New Results on Nucleon Spin (Highlights from Jefferson Lab)

> Oscar A. Rondón INPP - U. of Virginia

V Workshop on Hadron Physics, Hadron 2013 Huangshan July 3, 2013

Probing the Nucleon Spin with Polarized Electromagnetic Scattering

Charged Inelastic Lepton-Nucleon Scattering

- Use virtual photon γ^* as probe
 - Best region for illuminating nucleon structure is Bjorken x > 0.1, where the γ^* hadronic structure does not contribute to the scattering
 - This region is JLab's domain
- Talk focus is on nucleon spin from double-polarization experiments
 - transverse target polarization
 - inclusive scattering results; connection to semi-inclusive studies
- summary of program at 11 GeV

Inclusive Scattering: Undetected final state (http://www.desy.de/~gbrandt/feyn/)

3

Inelastic e - nucleon Scattering

- Inclusive EM scattering is described in terms of the hadronic and leptonic tensors: nucleon structure and beam.
- General expression for hadronic tensor involves eleven terms:
 - six structure functions (SF's) for spin-averaged beam and target states and five for double-polarized scattering.
 - symmetries reduce SF's to unpolarized W_1 , W_2 , polarized G_1 , G_2
- Anti-symmetric part of hadronic tensor depends on G_1 , G_2 :

$$W^{A}_{\mu\nu} = 2 \epsilon_{\mu\nu\lambda\sigma} q^{\lambda} \Big\{ M^{2} S^{\sigma} \boldsymbol{G}_{1}(\nu, Q^{2}) + \Big[M \nu S^{\sigma} - p^{\sigma} S \cdot q \Big] \boldsymbol{G}_{2}(\nu, Q^{2}) \Big\}$$

lab frame nucleon's p = (M, 0); four-momentum transfer q = (E - E', k - k'), Q² = -q²; energy transfer v = E- E'; angles relative to beam.

Structure Functions in Inclusive DIS

- The four SF's G_1 , G_2 , W_1 and W_2 , contain all the information on nucleon structure that can be extracted from inclusive data
- In the high energy regime of DIS, g₁ and g₂ are expected to scale like F₁ and F₂ (up to log violations)

$$\begin{split} \lim_{Q^{2}, \nu \to \infty} M^{2} \nu G_{1}(\nu, Q^{2}) &= g_{1}(x) \\ \lim_{Q^{2}, \nu \to \infty} M \nu^{2} G_{2}(\nu, Q^{2}) &= g_{2}(x) \\ x &= Q^{2}/(2M\nu) \end{split} \qquad \begin{aligned} \lim_{Q^{2}, \nu \to \infty} M W_{1}(\nu, Q^{2}) &= F_{1}(x) \\ \lim_{Q^{2}, \nu \to \infty} \nu W_{2}(\nu, Q^{2}) &= F_{2}(x) \\ \frac{F_{2}(x)}{F_{1}(x)} &= 2x \quad (Callan - Gross) \end{aligned}$$

• In the quark parton model g_1 and F_1 are also related to PDF's:

7/3/13

$$F_{1}(x) = \frac{1}{2} \sum e_{f}^{2} (q_{f}^{\uparrow}(x) + q_{f}^{\downarrow}(x))$$
$$g_{1}(x) = \frac{1}{2} \sum e_{f}^{2} (q_{f}^{\uparrow}(x) - q_{f}^{\downarrow}(x))$$

5

Virtual Compton Asymmetries

- For polarized beam and target, the spin SF's are also related to photon cross-sections and asymmetries
 - Along the γ^* axis, the helicity of the photon-nucleon system is 3/2 or $\frac{1}{2}$ for transverse photons, $\frac{1}{2}$ for longitudinal ones
 - The spin asymmetry (SA) A_1 is defined in terms of the difference for 3/2 and $\frac{1}{2}$ helicity cross sections
 - The SA A_2 is defined in terms of the interference between initial transverse and final longitudinal amplitudes

$$A_{1} = \frac{\sigma_{T}^{(3/2)} - \sigma_{T}^{(1/2)}}{\sigma_{T}^{(3/2)} + \sigma_{T}^{(1/2)}} \qquad A_{1} = \frac{1}{F_{1}} (g_{1} - \gamma^{2} g_{2}); \quad \gamma = \frac{2 x M}{\sqrt{Q^{2}}}$$
$$A_{2} = \frac{\sigma_{TL}^{(1/2)}}{\sigma_{T}^{(3/2)} + \sigma_{T}^{(1/2)}} \leq \mathbf{R} = \frac{\sigma_{L}}{\sigma_{T}} \qquad A_{2} = \frac{\gamma}{F_{1}} (g_{1} + g_{2}) = \frac{\gamma}{F_{1}} \mathbf{g}_{T}$$

