by two -0.1 **0.04** ⊢π powers of $P_{h\perp}$ 0.02 0 -0.02 OMP 0.04 COMPASS preliminary positive hadrons $A_{UT}^{sin(3\phi_h^{}-\phi_s^{})}$ Deuteron 2002-4 data - negative hadrons 0.05 **K** 0.1 0 -0.1 0.1 K -0.05 $A_{UT}^{sin(3\phi_h\text{-}\phi_s)}$ - positive hadrons COMPASS preliminary 0.04 Proton 2007-10 data -0.1 0.02 10 -1 0.5 1 P_{h↓} [GeV] 0.6 0.4 Х Ζ -0.02 -0.04

0.5

1.5

P_{hT} (GeV/c)

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

sin2≬

- again: chiral-odd
- evidence from CLAS (violating isospin symmetry?)
- consistent with zero at COMPASS and HERMES

Worm-Gear I

 $igodoldsymbol{0}$

igl(igr)

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

- again: chiral-odd
- evidence from CLAS (violating isospin symmetry?)
- consistent with zero at COMPASS and HERMES
- new preliminary data from CLAS closer to HERMES/ COMPASS (and to zero)

Worm-Gear I

XB

igl(igr)

"Wilson-line physics" naively T-odd distributions

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

Sivers amplitudes for pions

 $2\langle \sin(\phi - \phi_S) \rangle_{\rm UT} = -\frac{\sum_q e_q^2 f_{1T}^{\perp,q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$

Hadron Physics in China 2013, Huangshan

Gunar Schnell

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

Sivers amplitudes for pions $2\langle \sin(\phi - \phi_S) \rangle_{\rm UT} = -\frac{\sum_q e_q^2 f_{1T}^{\perp,q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$

 π^+ dominated by u-quark scattering:

 $\simeq - \frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$

u-guark Sivers DF < 0</p>

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

Sivers amplitudes for pions $2\langle \sin(\phi - \phi_S) \rangle_{\rm UT} = -\frac{\sum_q e_q^2 f_{1T}^{\perp,q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$

 π^+ dominated by u-quark scattering:

 $\simeq - \frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$

u-quark Sivers DF < 0

d-quark Sivers DF > 0 (cancelation for π^{-})

 cancelation for D target supports opposite signs of up and down Sivers

Т

 h_1^\perp

 h_{1L}^{\perp}

 h_1, h_{1T}^{\perp}

up

1.0

0.5

0.0

-0.5

-1.0

-0.5

0.0

k_x (GeV)

0.5

1.0 1.0

ky (GeV)

1.0

down

U

 f_1

 f_{1T}^{\perp}

U

L

Т

1.0

0.5

-0.5

-1.0 -1.0

-0.5

0.0

k_x (GeV)

0.5

[courtesy of A. Bacchetta]

ky (GeV)

L

 g_{1L}

 g_{1T}

Sivers amplitudes

- cancelation for D target supports opposite signs of up and down Sivers
- new results from JLab using ³He target and from COMPASS for proton target

Gunar Schnell

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers amplitudes Q² dependence?

- slightly larger amplitudes at HERMES
- average Q² about factor 3 larger at COMPASS

Sivers amplitudes Q² dependence?

Process dependence

simple QED example

DIS: attractive

Drell-Yan: repulsive

Gunar Schnell

Process dependence

simple QED example

DIS: attractive

add color: QCD

Drell-Yan: repulsive

Process dependence

need Drell-Yan experiments with transverse polarization: COMPASS, transverse SeaQuest, RHIC, ... ?

