Photodisintegration of ³He with double polarizations at High Intensity Gamma Source (HIyS)

- Introduction
- New results on Three-body Photodisintegration
- Future experiment on Two-body process
- Photodisintegration of ⁴He
- Summary

Haiyan Gao Duke University Durham, NC, U.S.A.

QCD

- Strong interaction, running coupling ~1
 -- QCD: the theory of strong interaction
 - -- asymptotic freedom (2004 Nobel) perturbation calculation works at
 - high energy
 - -- interaction significant at
 - intermediate energy
 - quark-gluon correlations
 - -- confinement
 - interaction strong at low energy
 - coherent hadron
 - -- Chiral symmetry
 - -- theoretical tools:
 - pQCD, OPE, Lattice QCD, ChPT

Nucleon Structure

- Charge and magnetism ^E (current) distribution
- Spin distribution
- Quark momentum and flavor distribution
- Polarizabilities
- Strangeness content
- Three-dimensional structure

•

Spin as an important knob

No Stable Free Neutron Targets

Effective neutron targets: Deuterium and ³He used

Nuclear corrections needed

State-of-the-art calculations validated by experiments

³*He* Targets Pioneered at MIT-Bates in probing the neutron structure (form factors)

Metastability-exchange

optical pumping

Spin-exchange optical pumping

H. Gao *et al.*, PRC **50**, R546 (1994)

J.-O. Hansen *et al.*, PRL74, 654 (1995)

MIT-Bates Taken in June 93

The Incomplete Nucleon: Spin Puzzle

- DIS $\rightarrow \Delta \Sigma \approx 0.25$
- RHIC + DIS $\rightarrow \Delta g$ not small (arXiv:1209.3278)

• L_q

Orbital angular momentum of quarks and gluon likely important

Understanding of spin-orbit correlations (atomic hydrogen, topological insulator....)

Go beyond collinear to include transverse momentum

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma(\mu) + L_q(\mu) + J_g(\mu)$$

[X. Ji, 1997]

Jaffe-Manohar 1990

Chen et al. 2008

Wakamatsu 2009,2010

SoLID-Spin: SIDIS on ³He/Proton (a) 11 GeV

E12-10-006: Single Spin Asymmetry on Transverse ³He (a) 90 days, rating A Single and Double Spin E12-11-007: Asymmetry on ³He a 35 days, rating A **E12-11-108:** Single and Double Spin Asymmetries on Transverse Proton @120 days, rating A

> International collaboration with 180 **Collaborators from 8 countries**

 J/Ψ (A⁻) approved Key of SoLID-Spin program: Large Acceptance

- + High Luminosity
- → 4-D mapping of asymmetries
- \rightarrow Tensor charge, TMDs ...
- \rightarrow Lattice QCD, QCD Dynamics, Models.

Photodisintegration of ³He with double polarizations at HI_γS at TUNL

Two-Body Breakup

$$\gamma + {}^{3}He \rightarrow p + d$$

Three-Body Breakup

$$\gamma + {}^{3}He \rightarrow p + p + n$$

Test of State-of-the-Art Calculations on ³He

- Three-nucleon system provides an excellent testing ground of fewbody theories
 - e.g. Nuclear corrections on effective neutron target

- Three-body calculations
 - Deltuva et al. : using AGS equations with CD Bonn + ∆-isobar + Coulomb potential +...
 - Skibiński et al.: using Faddeev equations with AV18+UIX+...
 - Chiral EFT: including one- and two- pion exchange of MEC at NLO
- The advance of theories needs more precise experimental data, new observables

$$H = \sum_{i} \frac{P_{i}^{2}}{2m} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \cdots$$

[1] A.Deltuva et al., Phys. Rev. C 71, 054005 (2005); Phys. Rev. C 72, 054004 (2005) and Nucl. Phys. A 790, 344c (2007)

- [2] R.Skibinski et al., Phys. Rev. C 67, 054001 (2003); R.Skibinski et al. Phys. Rev. C 72, 044002 (2005)
- [3] E.O. Alt et al. Nucl. Phys. B2, 167 (1967)
- [4] L.D. Faddeev, Sov. Phys. JETP 12 1014 (1961)
- [5] R. Rozpedzik et al., Phys. Rev. C 83, 064004 (2001)

Investigation of the GDH Sum Rule

S.B.Gerasimov, Sov. J. Nucl. Phys. 2 430 (1966) S.D. Drell et al. Phys. Rev. Lett. 16 908 (1966)

$$I^{GDH} = \int_{v_{thr}}^{\infty} \frac{dv}{v} \left[\sigma_N^P(v) - \sigma_N^A(v) \right] = \frac{4\pi^2 \alpha}{M_N^2} \kappa_N^2 I$$

 $\sigma_N^P \,\,\, \sigma_N^A$ spin dependent total photon-absorption cross section