6

Nucleon Spin "Crisis"

• Nucleon spin is calculated from the first moment of g_1

$$\int_{0}^{1} dx g_{1}^{p}(x) = \frac{1}{36} [4E_{0}a_{0} + 3E_{3}a_{3} + E_{8}a_{8}]$$
$$a_{0} = \sum q = \Delta u + \Delta d + \Delta s$$

• Singlet axial-vector matrix element a_0 is sum of quark spins: $a_0 = 0.33 \pm .03 \pm .05$ (COMPASS 2007)

Nucleon Spin "Crisis"

• Nucleon spin is calculated from the first moment of g_1

$$\int_{0}^{1} dx g_{1}^{p}(x) = \frac{1}{36} [4E_{0}a_{0} + 3E_{3}a_{3} + E_{8}a_{8}]$$
$$a_{0} = \sum q = \Delta u + \Delta d + \Delta s$$

- Singlet axial-vector matrix element a_0 is sum of quark spins: $a_0 = 0.33 \pm .03 \pm .05$ (COMPASS 2007)
- $\Delta g \sim 0$: need *L* to get $\frac{1}{2} h/2\pi$

(Nocera et al. (NFRR) arXiv:1206.0201)

Nucleon Spin beyond G_1 and G_2

- Need to go beyond a_0 to understand nucleon spin
 - Orbital angular momentum (OAM) *L* is needed.
- Partons have transverse momentum, implies OAM
 - Muller, Ji, Radyushkin, Generalized Parton Distributions – GPDs
 - functions of Mandelstam t, light cone momentum ξ
 - exclusive scattering, DV Compton, meson

7/3/13

 $H(x,\xi=t=0)=q(x)=f_1(x)$ $\tilde{H}(x,\xi=t=0)=\Delta q(x)=g_1(x)$ $E(x,\xi,t), \quad \tilde{E}(x,\xi,t)$ (no partonic analogs)

$$J_{q} = \frac{1}{2} \int_{-1}^{1} dx \, x \left[H^{q}(x, \xi, t=0) + E^{q}(x, \xi, t=0) \right]$$

(Ji's sum rule)
$$\sum J_{q} = \sum \Delta q + L_{q}$$

Nucleon Spin beyond G_1 and G_2

- Need to go beyond a_0 to understand nucleon spin
 - Orbital angular momentum (OAM) *L* is needed.
- Partons have transverse momentum, implies OAM
 - Mulders *et al.*, Transverse
 Momentum Distributions –
 TMDs
 - functions of x and $k_{\rm t}$
 - Semi-inclusive scattering (detect final *e*, one hadron)

Transverse Momentum Distributions by Polarization				
Target $\downarrow \land$ quark \rightarrow ULT				
U	$f_{1}(x, k_{t})$		$h_1 \perp$	
L		g 1	$h_{1L} \perp$	
7	<i>f</i> _{1T} ⊣_	g ₁⊤_l_	h ₁ h₁⊤┘-	

Longitudinal SSF (leading twist) $g_1(x) = \sum g_1^q(x) = \sum \int d^2 \vec{k}_t g_{1L}(x, \vec{k}_t^2)$

Transverse SSF (twist-3) $g_{1T}^{(1)}(x) = \sum g_{1T}^{q(1)}(x) = \sum \int d^2 \vec{k}_t \frac{\vec{k}_t^2}{2M^2} g_{1T}^q(x, \vec{k}_t^2)$ $g_T(x) = g_1(x) + \frac{d}{dx} g_{1T}^{(1)} = g_1(x) + g_2(x)$

