
Physics Program at Jefferson Lab Hall-D

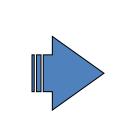
Yi Qiang Jefferson Lab for the GlueX Collaboration July 3, 2013

Jefferson Lab 12 GeV Upgrade

GlueX Program

Gluon Interactions in QCD

> QCD has interesting properties


- □ Confinement: force is strong at large distances
- □ Gluon-gluon interactions
- How do these properties exhibit themselves in experimental data?
 - □ What role do gluons play in the structure of matter?
 - Does QCD predict experimentally observable gluonic excitations?
 - □ Can we observe evidence for gluonic degrees of freedom in the spectrum of meson states?

Hall-D's Flagship: GlueX Program

q q

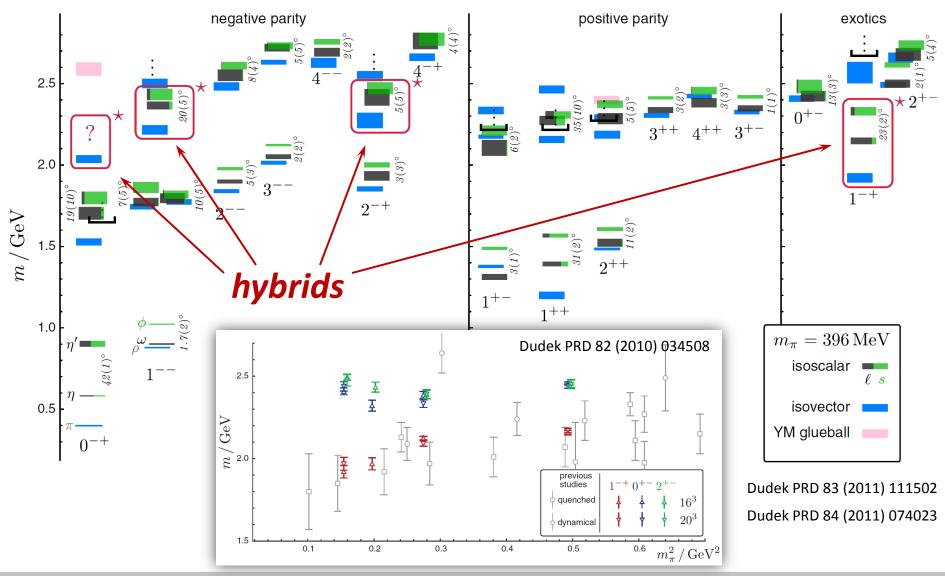
 Conventional meson has quantum numbers determined only by constituent quarks:

$$S = S_1 + S_2$$

$$J = L + S$$

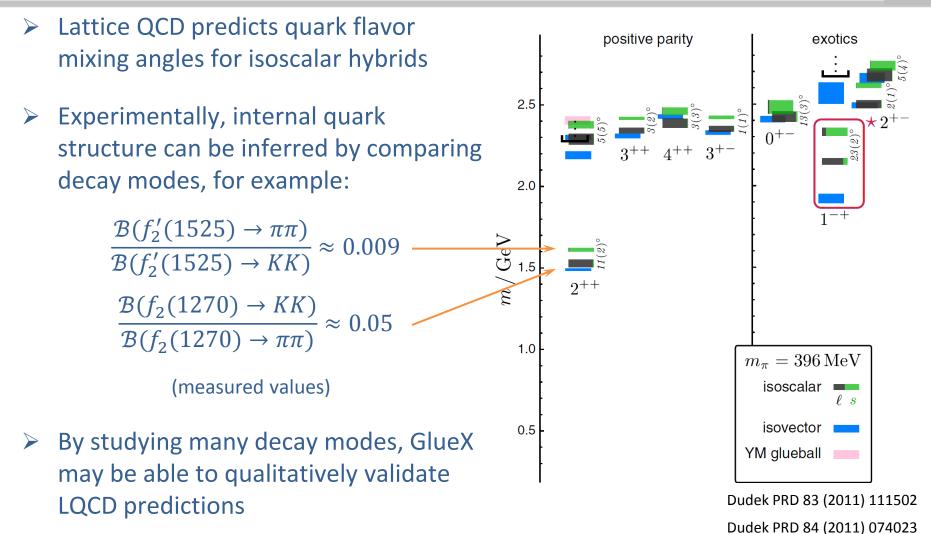
$$P = (-1)^{L+1}$$

$$C = (-1)^{L+S}$$


Possible J^{PC}s: 0⁻⁺, 0⁺⁺, 1⁺⁺, 1⁺⁻, 2⁻⁺, 2⁺⁺

- Gluon excitation introduces additional degrees of freedom
- Hybrid meson has excited gluons as constituent particles
- Multiplets of states expected
- More J^{PC} combinations allowed: 0⁻⁺, 0⁺⁺, 0⁺⁻, 1⁺⁺, 1⁻⁺, 1⁺⁻, 2⁻⁺, 2⁺⁺, 2⁺⁻
- Unique signature: exotic states

Lattice QCD Calculations



Thomas Jefferson National Accelerator Facility Yi Qiang - Physics Program at JLab Hall-D - 5th Hadron Workshop, China

7/3/2013 🞯 📢

Lattice QCD Calculations (cont.)