 K_N anomalous magnetic moment

Fundamental Interpretation: any particle with a nonzero anomalous magnetic moment has internal structure and therefore an excitation spectrum

- Based on general principles of physics: Lorentz and gauge invariance, crossing symmetry, causality and unitarity
- First measurement on proton up to 800 MeV (Mainz) and up to 3 GeV (Bonn) agree with GDH with assumptions for contributions from un-measured regions (new measurements at Mainz), GDH on deuteron from $HI\gamma S$

P: target spin parallel to the photon spin A: spins anti-parallel to the photon spin

HIYS Facility at TUNL

G. Laskaris *et al*., Phys. Rev. Lett. 110, 202501 (2013)

E_n(MeV)

E_n(MeV)

E_n(MeV)

Spin-Dependent Single Differential Cross Sections at 12.8 MeV (Preliminary)

Spin-Dependent Single Differential Cross Sections at 14.7 MeV (Preliminary)

G. Laskaris et al., Phys. Rev. Lett. 110, 202501 (2013)

Two-body Photodisintegration: April 2013 Beam Test

- ~100% circularly polarized γ-ray beam at 30 MeV (flux during the run 3x10⁷γ/sec)
- High pressure hybrid ³He target (6.48±0.1 amg, ~1mm wall thickness)
- 16 Silicon Surface Barrier (SSB)
- detectors at 45°, 70°, 95° and 120° (4 detectors at each angle)

60 hours of beam time (total) 30 hours on ³He cell 10 hours on N_2 reference cell 20 hours on the optimization of setup

Two-body Photodisintegration: April 2013 Beam Test

First Measurement of $\overline{{}^{3}\text{He}}(\vec{\gamma}, p)d$ at Incident Photon Energies of 25 and 30 MeV

³He Target Cells for $\overrightarrow{^{3}\text{He}}(\overrightarrow{\gamma},p)d$

- Two different cells for the measurements at 25 and 30 MeV
- Make possible for protons to "escape" from the target chamber of the ³He cell
- Typical cell have three volumes: pumping and target chambers (P.C. and T.C.) connected with transfer tube
- Both cells will have the same P.C.
 (8 cm in diameter) and transfer tube
 (1 cm in diameter and 9 cm long)

Technical Characteristics	Cell at 25 MeV	Cell at 30 MeV
Target Chamber diameter	3 cm	3 cm
Target Chamber wall thickness	700 µm	1 mm
³ He Filling Density	4.5 amg	6.5 amg

Photodisintegration of the Reaction ${}^{4}He(\gamma,p){}^{3}H$ between 22 and 30 MeV

Recent results from Shima et al. had put into question the validity of theoretical calculation.

new data are in good agreement with the calculation of the Trento group.

providing confidence in the related calculations of core-collapse supernova explosions and big-bang nucleon-synthesis abundances of certain light nuclei.

R. Raut et al., Phys. Rev. Lett. 108 042502 (2012)

Collaborations

Three-body

M.W. Ahmed, T. Averett, A. Deltuva, D. Dutta, A.C. Fonseca, H. Gao (co-spokesperson), J. Golak, M. Huang, H.J. Karwowski, B. Lalremruata, <u>G. Laskaris</u> J.M. Mueller, L.S. Myers, C. Peng, B.A.
Perdue, X. Qian, P.U. Sauer, R. Skibiński, S. Stave, J.R. Tompkins, H.R. Weller (co-spokesperson), H. Witala, Y.K. Wu, Q. Ye, Q.J. Ye, Y. Zhang, W. Zheng

Two-body

M.W. Ahmed (co-spokesperson), T. Averett, P.-H. Chu, D. Dutta, H. Gao (co-spokesperson), C.R. Howell, M. Huang, S.S Jawalkar, A. Kafkarkou, H.J. Karwowski, D. Kendellen, <u>G. Laskaris</u>, J. Manfredi, M. Meziane, J.M. Mueller, L.S. Myers, C. Peng, M.H. Sikora, B. Tsang, H.R. Weller, Y.K. Wu, X. Yan, Q. Ye, Q. J. Ye, Y. Zhang

Summary

- The first experiment on $\overline{{}^{3}\text{He}}(\vec{\gamma},n)$ pp took place at HI γ S/TUNL facility
- The spin-dependent double/single differential, total cross sections and GDH integrand were extracted at 12.8 and 14.7 MeV
- The Coulomb force should be included in the calculations for the three-body photodisintegration of ³He
- A new experiment on the two-body photodisintegration of ³He with double polarizations will take place on the spring of 2014
- Pion-less/-full EFT calculations make good progress concerning the two-body break up of ³He

This work is supported by the U.S. Department of Energy under contract numbers DE-FG02-97ER41033(TUNL), DE-FG02-03ER41231(MEP/DUKE), DE-FG02-97ER41041(UNC) and the school of Arts & Science at Duke University