PDF's: an Experimentalist's View

Type of scattering	Beam polarization	Target polarization	Probed properties	Observable
Inclusive	None	None	parton longitudinal momentu	m W1, W2
	Yes	Longitudinal	parton helicity	G1
	Yes	Transverse	qg correlations (twist-3)	G2
	Yes	None	parity violation	Eectroweak asymmetry
	None	Yes	longitudinal form factor	$A_{V}^{d}(F_{LT}^{1-1})$
Semi-inclusive	None	Yes	transverse momentum, spin	azimuthal asymmetries, h1, Sivers, h1T, h1L
	Yes	Longitudinal	quark flavor helicity	azimuthal asymmetries
	Yes	Transverse	partonic interactions	azimuthal asymmetries cos(φ- φ₅)
Exclusive	None	Yes	generalized PD's	Bethe-Heitler interference DVCS Aul
	Yes	None	GPD's	DVCS AL U
	Yes	Yes	orbital angular momentum	azimuthal asymmetries

Transverse Polarized Scattering: Unlocking Twist-3

- Twist-2 and twist-3 operators contribute at same order in transverse polarized scattering
 - twist-2: handbag diagram
 - twist-3: qgq correlations
- direct access to twist-3 via g_2 :

7/3/13

- "Unique feature of spin-dependent scattering" (R. Jaffe)
- difference of transverse cross sections

$$\frac{d^2 \sigma^{(\uparrow \rightarrow)}}{d \Omega dE'} - \frac{d^2 \sigma^{(\downarrow \rightarrow)}}{d \Omega dE'} = \frac{4 \alpha^2 E'}{Q^2 E} E' \sin \theta \cos \phi \Big[M G_1(\nu, Q^2) + 2 E G_2(\nu, Q^2) \Big]$$

(Comments NPP, 19,239 (1990))

Why is g_2 interesting?

- test $\underline{\text{twist-3}}$ effects = quark-gluon correlations
- higher twist corrections to g_1 with d_2 matrix element
- test of lattice QCD, QCD sum rules, quark models from moments
- polarizabilities of color fields (with twist-4 matrix element f_2)
 - magnetic $\chi_{\rm B} = (4d_2 + f_2)/3$ and electric $\chi_{\rm E} = (4d_2 2f_2)/3$.
- third moment related to color Lorentz force on transverse polarized quark (M. Burkardt, AIP Conf.Proc. 1155 (2009) 26)
 - sign of d_2 related to sign of transverse deformation (κ^q)
- contains chiral odd twist-2 = quark transverse spin (mass term)
- test quark masses (covariant parton models)

g_2 and g_T Spin Structure Functions

Experimentally measured quantities $g_T(x) = g_1(x) + g_2(x) = F_1(x)A_2(x)/\gamma$

Decomposition of g_T [1]

$$g_T(x) = \int d^2 \vec{k}_t \frac{\vec{k}_t^2}{2M^2} \frac{g_{1T}^q(x, \vec{k}_t^2)}{x} + \frac{m}{M} \frac{h_1(x)}{x} + \tilde{g}_T(x)$$

TMD quark mass term qgq interaction Applying twist-2 Wandzura-Wilczek approximation of g_2 $g_2^{WW}(x) = -g_1(x) + \int_x^1 dy g_1 \frac{(y)}{y}$ $g_T(x) = \int_x^1 dy \frac{g_1(y)}{y} + \frac{m}{M} \left[\frac{h_1(x)}{x} - \int_x^1 dy \frac{h_1(y)}{y} \right] + \tilde{g}_T(x) - \int_x^1 dy \frac{\tilde{g}_T(y) - \hat{g}_T(y)}{y}$ Twist-3 for the nucleon (neglecting quark mass) $\bar{g}_2 = \frac{1}{2} \sum e_q^2 \left[\tilde{g}_T^q - \int_x^1 \frac{dy}{y} \left(\hat{g}_T^q(y) - \tilde{g}_T^q(y) \right) \right]; \quad \tilde{g}_T = qg \text{ term}, \quad \hat{g}_T = \text{Lorentz invariance [2]}$ Extracting TMD $g_{1T}^{(1)}$ from measured inclusive g_2 $g_2(x) = \frac{d}{dx} g_{1T}^{(1)}(x) + \hat{g}_T(x).$ [1] hep-ph/9408305v1