... not quite Drell-Yan yet: jet SSA

-) no sensitivity to fragmentation details: $\mathbf{p}^\uparrow \mathbf{p} o \mathrm{jet} + \mathbf{X}$
 - Sivers-type mechanism (use Sivers fctn from SIDIS fits)

color-charge interactions

color-charge interactions

Boer-Mulders spin-effects in unpolarized reactions

Unpolarized Drell-Yan

Unpolarized Drell-Yan

"failure" of collinear pQCD

Unpolarized Drell-Yan

"failure" of collinear pQCD

possible source: Boer-Mulders effect

gunar.schnell @ desy.de

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Modulations in spin-independent SIDIS cross section $d^5\sigma$ $\frac{\mathrm{d}^{5}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}\phi_{h}\,\mathrm{d}P_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \left\{ 1 + \frac{\gamma^{2}}{2x} \right\} \left\{ A(y) F_{\mathrm{UU,T}} + B(y) F_{\mathrm{UU,L}} + C(y) \cos\phi_{h} F_{\mathrm{UU}}^{\cos\phi_{h}} + B(y) \cos 2\phi_{h} F_{\mathrm{UU}}^{\cos 2\phi_{h}} \right\}$ BOER-MULDERS $\frac{\text{leading twist}}{F_{UU}^{\cos 2\phi_h}} \propto C \left[-\frac{2(\hat{P}_{h\perp} \cdot \vec{k}_T)(\hat{P}_{h\perp} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T}{MM_h} - \frac{1}{MM_h} + \frac{1}{MM_h} \right]$ EFFECT CAHN EFFECT $\frac{\text{next to leading twist}}{F_{UU}^{\cos\phi_h}} \propto \frac{2M}{O} C \left[-\frac{\hat{P}_{h\perp} \cdot \vec{p}_T}{M_h} x h_1^{\perp} H_1^{\perp} - \frac{\hat{P}_{h\perp} \cdot \vec{k}_T}{M} x f_1 D_1 + \dots \right]^{\text{ter}}$ Interaction dependent terms neglected

(Implicit sum over quark flavours)

Gunar Schnell

- Signs

signs of Boer-Mulders

[Airapetian et al., PRD 87 (2013) 012010]

- Sign

signs of Boer-Mulders

[Airapetian et al., PRD 87 (2013) 012010]

opposite sign for charged pions with larger magnitude for π⁻
-> same-sign BM-function for valence quarks?

[Airapetian et al., PRD 87 (2013) 012010]

not zero!

- opposite sign for charged pions with larger magnitude for π⁻
 -> same-sign BM-function for valence quarks?
- intriguing behavior for kaons

[Airapetian et al., PRD 87 (2013) 012010]

not zero!

- opposite sign for charged pions with larger magnitude for π⁻
 -> same-sign BM-function for valence quarks?
- intriguing behavior for kaons
- available in multidimensional binning both from HERMES and soon from COMPASS

Gunar Schnell

• available in multidimensional binning both from HERMES and soon from COMPASS

Gunar Schnell

- first round of SIDIS measurements coming to an end
- precision data on fragmentation from e⁺e⁻ annihilation
- transversity is non-zero and quite sizable
 - can be measured, e.g., via Collins effect or s-p interference in 2hadron fragmentation
- Sivers and Boer-Mulders effects are also non-zero
 - direct probe of "physics of the QCD Wilson line"
 - possibly large evolution effects
- so far no sign of a non-zero pretzelosity distribution
- first evidences for non-vanishing worm-gear functions

Hadron Physics in China 2013, Huangshan

Summary

- first round of SIDIS measurements coming to an end
- precision data on fragmentation from e⁺e⁻ annihilation
- transversity is non-zero and quite sizable
 - can be measured, e.g., via Collins effect or s-p interference in 2hadron fragmentation
- Sivers and Boer-Mulders effects are also non-zero
 - direct probe of "physics of the QCD Wilson line"
 - possibly large evolution effects
- so far no sign of a non-zero pretzelosity distribution
- first evidences for non-vanishing worm-gear functions
- let's prepare for
 - precision measurements at ongoing and future facilities
 - fundamental QCD tests in Drell-Yan experiments