Experimental Evidence for 1^{-+} **Exotic Hybrids**

Unlikely hybrid

Dynamical origin, FSI?

$\pi_1(1400)$

 $I^{G}(J^{PC}) = 1^{-}(1^{-+})$

See also the mini-review under non- $q\overline{q}$ candidates in PDG 06, Journal of Physics, G **33** 1 (2006).

$\pi_1(1400)$ MASS

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT **OUR AVERAGE** Error includes scale factor of 1.8. See the ideogram below. ± 25 1354 May be hybrid Challenge in 3π from π_2 $I^{G}(J^{PC}) = 1^{-}(1^{-+})$ 1600 background Cleaner n' π signal $\pi_1(1600)$ MASS EVTS VALUE (MeV) DOCUMENT ID TECN COMMENT $1662 \stackrel{+}{=} \stackrel{8}{\circ} OUR AVERAGE$ Among "further states" $I^{G}(J^{PC}) = 1^{-}(1^{-+})$ Needs confirmation $\pi_1(2015)$ MASS (MeV) WIDTH (MeV) EVTS DOCUMENT ID TECN COMMENT 05 B852 18 $\pi^- p \to \omega \pi^- \pi^0 p$ $2014 \pm 20 \pm 16$ $230 \pm 32 \pm 73$ 145k LU B852 18 $\pi^- p \rightarrow \eta \pi^+ \pi^- \pi^- p$ $333 \pm 52 \pm 49$ $2001 \pm 30 \pm 92$ 69k KUHN 04

Thomas Jefferson National Accelerator Facility Yi Qiang - Physics Program at JLab Hall-D - 5th Hadron Workshop, China 7/3/2013 🎯 🏹

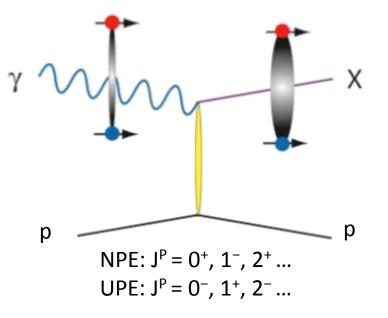

Photo-production of Exotic Hybrids

Photo-production

- The expectation from the flux tube model is that hybrids will be produced at a rate comparable to normal mesons
- Photons have spin-1, allow easier production of exotics compared to pion beams where a spin flip must occur

Photon Polarization

- Polarized photon beam helps determine production mechanism
- Linear polarization put additional constraints on particle quantum numbers through partial wave analysis (PWA)

Key Decay Modes of Exotics

	Approximate	I PC	Total Width	(MeV)	Relevant Decays	Final States	
	Mass (MeV)	J	PSS	IKP	Relevant Decays		
π_1	1900	1-+	80 - 170	120	$b_1\pi^{\scriptscriptstyle +}$, $ ho\pi^{\scriptscriptstyle +}$, $f_1\pi^{\scriptscriptstyle +}$, $a_1\eta$, $\eta^\prime\pi^{\scriptscriptstyle +}$	$\boldsymbol{\omega}\boldsymbol{\pi}\boldsymbol{\pi}^{\dagger},3\boldsymbol{\pi}^{\dagger},5\pi,\eta3\pi^{\dagger},\boldsymbol{\eta}^{\prime}\boldsymbol{\pi}^{\dagger}$	
η_1	2100	1-+	60 - 160	110	$a_1\pi$, $f_1\eta^+$, $\pi(1300)\pi$	$4\pi,\eta 4\pi,\eta\eta\pi\pi^{+}$	
$oldsymbol{\eta}_1'$	2300	1-+	100 – 220	170	$K_1(1400)K^{\dagger}, K_1(1270)K^{\dagger}, K^*K^{\dagger}$	$KK\pi\pi^{\dagger}$, $KK\pi^{\dagger}$, $KK\omega^{\dagger}$	
b ₀	2400	0+-	250 – 430	670	$\pi(1300)\pi, h_1\pi$	4π	
h_0	2400	0+-	60 - 260	90	$b_1 \pi$, $h_1 \eta$, $K(1460)K$	$ωππ^{\dagger}$, η3π, ΚΚππ	
h_0'	2500	0+-	260 - 490	430	$K(1460)K, K_1(1270)K, h_1\eta$	$KK\pi\pi^{\dagger},\eta 3\pi$	
b ₂	2500	2+-	10	250	$a_2\pi$, $a_1\pi$, $h_1\pi$	4π , $\eta\pi\pi^{\dagger}$	
h_2	2500	2+-	10	170	$b_1 π$, $ρ π$	$\omega\pi\pi^{+}$, $3\pi^{+}$	
h_2'	2600	2+-	10 - 20	80	$K_1(1400)K, K_1(1270)K, K_2^*K$	$KK\pi\pi^{\dagger}$, $KK\pi^{\dagger}$	
	4					High priority exotic	