[2] JHEP 0911 (2009) 093

Recent SSF Studies at JLab

Hall	Publication	Measurement	Experiment
CLAS	PL B672 (2009) 12	Moments of g1p and g1d for 0.05 < Q**2 < 3.0-GeV**2	eg1b
CLAS	PL B704 (2011) 397	Beam Spin Asymmetries in Semi-Inclusive pi0 production	eg1b
CLAS	PR C80 (2009) 035206	Beam Spin Asymmetries in DVCS with CLAS at 4.8-GeV	eg1-dvcs
CLAS	PRL 105 (2010) 262002	Single and Double Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target	eg1b
Hall A	arXiv:1304.4497	Moments of Neutron g2 SF at Intermedi- ate Q**2	01-012
Hall A	PRL 107 (2011) 072003	Single Spin Asymmetries in Charged Pion Production from SIDIS on a Transversely Polarized 3He Target	06-010
Hall A	PRL 108 (2012) 052001	Beam-Target Double Spin Asymmetry A_LT in Charged Pion Production from DIS on a Transversely Polarized He-3 Target	06-010
Hall C	PRL 105 (2010) 101601	Probing Quark-Gluon Interactions with Transverse Polarized Scattering	01-006
Hall A	Very preliminary	Precision d2n: Color Polarizabilities	06-014
Hall C	Very preliminary	Spin Asymmetries of the Nucleon – SANE	07-003
Hall A	Very very preliminary	g2p and the Longitudinal-Transverse Spin Polarizability	08-027
<mark>JAM JLab Angu</mark>	- APS April 2013	Global PDF fits	Phenomenology
lar Momentum			

g_2 in the Resonances

• g_2 in Hall A (below) and Hall C (right)

g_2 in DIS and Resonances

- Proton (NH₃)
 - Hall C SANE (E07-003)

7/3/13 – 0.3 < x < 0.8 $2.5 < Q^2 < 6.5$

- Neutron (on ³He)
 - Hall A d2n (E06-014)
 - 4.7 and 5.9 GeV beam

Spin Asymmetries A_1 and A_2

• Model independent separation of proton spin asymmetries in the resonances from longitudinal and transverse measured asymmetries

Spin Asymmetry A_2

(P. Solvignon)

signal of transverse momentum 7/3/13

More DIS $A_2^{3\text{He}}$ coming (E06-014)

SANE Goal: DIS Transverse Spin SF g_{T}^{p}

• $g_T^{p} = F_1 A_2 / \gamma$, measures spin distribution normal to γ^*

• SANE $\langle g_T^p(x > .3) \rangle = 0.023 \pm 0.006$

- Bag Model (1990's)
 - Data scaled by 2.5
 - Model updates needed

SANE Goal: DIS Transverse Spin SF $g_{T^{P}}$

• $g_T^p = F_1 A_2 / \gamma$, measures spin distribution normal to γ^*

• SANE $\langle g_T^p(x > .3) \rangle = 0.023 \pm 0.006$

- $g_{\rm T}$ evolution non-trivial
 - no simplification possible at NLO (NPB 608 (2001) 235)

Double Spin SIDIS A_{LT}

- $g_{1T}^{\perp}(x, \mathbf{k}_t)$ is chiral-even TMD for quarks with longitudinal helicity in a transverse polarized target
- Weighted by k_t²/2M² and integrated over k_t, generates a cos(φ-φ_s) azimuthal A_{LT}, measurable in SIDIS

Hall A E06-010, PRL 108 (2012) 05200

$$\frac{A_{LT}(x, y, z)}{(|\vec{P}_T|/M)\cos(\phi - \phi_s)} = \frac{C(x, y)\sum e^2 g_{1T}^{(1)(x)} D^h(z)}{C'(x, y)\sum e^2 f_1(x) D^h(z)}$$

OPE for Polarized SF's

• C-N moments of g_1 and g_2 connected by OPE to twist-2 and twist-3 matrix elements a_N and d_N

$$\Gamma_{1}^{(N)} = \int_{0}^{1} x^{N} g_{1}(x, Q^{2}) dx = \frac{1}{2} a_{N} + O(M^{2}/Q^{2}), \qquad N = 0, 2, 4, \dots$$

$$\Gamma_{2}^{(N)} = \int_{0}^{1} x^{N} g_{2}(x, Q^{2}) dx = \frac{N}{2(N+1)} (d_{N} - a_{N}) + O(M^{2}/Q^{2}), \qquad N = 2, 4, \dots$$