Gunar Schnell

Hadron Physics in China 2013, Huangshan

Summary

Sivers fit to HERMES data nicely describes A_N in pp

Т

 h_1^\perp

 h_{1L}^{\perp}

 h_1, h_{1T}^\perp

U

 f_1

 f_{1T}^{\perp}

U

 \mathbf{L}

Τ

L

 g_{1L}

 g_{1T}

- Sivers fit to HERMES data nicely describes A_N in pp
- may also originate from Collins effect

Т

 h_1^{\perp}

 h_{1L}^{\perp}

 h_1, h_{1T}^\perp

U

 f_1

 f_{1T}^{\perp}

U

 \mathbf{L}

Τ

L

 g_{1L}

 g_{1T}

- Sivers fit to HERMES data nicely describes A_N in pp
- may also originate from Collins effect

Т

 h_1^{\perp}

 h_{1L}^{\perp}

 h_1, h_{1T}^{\perp}

U

 f_1

 f_{1T}^{\perp}

U

L

Τ

L

 g_{1L}

 g_{1T}

 only sizable in forward direction

- Sivers fit to HERMES data nicely describes A_N in pp
- may also originate from Collins effect

Т

 h_1^{\perp}

 h_{1L}^{\perp}

 h_1, h_{1T}^\perp

U

 f_1

 f_{1T}^{\perp}

U

L

Τ

L

 g_{1L}

 g_{1T}

- only sizable in forward direction
- A_N in pp persist over wide energy range: $\sqrt{\frac{s}{60}} = 4.9 \text{ GeV}$

02 M_N (%)

-20

-40

-60

π^{*}

 $\circ \pi$

0.2 0.4 0.6 0.8

XF

1976

Gunar Schnell

 $ep^{\uparrow} \to hX$

virtual photon going into the page

$$\phi \simeq \phi_h - \phi_S$$
"Sivers angle"

lepton beam going into the page

 $ep^{\uparrow} \to hX$

scattered lepton undetected
 lepton kinematics unknown

- scattered lepton undetected
 lepton kinematics unknown
- dominated by quasi-real photo-production (low Q²)
 hadronic component of photon relevant?

- scattered lepton undetected
 lepton kinematics unknown
- dominated by quasi-real photo-production (low Q²)
 hadronic component of photon relevant?
- cross section proportional to
 S_N (k x p_h) ~ sin φ

analyses at hermes above the same Son (upwards on Jasier. Song) See $(\uparrow upwards or \downarrow downwards)$ ngerected $d\partial \partial D_T$ $\Omega(p_T, n_E, \phi)$ pin_direg $= d^3 \sigma_{UU}$ $\mathcal{T}_{F}^{(\downarrow)}$, $d^{3}\sigma_{VT}$ $(\mathcal{R}_{T}, \mathcal{X}_{F}, \mathcal{A}_{F}), \phi)$ $L_{P}^{\uparrow\uparrow\downarrow}$ mber **Grevents R** <u>é complete analysis</u> rmed in placetonica of ponent (2.2)20 main tracks), a much finer binning $\vec{p}_{\rm h}$ set of dat atherin (SI), PI S analyses at HERMES allow. The same ison to (2.2)apre accessors actions proportions and interpretation ér. See r the 2D maysis, see section 4.2. (2.2)eld for a given target spin direction († upwards or) wards) $\operatorname{mmetry} A_{\mathcal{A}_{\mathcal{W}}}(p_{\mathcal{A}_{\mathcal{W}}}x_F,\phi) =$

$$\frac{\mathrm{d}^{3}N^{\uparrow(\downarrow)}}{\mathrm{d}p_{T} \mathrm{d}x_{F} \mathrm{d}\phi^{2}.4} A_{UT}^{\sin\phi}(p_{T}, x_{F}) \sin\phi} = \left[L^{\uparrow(\downarrow)} \mathrm{d}^{3}\sigma_{UU} + (-)L_{P}^{\uparrow(\downarrow)} \mathrm{d}^{3}\sigma_{UT} \right] \Omega(p_{T}, x_{F}, \phi)$$