+ experimentally promising: few particles or narrow isobars

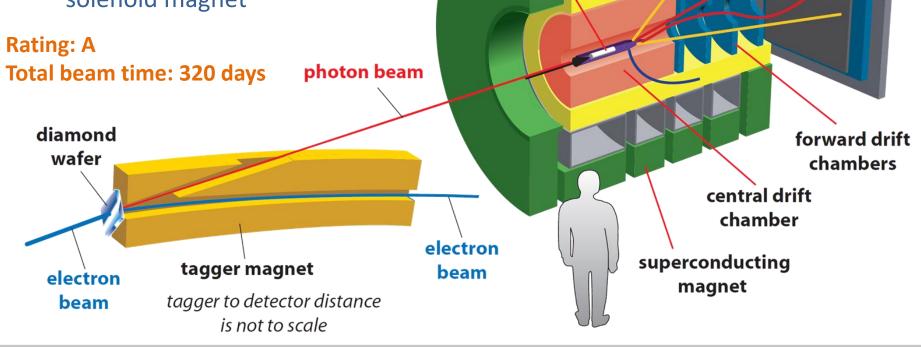
Experiment requirements

- □ Ability to identify multiparticle final states: charged particles and photons
- □ High statistics and hermetic detection system
- \Box K/π separation is helpful to identify whole hybrid family

High priority exotic search channels in initial running

GlueX Experimental Setup

target

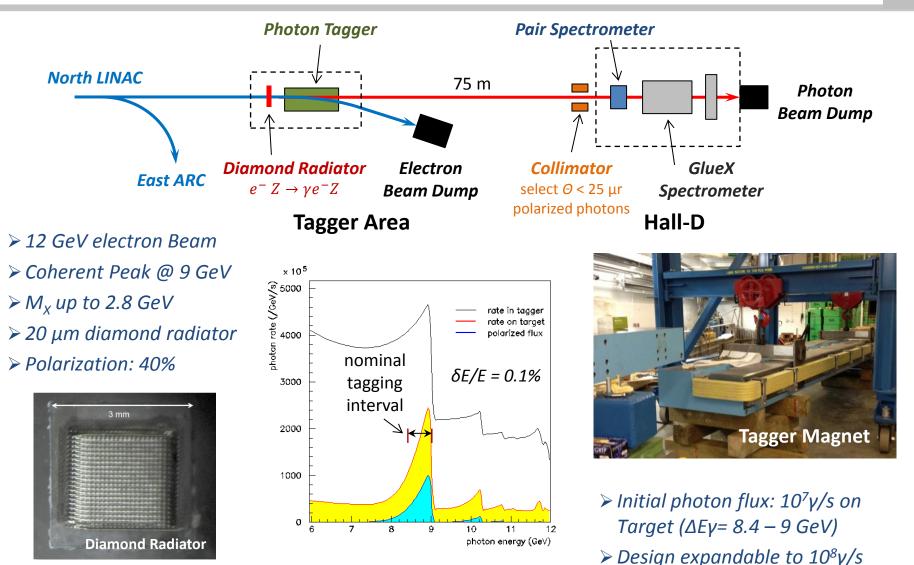

barrel

calorimeter

time-of

-flight

- Part of 12 GeV upgrade to JLab
- High luminosity linearly polarized photon beam
- Liquid Hydrogen target
- Hermetic detection of charged and neutral particles in solenoid magnet

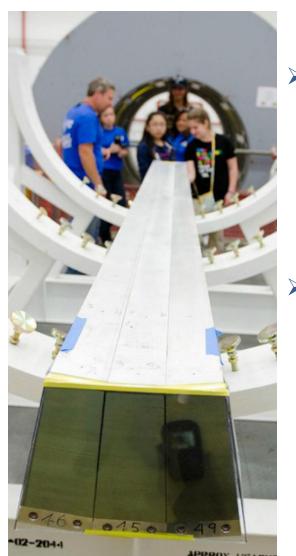


Thomas Jefferson National Accelerator Facility Yi Qiang - Physics Program at JLab Hall-D - 5th Hadron Workshop, China