- twist-3 d_2 mean color-magnetic field along spin
 - d_n is shorthand for $\tilde{d}_n = \sum d_i^n (\mu^2) E_{i,3}^n (Q^2/\mu^2, \alpha_s(\mu^2))$
 - At low-moderate Q^2 Nachtmann moments are needed to obtain dynamic twist-3 matrix elements (no target mass effects to $O(M^8/Q^8)$)

$$d_{2}(Q^{2}) = \int_{0}^{1} dx \,\xi^{2} \left(2 \frac{\xi}{x} g_{1} + 3 \left(1 - \frac{\xi^{2} M^{2}}{2 Q^{2}} \right) g_{2} \right) \Rightarrow_{Q^{2} \to \infty} \int_{0}^{1} dx \, x^{2} \left(2 g_{1} + 3 g_{2} \right)$$

Resonances d_2

- Plots show contribution of resonances to d₂ CN integral
 - Data with $Q^2 < \sim 4 \text{ GeV}^2$ need Nachtmann integrals
 - Add Nachtmann elastic: dominant at Q²< 2 GeV²

g_2^{p} at Low $Q^2 - E08-027$

• Goals:

- BC Sum Rule: violation suggested for proton at large Q², but found satisfied for the neutron and ³He.
- Spin Polarizability: Major failure (> 8σ) of χ PT for neutron δ_{LT} . Need g_2 isospin separation to solve.
- Hydrogen Hyper Fine Splitting and Proton Charge Radius: Lack of knowledge of g_2 at low Q^2 , is one of the leading uncertainties (E08-007)
- Took data in 2012. Analysis in progress

Jefferson Angular Momentum – JAM Collaboration

- Joint theorists and experimentalists • effort to "study the quark and gluon spin structure of the nucleon by performing global fits of PDFs".
- JAM's spin PDFs are tailored for studies at large Bjorken x, as well as the resonance-DIS transition region at low and intermediate W and Q^2 . http://wwwold.jlab.org/theory/jam/ 26

Deuteron Tensor S. F. **b**₁

- Spin structure beyond $\frac{1}{2}$ h/2 π
 - Deuteron tensor b_1 due to nuclear spin 1 h/2 π
 - could result from rescattering at small Bjorken x
 - reproducing HERMES $b_1(x \sim 0.4) < 0$ important
- Measure tensor $A_{zz} = -(2/3) b_1/F_1$
 - use tensor polarized ND₃ target
 - PR12-13-010 C1 approved by JLab PAC40 with A- rating