 $GunggSchnell = \uparrow \uparrow (\downarrow) \qquad ()$

Can some veal other (SI) DIS analyses at HERMES allow. The same A BONG THE PROPERTY OF THE STATE OF THE PROPERTY OF THE PROPER $= \mathrm{d}^{3} \sigma_{UU} \left[L^{\dagger} \mathrm{d}^{3} \mathrm{d}^{2} \mathrm{d}^{3} \mathrm{d}^{2} \mathrm$ $L_{P}^{\uparrow(\downarrow)} \stackrel{\text{dominal x_{F}^{\uparrow}}}{A_{UT}} \stackrel{\text{dominal x_{F}^{\uparrow}}}{(p_{T}, x_{F}^{\uparrow})} \stackrel{\text{dominal x_{F}^{\uparrow}}}{\sin \phi} \stackrel{\text{dominal x_{F}^{\uparrow}}}{(p_{T}, x_{F}^{\uparrow})} \stackrel{\text{dominal x_{F}^{\uparrow}}}{(p_{T}, x_{F}^{\downarrow})} \stackrel{\text{dominal x_{F}^{\downarrow}}}{(p_{T}, x_{F}^{\downarrow})} \stackrel{\text{dominal x_{F}^{\downarrow}}}}{(p_{T}, x_{F}^{\downarrow})} \stackrel{\text{dominal $x_{F}^{\downarrow}}}{(p_{T}, x_{F}^{\downarrow})} \stackrel{\text{dominal $x_{F}^{\downarrow}}}{(p_{T}, x_{F}^{\downarrow})} \stackrel{\text{dominal $x_{F}^{\downarrow}}}{(p_{T}, x_{F}^{\downarrow})} \stackrel{\text{dominal $x_{F}^{\downarrow}}}{(p_{T}, x_{F}^{\downarrow})} \stackrel{\text{dominal $x_{F}^{\downarrow}}}}{(p_{T}, x_{F}^{\downarrow})} \stackrel{\text{dominal $x_{F}^{\downarrow}}}}{(p_{T}, x_$ mber Avergen bey for and the complete analysis rmed in binch can apponent of 2set of data reflecter (* 100 m) sin p tracks), $x_{\rm F}$ much finer binning $\vec{p}_{\rm h}$ (2.2)ison to what 0 there SI DIS analyses at HERMES allow the same approximation and interpretation for. See (2.2)a the 2D enalysis, see section 4.2. (2.2)eld for a given target spin direction († upwards or k wards) mmetry $A_{A_{IV}}(p_{an}x_F, \phi) =$ $\frac{\mathrm{d}^{3}N^{\uparrow(\downarrow)}}{\underline{U}} A_{UT}^{\sin\phi}(p_{T}, x_{F}) \sin\phi \qquad A_{\mathrm{N}} \equiv \frac{\int_{\pi}^{2\pi} \mathrm{d}\phi \ \sigma_{\mathrm{UT}} \sin\phi - \int_{0}^{\pi} \mathrm{d}\phi \ \sigma_{\mathrm{UT}} \sin\phi}{\widehat{\sigma}_{\mathrm{UT}} \sin\phi}$ $\int_{0}^{2\pi} \mathrm{d}\phi \, \sigma_{\mathrm{UU}}$ $dp_T dx_F d\phi 2.4$ $\begin{bmatrix} L^{\uparrow(\downarrow)} \, \mathrm{d}^{3} \sigma_{UU} + (-) L_{P}^{\uparrow(\downarrow)} \, \mathrm{d}^{3} \sigma_{UT} \end{bmatrix} \, \Omega(p_{T}, x_{F}^{=}, \phi)^{-} \frac{2}{\pi} A_{\mathrm{UT}}^{\sin \phi}$ $GunggSchnell = \uparrow \uparrow (\downarrow) \qquad ()$ Hadron Physics in China 2013, Huangshan

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Gunar Schnell

47

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

	U	L	Т
IJ	f_1	, ††	h_1^\perp
L	T	g_{1L}	h_{1L}^\perp
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