forward calorimeter

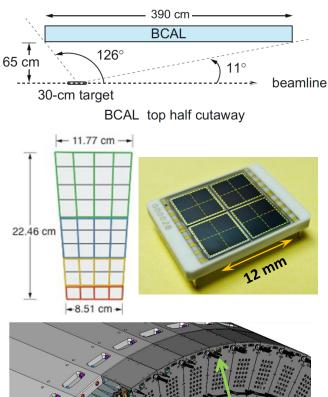
Photon Beam and Tagger

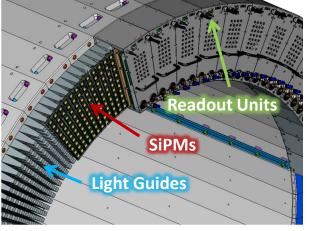
Solenoid: Testing in Progress


Used for LASS at SLAC, for MEGA at Los Alamos, refurbished for Hall-D

Bore inner diameter 1.85 m, length 4 m, B_{MAX} 2.2 T @ 1500 A

Barrel Calorimeter (BCAL)




SciFi calorimeter modules

- □ Fabricated by Univ. of Regina
- **Δ** 48 Modules (φ sectors)
- □ 191 layers
- □ Pb/Scint./glue = 37/49/14%

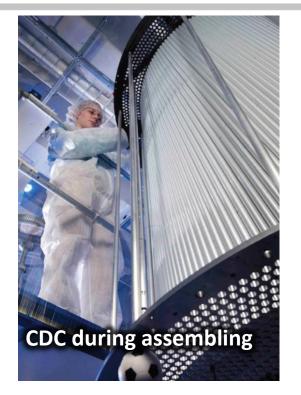
Photon readout

- Readout from both sides
- 3840 Silicon Photo Multiplier (SiPM) arrays from Hamamatsu: 1.2×1.2 cm²
- Immune to magnetic fields
- □ Temperature control: 5°C

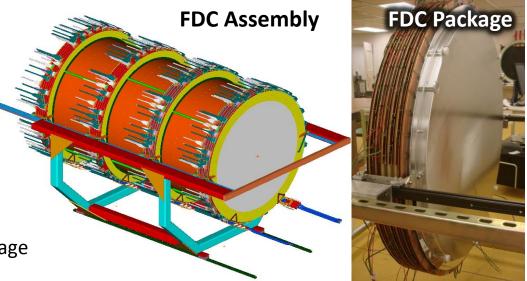
Forward Calorimeter (FCAL)

Lead Glass Calorimeter

- Fabricated at Indiana University
- □ 2800 lead glass F8-00 blocks 4×4×45 cm³
- FEU84-3 PMTs and Cockroft-Walton bases
- Prototype test at Hall-B, 2012
 - δE/E = 20% with 100 MeV electrons, as expected



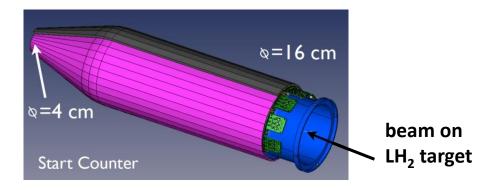
Charged Particle Tracking



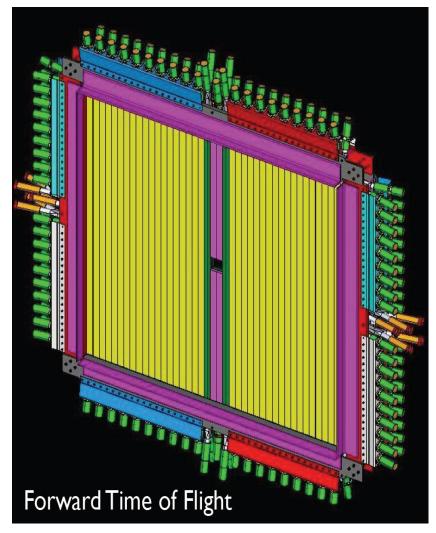
Forward Drift Chamber (FDC)

- Built and tested at JLab
- Round planar chambers with cathode strips (U/V) and anode wires readout
- □ 4 packages, 6 readout planes per package
- **Resolution:** $\sigma = 150 \,\mu m$

Central Drift Chamber (CDC)


- □ Fabricated at Carnegie Mellon University
- **Given Straw chamber: 3500 straw tubes**
- **\Box** Resolution: $\sigma_{r\phi}$ = 150 μ m, σ_z = 1.5 mm
- □ dE/dx for proton identification (<450 MeV)
- □ Fully wired, being tested

Particle ID and Timing



Start Counter (SC)

- Being fabricated at Florida International University
- Thin scintillator to tag accelerator beam bunch
- □ Readout by SiPMs

Forward TOF (TOF)

- Being fabricated at Florida State University
- **□** Two scintillator planes: 70 ps resolution, 4σ K/π separation up to 2 GeV