Kinematics Space at JLab

PAC Approved and Conditionally Approved (C1) Nucleon Spin Program at 12 GeV

Experiment	Hall	Title	Beam days	Rating
E12-06-114	А	Measurements of Electron-Helicity Dependent Cross Sections of Deeply Virtual Compton Scatter- ing with CEBAF at 12 GeV	100	A
E12-06-122	А	Measurement of neutron asymmetry A1n in the valence quark region using 8.8 GeV and 6.6 GeV beam energies and Bigbite spectrometer in Hall A	23	A-
E12-09-018	А	Measurement of the Semi-Inclusive pi and kappa electro-production in DIS regime from trans- versely polarized 3He target with the SBS&BB spectrometers in Hall A	64	A-
E12-10-006	А	An update to PR12-09-014: Target Single Spin Asymmetry in Semi-Inclusive Deep-Inelastic Electro Pion Production on a Trasversely Polarized 3He Target at 8.8 and 11 GeV	90	A
E12-11-007	А	Asymmetries in Semi-Inclusive Deep-Inelastic Electro-Production of Charged Pion on a Longitud- inally Polarized He-3 Target at 8.8 and 11 GeV	35	A
E12-11-108	A	Target Single Spin Asymmetry in Semi-Inclusive Deep-Inelastic (e,e'\pi^{\pm}) Reaction on a Transversely Polarized Proton Target	120	А
E12-06-109	В	The Longitudinal Spin Structure of the Nucleon	80	А
E12-06-119	В	Deeply Virtual Compton Scattering with CLAS at 11 GeV	200	А
E12-07-107	В	Studies of Spin-Orbit Correlations with Longitudinally Polarized Target	103	A-
E12-09-008	В	Studies of the Boer-MuldersAsymmetry in Kaon Electroproduction with Hydrogen and Deuterium Targets	56	A-
E12-09-009	В	Studies of Spin-Orbit Correlations in Kaon Electroproduction in DIS with polarized hydrogen and deuterium targets	103	B+
E12-11-003	В	Deeply Virtual Compton Scattering on the Neutron with CLAS12 at 11 GeV	90	А
PR12-12-009	В	Measurement of transversity with dihadron production in SIDIS with transversely polarized target		Α
PR12-12-010	В	Deeply Virtual Compton Scattering at 11 GeV with transversely polarized target using the CLAS12 Detector		A
E12-06-110	С	Measurement of Neutron Spin Asymmetry A1n in the Valence Quark Region Using an 11 GeV Beam and a Polarized 3He Target in Hall C	36	A
E12-06-121	С	A Path to 'Color Polarizabilities' in the Neutron: A Precision Measurement of the Neutron \$g_2\$ and \$d_2\$ at High \$Q^2\$ in Hall C	29	A-
E12-09-017 PR12-12-005	С	Transverse Momentum Dependence of Semi-Inclusive Pion Production The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Electro- production	32	A-
PR12-11-111	В	Transverse spin effects in SIDIS at 11 GeV with a transversely polarized target using the CLAS12 Detector		A
PR12-12-009	В	Measurement of transversity with dihadron production in SIDIS with transversely polarized target		А
PR12-12-010	В	Deeply Virtual Compton Scattering at 11 GeV with transversely polarized target using the CLAS12 Detector		A
PR12-13-011	С	The Deuteron Tensor Structure Function b1		A-
3/13				

The JLab Nucleon Spin Program goes on

- New results from recent and older SF experiments still to come
- Twenty one experiments on spin in all Halls at 11 GeV
 - over 1150 beam days
 - over half rated A
- Strong theory experiment interaction
- Bright future for nucleon spin physics in the 12 GeV era

Extras

Moments and Higher Twists

- Beyond log scaling violations:
 - Higher Twists (HT): inverse Q^2 power corrections to SF's
 - HT represent parton correlations beyond free quark picture
 - Access to HT: Moments of SF's related by the OPE to matrix elements of quark operators of given twist
 - Moments expanded in power series of $(A(x)/Q^2)^{(\text{twist 2})}$
 - Moments integrate over full x range: $M_{2,3}^{(n)}(Q^2) = \int_0^1 dx \, x^n g_{1,2}(x, Q^2)$
 - Resonances and elastic contribute at JLab's beam E
 - HT clouded by kinematic operators of same twist, but higher spin
 - "Target Mass" corrections required, or avoided using Nachtmann moments, instead of ordinary, Cornwall-Norton moments (above)

d_2 from RSS Third Moments

Moments at $\langle Q^2 \rangle = 1.3$ GeV², in three regions:

- measured .32< x<.8; elastic (quasi-el. for deuteron);
- unmeasured x < 0.32, suppressed by x^2 .

x ranges	Proton	Deuteron	Neutron
Measured			
CN	0.006±0.001	0.008±0.002	0.003±0.002
Nachtmann	0.004±0.001	0.005 ± 0.002	0.002±0.001
0 < <i>x</i> < 1			
CN	0.036 ± 0.003	0.017 ± 0.004	-0.018±0.003
Nachtmann	0.010± 0.001	0.003± 0.002	-0.008± 0.002

- Non-zero d_2 for both nucleons (total errors shown)
 - OPE valid to $N=2 < Q^2/M_0^2 \sim 1.3/0.5^2$ (DIS resonances duality)

(Ji & Unrau, PR D52 (1995) 72)

- Neutron approximated as D-state corrected d p (good to O(1%))
- Ratios Nachtmann/CN < 1: large contribution of kinematic HT

Spin Asymmetries of the Nucleon Experiment - SANE (TJNAF E07-003)

<u>PHYSICS</u>: proton spin structures $g_2(x, Q^2)$ and $A_1(x, Q^2)$ for $2.5 \le Q^2 \le 6.5 \text{GeV}^2$, $0.3 \le x_{Bj} \le 0.8$

