New Results Of SIDIS Kaon SSA and Inclusive Hadron SSA For Transvesity(E06010) Experiment

Yuxiang Zhao

University of Science and Technology of China July 3rd ,2013@Huangshan meeting

erimental Hall A

Spokesperson of E06010: Jian-ping Chen(JLab), Xiaodong Jiang(LANL), Haiyan Gao(Duke) Evaristo Cisbani(INFN, Rome), Jen-Chieh Peng(UIUC)

Outline

- Introduction of Transversity(E06010) experiment at Jefferson Lab Hall A
 - Physics motivation
 - Setup of the experiment
- Preliminary results of SIDIS Kaon SSA
 - PID : electron@Bigbite kaon@LHRS
 - Collins and Sivers asymmetry
- Preliminary results of Inclusive Hadron SSA

Introduction of Transversity(E06010) experiment at Jefferson Lab Hall A

Physics motivation

-Setup of the experiment

Unified View of Nucleon Structure

Leading-Twist TMD PDFs(TMDs)

Separation of Collins, Sivers and pretzelosity effects through azimuthal angular dependence

$$A_{UT}(\varphi_h^l,\varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

= $A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$
+ $A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$

UT: **U**npolarized beam + **T**ransversely polarized target

$$\begin{array}{ll} A_{UT}^{Collins} \propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp} & \rightarrow \text{TMD: Transversity} \\ A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1 & \rightarrow \text{TMD: Sivers} \\ A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} & \rightarrow \text{TMD: Prezelosity} \end{array}$$

Why kaon result is interesting I ---Sivers effect

- Only explicit kaon results from HERMES(preliminary, target: hydrogen, arXiv:0706.2242v2 [hep-ex] 19 Jun 2007) and COMPASS (preliminary, target: ⁶LiD)
- Difference between π^+ and K^+ : $\overline{d} \leftrightarrow \overline{s}$ "Sea quark effect"
- Differences in FF D₁(z) for π⁺ and K⁺ and quark masses cancel in ratio!

Expectation: Kaon-SSA \approx Pion-SSA in Sivers effect

red solid line: prediction (Efremov, Goeke, Schweitzer) data points: prelim. HERMES (Diefenthaler et al.)

x>0.2: "sea-quark" effect small

x≈0.15: Kaon-SSA≈2 × Pion-SSA

Open question: How large can the effect of anti/Strange quarks be?

Why kaon result is interesting **II** ---Collins effect

- Only explicit kaon results from HERMES(P. L. B, Target:hydrogen) and COMPASS (Preliminary,target: ⁶LiD)
- From pion results: Unfavored H_1^{\perp} > Favored H_1^{\perp} ($\pi^- > \pi^+$)
- From HERMES kaon results: Unfavored $H_1^{\perp} > \text{Favored } H_1^{\perp}$ (k⁻>k⁺)

E06010 Experiment Setup

- First measurement on n (³He)
 - ${}^{3}He^{\uparrow}(\vec{e}, e'\pi^{\pm})X$
 - ${}^{3}He^{\uparrow}(\vec{e}, e'K^{\pm})X$
- Transversely Polarized ³He Target
 - 10 atm pressure, L(n) ~10³⁶cm⁻²s⁻¹
 - ~60% polarization in Beam
 - Spin flips every 20 minutes
 (World Record !!!)
- Polarized Electron Beam, 5.9 GeV
 Helicity Flips at 30Hz
- Bigbite at 30⁰ as electron arm
 P_e =0.6~2.2GeV/c
- LHRS at 16° as hadron arm($\pi/k/p$)
 - Ph=2.35GeV/c
 - Excellent PID for $\pi/k/p$

High resolution spectrometer(HRS)

16°

Luminosity Monitor

Bigbite spectrometer

MANDC

Magnet

Preshower Scintillator

1 m

Target

nators

Sieve

Coils

Beam Polarimetry (Møller + Compton)

Single dipole magnet

Detects electrons

- A "big bite" of acceptance
 - $\circ \Delta \Omega = 64 \text{ msr}$
 - P: 0.6 ~ 2.2 GeV/c
- Shower 3 wire chambers: 18 planes for precise tracking
 - Bipolar momentum reconstruction
 - Pre-shower and shower for electron PID
 - Scintillator for coincidence with left HRS

Preliminary results of SIDIS Kaon SSA

-PID : electron@Bigbite kaon@LHRS

-Collins and Sivers asymmetry on ³He

Analysis by Y. Zhao(USTC), Y. Wang(UIUC)

Electron(BB) PID for SIDIS

Preshower Energy VS E/P

Kaon(LHRS) PID for SIDIS

Cross checked with RICH detector

CT.K.t for positive run

Pion contamination in kaon sample is suppressed by using gas Cerenkov and Aerogel detector

Kinematics for E06010 kaon SIDIS

Preliminary K+/K- Collins and Sivers Asymmetries on ³He

Preliminary results of Inclusive Hadron SSA

Trigger: LHRS(hadron) singles

Analysis by K.Allada(JLab), Y.Zhao(USTC)

Inclusive Hadron Electroproduction

- Driven by the large inclusive hadron SSA A_N in pp↑→hX process
- Simpler than $pp \uparrow \rightarrow hX$ due to only one quark channel
- Mechanism for A_N :
 - TMDs
 - collinear parton dynamics(higher-twist quark-gluon correlations)
- To help understand the mechanism behind large A_N in $pp \uparrow \rightarrow hX$ process in the TMD framework

Systematic error is well controlled

Preliminary results of inclusive hadron SSA for 3He

Summary

SIDIS Kaon SSA

K+ Collins and Sivers effects are consistent with zero within error bar
 K- Collins and Sivers effects are negative

Inclusive hadron SSA

D Non-zero A_N asymmetry for π +, π -, K+, P at P_T ~0.64 GeV/c

Backup

Contamination for electron/kaon selection

• Electron sample @ Bigbite

	Pi- Contamination	Photon induced electron contamination
HRS k+	0.2%	4.9%
HRS k-	0.5%	14%

• Kaon sample @ LHRS

	Pion contamination	Random Coincidence Contamination
HRS +	1.5%	3.2%
HRS -	4.5%	0.3%