Electronics and Trigger

- Fully pipelined payload modules (VME64-VXS)
 - □ F1-TDC (60 ps, 32 ch. or 115 ps 48 ch.)
 - **u** 125 MHz flash ADC (12 bit, 72 ch.)
 - **250** MHz flash ADC (12 bit, 16 ch.)
- Versatile trigger setup on FPGAs
 - □ Energy sum, pattern match or combination every 4 ns
 - Initial L1 trigger: simple algorithm on total energy sum
 - L3-farm: reduce L1 trigger rate by a factor of 10
- Trigger/Data Rate
 - **D** 200 kHz, 3 GB/s readout from front end $(10^8 \gamma/s)$
 - □ 300 MB/s to tape

Crate Trigger Processor

Signal Distribution Board

F1TDC

Sub-System Processor

250MHz Flash ADC

Global Trigger Processor

18

Trigger Interface

Reconstruction and Analysis

Reconstruction

- Multi-threaded framework: JANA
- □ Working libraries for all sub-systems, improvement ongoing

Particle identification

- Kinematic fitting
- Boosted decision tree

PWA analysis

□ AmpTool: flexible, take advantages from GPUs

Data challenges

- Finished first round, 5.6 B events (30 days of initial running) generated and analyzed
- Successfully utilized Open Science Grid (OSC)

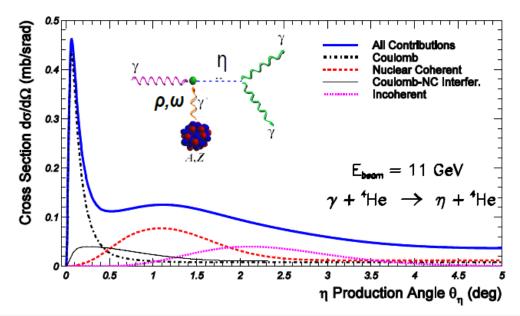
Roadmap of GlueX Program

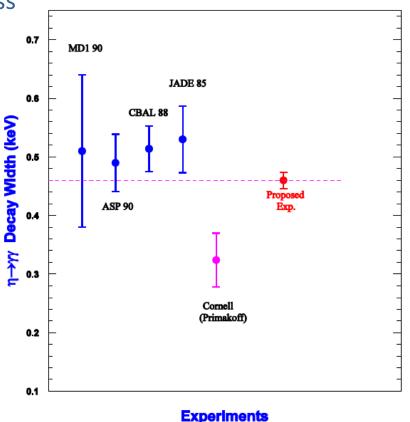
	L	High-intensity		
	Phase I	Phase II	Phase III	Phase IV
Duration (PAC days)	30	30	60	300
Expected Date	2015	2016	2017	2018+
Electron Energy (GeV)	<10	11	12	12
Beam Current (nA)	50 – 200	220	220	1100
Photon Flux 8.4-9 GeV (γ /s)	10 ⁶	10 ⁷	10 ⁷	5×10 ⁷
Max Beam Emittance (mm-µr)	50	20	10	10
Level-1 Trigger Rate (kHz)	2	20	20	200
Level-3 Farm	No	No	No	Yes
Raw Data Volume (TB)	60	600	1200	2300

Initial "low-intensity" runs will provide incredible statistics in some channels

- 3×10^8 events: $\gamma p \rightarrow \pi^+ \pi^+ \pi^- n$
- 5×10⁶ events: $\gamma p \rightarrow \omega \pi^+ \pi^- p$
- 10⁵ 10⁶ events: $\gamma p \rightarrow \eta' \pi^+ n$
- > Approved high-intensity running Phase IV: more decay channels, kaons, cascades

Other Approved Experiments


η Radiative Decay Width

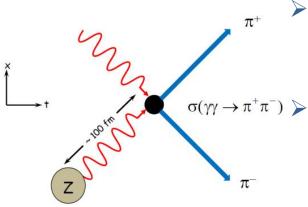

> Measure $\Gamma(\eta \rightarrow \gamma \gamma)$ through Primakoff process

- □ Precision tests of Chiral symmetry in QCD
- Potentially solve collider/Primakoff discrepancy
- □ Significantly improve $(\eta \eta')$ mixing angle measurement

Experimental Setup

- □ GlueX detector + LH2/LHe target
- Addition Calorimeter for cross-section calibration

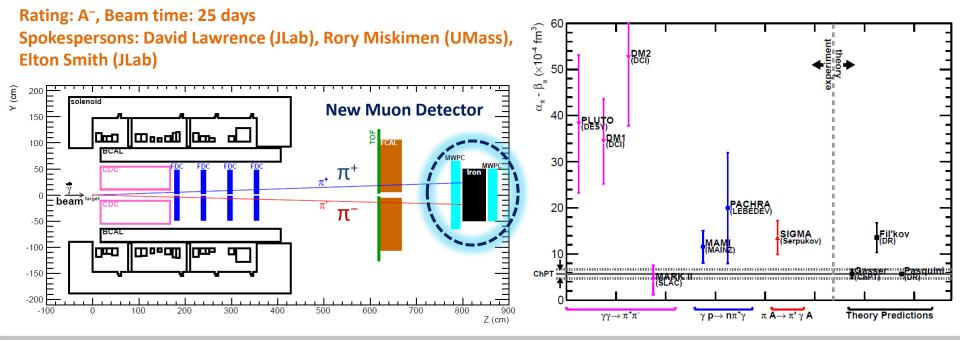
Rating: A⁻ Beam time: 79 days Spokespersons: Liping Gan (UNCW), Ashot Gasparian (NCAT)



