

Precision Hadron Structure: from electron scattering to atomic physics

Marc Vanderhaeghen

5th Workshop on Hadron Physics in China and Opportunities in US Huangshan, Anhui, China, July 2-6, 2013

What is the size of the proton?

Sizes and shapes of non-relativistic many-body systems

Sizes of nuclei as revealed through elastic electron scattering

Shapes of deformed nuclei as revealed through inelastic electron scattering

Perspective on shape of hadrons: Alexandrou, Papanicolas, Vdh (2011)

Electron scattering facilities MAMI, Jlab:

uniquely positioned to deliver high-precision hadron data

recent cross section data A1@MAMI

Bernauer et al. (2010)

extraction of R_{F} from μ H Lamb shift

Leading term of order O($lpha^4$) : $\phi_n^2(0) = m_r^3 lpha^3/(\pi n^3)$

Lamb Shift

Principle of muonic Lamb shift experiment@PSI

Experimental precision $\approx 2 \ \mu eV$

Energy shift ascribed to finite proton size is 310 µeV less than expected !!!

Proton radius puzzle ?

Lamb shift: QED corrections

- Muon self-energy, vacuum polarization $\Delta E = -0.6677$ meV
- other QED corrections calculated : all of size 0.005 meV or smaller << 0.3 meV</p>

Lamb shift: hadronic corrections (I)

Lower blob contains both elastic (nucleon) and in-elastic states Information is contained in forward, double virtual Compton scattering

For model estimates, see e.g. recent work of Miller, Thomas, Caroll, Rafelski (2011)

Lamb shift: hadronic corrections (II)

Lower blob contains both elastic (nucleon) and in-elastic states
Information contained in forward, double virtual Compton scattering

Hadron physics input required

- Described by two amplitudes T1 and T2: function of energy ν and virtuality Q^2
- Imaginary parts of T1, T2: unpolarized structure functions of proton $Im T_1(\nu, Q^2) = \frac{1}{4M} F_1(\nu, Q^2)$ $Im T_2(\nu, Q^2) = \frac{1}{4M} F_2(\nu, Q^2)$
- ΔE evaluated through an integral over Q² and v

 $\Delta E = \Delta E^{el} \xrightarrow{} \text{Elastic state: involves nucleon form factors} \\ + \Delta E^{subtr} \xrightarrow{} \text{Subtraction: involves nucleon polarizabilities} \\ + \Delta E^{inel} \xrightarrow{} \text{Elastic state: involves nucleon polarizabilities}$

Inelastic, dispersion integrals: involves structure functions F1, F2

Lamb shift: hadronic corrections (III)

Low-energy expansion of forward, doubly virtual Compton scattering constrains subtraction term $T_1(0,Q^2)$

effective Hamiltonian :
$$\mathcal{H} = -\frac{1}{2} 4\pi \alpha_E \vec{E}^2 - \frac{1}{2} 4\pi \beta_M \vec{B}^2$$

electric magnetic polarizabilities

$$\lim_{\nu^2, Q^2 \to 0} T_1^{\text{non-Born}}(\nu, Q^2) = \frac{\nu^2}{e^2} (\alpha_E + \beta_M) + \frac{Q^2}{e^2} \beta_M$$

subtraction term for T_1

$$\lim_{\nu^2, Q^2 \to 0} T_2^{\text{non-Born}}(\nu, Q^2) = \frac{Q^2}{e^2} (\alpha_E + \beta_M)$$

Numerical	(µeV)	Carlson,Vdh (2011)	Pachucki (1999)	Martynenko(2006)	
evaluations .	$\Delta E^{ m subt}$	5.3 ± 1.9	1.8	2.3	
	ΔE^{inel}	-12.7 ± 0.5	-13.9	-13.8	
	ΔE^{el}	-29.5 ± 1.3	-23.0	-23.0	
	ΔE	-36.9 ± 2.4	-35.1	-34.5	

 $\Delta E = (-36.9 \pm 2.4) \,\mu eV$ or

or about 12% of the needed correction ...

present experimental precision: 2 µeV

Static Polarizability Status

More precise measurement of β_M underway at A2@MAMI using linearly polarized photons

Proton radius puzzle: what could it mean ?

unknown correction ? ...after known constraints have been built in !

Change in Rydberg constant ?

In absence of further (sizeable) corrections, use of muonic extraction of R_E plugged into electron H Lamb shift yields R_{α} which is 4.9 σ away from CODATA value (and factor 4.6 more precise) Pohl et al. (2010)

New physics ?