Thomas Jefferson National Accelerator Facility Yi Qiang - Physics Program at JLab Hall-D - 5th Hadron Workshop, China

22

Charged Pion Polarizability



Pion Polarizability

- □ Important test of low-energy QCD unresolved by experiment
- □ Predicted value directly from L_{QCD}(p⁴), NLO corrections are small

Experimental Setup

- Primakoff process, near threshold region
- □ GlueX Spectrometer + ¹¹²Sn target + muon detector
- **10** % measurement, similar precision to the best theory prediction

Future Plan and Summary

Opportunities and Future Projects

Tasks need attention

- BCAL photon reconstruction
- Detector commissioning and calibration
- Data analysis: PID and PWA

Plans for detector upgrades

- PID upgrade for kaon identification: requirements and options being evaluated threshold Cherenkov counter, DIRC and RICH
- $\hfill\square$ Fine granularity forward calorimetry: better energy resolution and π^0 PID

Physics under discussion

- □ Well developed: Rare eta decay
- Early stage: charm photoproduction, time-like Compton scattering
- New ideas are welcome: <u>http://www.jlab.org/exp_prog/PACpage/</u>

Contacts

- Yi Qiang (<u>yqiang@jlab.org</u>)
- Hall-D leader: Eugene Chudakov (gen@jlab.org)
- GlueX spokesperson: Curtis Meyer (<u>cmeyer@ernest.phys.cmu.edu</u>)
- GlueX wiki: <u>https://halldweb1.jlab.org/wiki</u>

Summary

GlueX: search for exotic mesons

- GlueX will study the spectrum of mesons with a polarized photon beam up to 2.8 GeV with sensitivities of a few percent of the total cross section
- Unique study of QCD in gluonic degrees of freedom

Other approved experiments

- $\hfill\square$ Radiative decays of $\eta\to\gamma\gamma$
- Charged pion polarizability
- Study of Cascade baryons

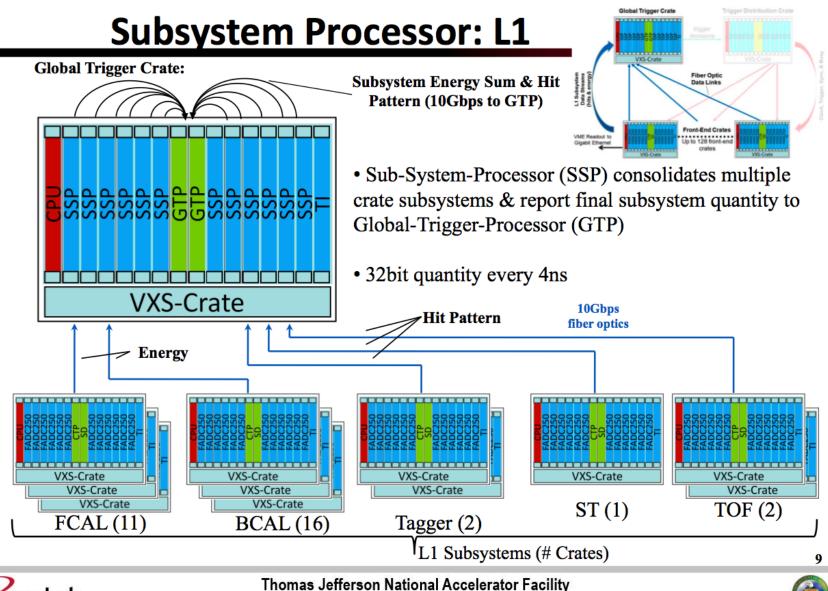
12 GeV schedule

- □ Hall-D detectors are 80% complete, installation in progress
- □ Accelerator commissioning is planned for Jan. 2014
- □ Hall-D detector commissioning starts in late 2014
- □ GlueX phase I data taking starts in 2015

BACKUP SLIDES

GlueX Detector Design Parameters

Capability	Quantity	Range	
	Coverage	$1^{\circ} < \theta < 160^{\circ}$	
	Momentum Resolution ($5^\circ-140^\circ$)	$\sigma_p/p = 1 - 3\%$	
Charged particles	Position resolution	$\sigma \sim 150 - 200 \ \mu m$	
Charged particles	CDC dE/dx measurements	$20^{\circ} < \theta < 160^{\circ}$	
	Time-of-flight measurements	σ_{TOF} ~60 ps; σ_{BCAL} ~200 ps	
	BCAL time resolution	$\sigma_t^{\gamma} < (74/\sqrt{E} \oplus 33) \text{ ps}$	
	Energy measurements	$2^{\circ} < \theta < 120^{\circ}$	
	FCAL energy resolution ($E > 60 \text{ MeV}$)	$\sigma_E/E = (5.7/\sqrt{E} \oplus 2.0)\%$	
Photon detection	BCAL energy resolution ($E > 60 \text{ MeV}$)	$\sigma_E/E = (5.54/\sqrt{E} \oplus 1.6)\%$	
	FCAL position resolution	$\sigma_{x,y} = \left(0.64/\sqrt{E}\right) \mathrm{cm}$	
	BCAL position resolution	$\sigma_z = (0.5/\sqrt{E}) \mathrm{cm}$	
	Level 1	< 200 kHz	
DAQ/trigger	Level 3 event rate to tape	~15 kHz	
	Data rate	300 MB/s	
Electronics	Fully pipelined	250/125 MHz fADCs, TDCs	
Photon flux	Initial/Final	$10^{7}/10^{8} \gamma/s$	



Thomas Jefferson National Accelerator Facility

Yi Qiang - Physics Program at JLab Hall-D - 5th Hadron Workshop, China

L1 Trigger System

Thomas Jefferson National Accelerator Facility Yi Qiang - Physics Program at JLab Hall-D - 5th Hadron Workshop, China 7/3/2013

Experimental Evidence for 1^{-+} **Exotic Hybrids**

- Several candidates for the $\pi_1(1^{-+})$ in the literature at 1400, 1600 and 2000 MeV: some reported by multiple experiments
 - Interpretation of data has received much discussion in community
 - Recent review: Meyer and Van Haarlem, arXiv:1004.5516 (PRC 82, 025208)
- > $\pi_1(1600)$ appears to be most robust: multiple decay modes and experiments
 - $\hfill\square$ Reported by COMPASS in $\rho\pi$
 - □ Handling π_2 background in $\rho\pi$ was a contentious issue in E852
 - □ Dominant signal in $\pi p \rightarrow \eta' \pi n$ (E852); needed to fit $\chi_c \rightarrow \eta' \pi \pi$ (CLEO-c)
- Understanding is not likely to come from studying this state alone: find neighboring exotics and non-exotic hybrids

Thomas Jefferson National Accelerator Facility Yi Qiang - Physics Program at JLab Hall-D - 5th Hadron Workshop, China

30

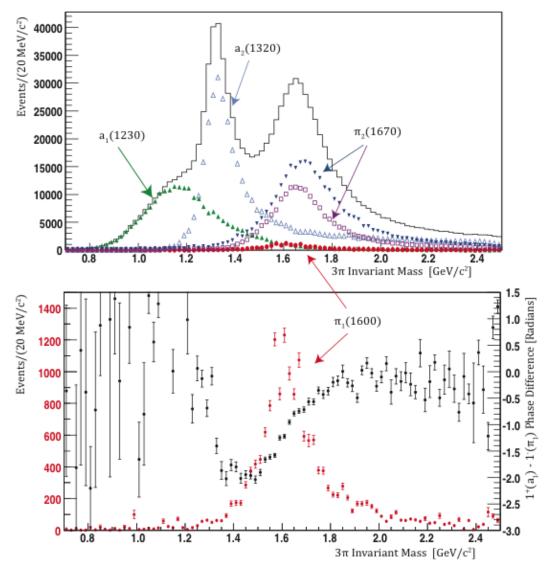
Decomposition of Total Cross Section

$E_v = 9.3 \text{ GeV}$

Тороlоду	σ (μb)	% of σ with neutrals
1-prong	8.5 ± 1.1	100
3-prong	64.1 ± 1.5	76 ± 3
5-prong	34.2 ± 0.9	86 ± 4
7-prong	6.8 ± 0.3	86 ± 6
9-prong	0.61 ± 0.08	87 ± 21
With visible strange decay	9.8 ± 0.4	-
Total	124.0 ± 2.5	82 ± 4

Approximately the 70% of total cross section in the energy region $E_{\gamma} = 7 - 12$ GeV has multiple neutrals and is completely unexplored

Sensitivity Test using PWA Tools


 $\gamma p \to \pi^+ \pi^+ \pi^- n$

generated waves

 $a_1(1260) \rightarrow \rho \pi \qquad (S - wave)$ $a_2(1320) \rightarrow \rho \pi \qquad (D - wave)$ $\pi_1(1600) \rightarrow \rho \pi \qquad (P - wave)$ $\pi_2(1670) \rightarrow f_2 \pi \qquad (S - wave)$ $\pi_2(1670) \rightarrow \rho \pi \qquad (P - wave)$

1⁻⁺ exotic wave generated with 1.6% relative strength

Corresponds to 3.5 hours GlueX data, full detector simulation and reconstruction

Event Rates

Use track reconstruction efficiency based on software performance and final states coupled with estimated cross sections.