- explain $3\sigma (g-2)_{\mu}$ discrepancy AND $7\sigma R_E$ discrepancy from μ H Lamb shift simultaneously invoking a correction by a hypothetical light boson ?

- (g-2)_e puts strong limit on coupling to e -> much smaller,

Non-universality $e - \mu$?

- New parity violating muonic forces ?
- Can rare Kaon decay data help?

Tucker,	Smith	(2010)		Barger	, Chiang	, Keung,	Marfatia	(201	L1)	
Batell,	McKeen,	Pospelov	(2011)	Brax,	Burrage	(2011)	Risl	ow,	Carlson	(2012)

Proton radius puzzle: what's next ?

Muonic Lamb shift : muonic D, muonic ³He measurements planned

H/D isotope shift (1S-2S): $r_d^2 - r_p^2 = 3.82007 \pm 0.00065 \text{ fm}^2$ Parthey et al. (2010)

Proton radius puzzle: what's next ?

- Muonic Lamb shift : muonic D, muonic ³He measurements planned
- Electronic H Lamb shift : higher accuracy measurement very timely
 New proposal (York Univ, Canada) : R_E to 0.7%

Proton radius puzzle: what's next ?

- Muonic Lamb shift : muonic D, muonic ³He measurements planned
- Electronic H Lamb shift : higher accuracy measurement very timely New proposal (York Univ, Canada) : R_E to 0.7%
- new G_{E_0} measurements at very low Q² down to Q² \approx 2x10⁻⁴ GeV²
 - JLAB/Hall B approved expt : magnetic-spectrometer-free experiment (HyCal) $Q^2 = 2x10^{-4} - 2x10^{-2} \text{ GeV}^2$ ep->ep cross sections normalized to Moller scattering

Proton radius puzzle: what's next?

- Muonic Lamb shift : muonic D, muonic ³He measurements planned
- Electronic H Lamb shift : higher accuracy measurement very timely
 New proposal (York Univ, Canada) : R_E to 0.7%
- new G_{E_D} measurements at very low Q² down to Q² \approx 2x10⁻⁴ GeV²

JLAB/Hall B approved expt : magnetic-spectrometer-free experiment (HyCal) $Q^2 = 2x10^{-4} - 2x10^{-2} \text{ GeV}^2$ ep->ep cross sections normalized to Moller scattering

Proton radius puzzle: what's next?

Muonic Lamb shift : muonic D, muonic ³He measurements planned

Electronic H Lamb shift : higher accuracy measurement very timely
 New proposal (York Univ, Canada) : R_E to 0.7%

• new G_{Ep} measurements at very low Q² down to Q² \approx 2x10⁻⁴ GeV²

JLAB/Hall B approved expt : magnetic-spectrometer-free experiment (HyCal) $Q^2 = 2x10^{-4} - 2x10^{-2} \text{ GeV}^2$ ep \rightarrow ep cross sections normalized

MAMI/A1 : using initial state radiation (2013)

 μ – p scattering (MUSE) at low Q² at PSI: (2015 – 2017)

simulataneous measurement of μ^{\pm} p and e^{\pm} p: lepton universality test 0.002 GeV² < Q² < 0.07 GeV² 2 beam polarities give 2y exchange test

scintillator

Complementing hadron structure in space- and timelike regions

Spatial imaging of hadrons

Miller(2007) Carlson, Vdh(2008)

Generalized Parton Distributions (GPDs): 3D image of hadrons

Burkardt (2000, 2003), Belitsky, Ji, Yuan (2004)

GPDs: transverse image of hadrons

GPDs: quark distributions w.r.t. longitudinal momentum x and transverse position b

lattice QCD: moments of GPDs

Guidal, Polyakov, Radyushkin, Vdh (2005) Diehl, Feldmann, Jakob, Kroll (2005)

QCD factorization: tool to access GPDs

KE١

at large Q² : **QCD factorization theorem** : hard exclusive process described by GPDs model independent !

Müller et al.(1994), Ji(1995), Radyushkin(1995), Collins, Frankfurt, Strikman (1996)

Q² leverage required to test **QCD scaling**

world data on proton F2

Quark orbital angular momentum in proton

Lorce', BP, Xiong, Yuan, PRD85 (2012)

Energy-luminosity frontier in lepton-nucleon physics

CONCLUSIONS

Strong interplay between
 high-energy precision low-energy frontiers

 Impact of hadron physics on new physics searches: (g-2)_μ, Q_{weak}, new dark photon searches

- Unraveling hadron structure in strong QCD:
 proton radius puzzle has shaken textbook beliefs
 - combination of new experiments + theory opens perspectives for an imaging of hadrons to an unprecedented level of detail