	Final State	Cross Section (µb)	Phase I-III (x 10 ⁶)	Phase IV (x 10 ⁶)	
	$\pi^+\pi^-\pi^0$	10	300	3000	-
	$\pi^+\pi^-\pi^+$	4	120	1200	Phase III
Estimates	$\omega_{3\pi}\pi\pi$	0.2	4	40	
	$ω_{\gamma\pi}$ ππ	0.2	0.6	6	
	$η_{\gamma\gamma}$ ππ	0.2	3	30	Higher
	η _{γγ} πππ	0.2	2	20	statistics
stin	η' _{πππ} pp	0.1	0.3	3	
۰	ΚΚππ	0.5	4	40	Kaong
	ΚΚπ	0.1	1	10	Kaons

A factor 10 increase in statistics allows access to small signals from initial running.

GlueX Data Rates

		Front End DAQ Rate	Event Size	L1 Trigger Rate	Bandwidth to mass Storage	
qe	GlueX	3 GB/s	15 kB	200 kH2	300 MB/s	at Im.
JLab	CLAS12	0.1 GB/s	20 kB	10 kHz	100 MB/s	privat comm.
	ALICE	500 GB/s	2,500 kB	200 kHz	200 MB/s	۶
LHC	ATLAS	113 GB/ s	1,500 kB	75 kHz	300 MB/s	CHEP2007 talk Sylvain Chapelin
	CMS	200 GB/s	1,000 kB	100 kHz	100 MB/s	CHEP20 ylvain (
	LHCb	40 GB/s	40 kB	1000 kHz	100 MB/s	S
BNL	STAR	50 GB/s	1,000 kB	0.6 kHz	450 MB/s	*
BN	PHENIX	0.9 GB/s	~60 kB	~ 15 kHz	450 MB/s	**
				* Jeff Landgraf	Private Comm. 2/11/2	2010

** CHEP2006 talk Martin L. Purschke. current capability is 800MB/s peak, 500MB/s sustained (priv. comm. 2/14/2010)

Thomas Jefferson National Accelerator Facility

JSA

34

Yi Qiang - Physics Program at JLab Hall-D - 5th Hadron Workshop, China

Experimental status of exotic $1^{-+}\pi(1600)$

VES	$\pi^{-}A$	\rightarrow	For review see π^-b_1A Meyer PRC 82 (2010) 025208
110	// 11	,	$\pi^- f_1 A$
			$\pi^{-}\eta^{\prime}A$
DOLO			,
$\mathrm{E852}$	$\pi^- p$	\rightarrow	$\rho \pi^- p$
			$b_1\pi^-p$
			$f_1 \pi^- p$
			$\eta'\pi^-p$
Crystal Barrel	$\overline{p}n$	\rightarrow	$b_1\pi^-$
E852-IU	$\pi^- p$	$\not\rightarrow$	$(\rho\pi^-)_{\pi_1}p$
			$(\rho^-\pi^0)_{\pi_1}p$
CLAS	γp	$\not\rightarrow$	$(\rho \pi^+)_{\pi_1} n \leftarrow Only one photo-production search$
COMPASS	$\pi^{-}A$	\rightarrow	$\rho\pi^-A$
CLEO-c	$\psi(2S)$	\rightarrow	$\gamma \chi_{c1}, \chi_{c1} \to \eta' \pi^+ \pi^-$

Cascade Spectroscopy

Information is limited

- $\hfill\square\hfill J^P$ is only known for 3 states
- PDG: Nothing of significance has been added since 1988
- Expectations that many are narrow

Experimentally challenging

- Produced through hyperon decay
- Many-particle final states including kaons
- Small cross sections

GlueX acceptance and rates are ideal

- Parasitic to the main GlueX project
- The baseline GlueX detector can provide pure kaonic event samples with good efficiency for some channels

PDG 2012

```
\Xi(1320) J<sup>P</sup> = (1/2) +?
                             ****
\Xi^*(1530) J^P = (3/2)^+
\Xi^*(1620) J^P = (?/2)^?
                             ***
\Xi^*(1690) J^P = (?/2)^?
                            ***
\Xi^*(1820) J^P = (3/2)^-
                             ***
\Xi^*(1950) J^P = (?/2)^?
                             ***
\Xi^*(2030) J^P = (?/2)^?
\Xi^*(2120) J^P = (?/2)^?
\Xi^*(2250) J^P = (?/2)^?
\Xi^*(2370) J^P = (?/2)^?
\Xi^*(2500) J^P = (?/2)^?
```