Measure inclusive double polarization nearorthogonal asymmetries to:

- access *quark-gluon* correlations using LO twist-3 effects (*d*, quark matrix element)
- compare with Lattice QCD, QCD sum rules, bag model, chiral quarks
- test nucleon models (x dependence) and Q^2 evolution
- explore $A_1(x \rightarrow 1)$; test polarized local duality

METHOD:

- CEBAF 4.7 & 5.9 GeV polarized electrons
- Solid polarized ammonia target
- **BETA**, novel large solid angle (.2 sr) electron telescope:
 - calorimeter + gas Cherenkov + tracking

7/3/Took data in Hall C Jan-March 2009

Big Electron Telescope Array – BETA

- **BigCal** lead glass calorimeter: main detector used in *GEp-III*.
- Tracking Lucite hodoscope
- Gas Cherenkov: pion rejection
- Tracking fiber-on-scintillator forward hodoscope
- BETA specs
 - Effective solid angle = 0.194 sr
 - Energy resolution $9\%/\sqrt{E(\text{GeV})}$
 - 1000:1 pion rejection
 - angular resolution ~ 1 mr
- Target field sweeps low *E* background

7/3/13 - 180 MeV/c cutoff

Cherenkov

Lucite Hodoscope

Polarized Target

- Dynamic Nuclear Polarized ammonia (NH₃, <P> ~ 70% in beam) and deuterated ammonia (ND₃, <P> 20-30%)
 - Wide range of field orientations
- Target used in six experiments before SANE:
 - SLAC E143, E155, E155x (g₂)
 - JLab GEn98, GEn01, RSS

SANE Status and Plans

- SANE goals
 - DIS $g_T^{p} = g_1 + g_2$ shown at conferences
 - Moments of g_1, g_2 , twist-3 matrix element d_2
 - working on extending *x* range, low *x* systematics, optimized binning
 - Spin Asymmetries A_1, A_2 shown at conferences,
 - parameterizing W and Q^2 dependence for world data fits
 - HMS inelastic asymmetries preliminary results shown at DIS 2013
 - extend **RSS** PRL 105 (2010) 101601 low x range for B-C sum rule, d_2
 - elastic form factors publication in preparation
- Long paper draft in progress

Duality in g_1

- Bloom Gilman duality for spin SF's
 - Local Duality only above $\Delta(1232)$
 - Global duality (for $W > \pi$ threshold, or from elastic) obtains above $Q^2 > 1.8 \text{ GeV}^2$
 - seen in p, d, and ³He
 - DIS SSF's from PDF's extrapolated with target mass corrections

Duality in g_1

- Bloom Gilman duality for spin SF's
 - Local Duality only above $\Delta(1232)$
 - Global duality (for $W > \pi$ threshold, or from elastic) obtains above $Q^2 > 1.8 \text{ GeV}^2$
 - seen in p, d, and ³He
 - DIS SSF's from PDF's extrapolated with target mass corrections

Sum Rules

• First moment of g_1 (extended GDH or Ellis-Jaffe sum rule)

$$\overline{\Gamma_1}(Q^2) = \int_0^{1-el} g_1(x, Q^2) dx$$
$$= \frac{1}{36} ((a_8 + 3a_3)C_{NS} + 4a_0C_S)$$

Sum Rules

- First moment of g_2 (Burkhardt-Cottingham S. R.) $\Gamma_2(Q^2) = \int_0^1 g_2(x, Q^2) dx = 0$
- Free of QDC radiative and target mass corrections (Kodaira et al. PLB345(1995) 527)
 - RSS full (solid), measured (open)
 - Hall A E01—012 (preliminary) E97-110, E94-010
- SLAC E155x

Sum Rules

 First moment of g₂ (Burkhardt-Cottingham S. R.)

$$\Gamma_2(Q^2) = \int_0^1 g_2(x,Q^2) dx = 0$$

- Free of QDC radiative and target mass corrections (Kodaira et al. PLB345(1995) 527)
 - RSS full (solid), measured (open)
 - Hall A E01—012 (preliminary) E97-110, E94-010
 - SLAC E155x

^{7/3/13} (From K. Slifer)

Twist-3 and the Burkhardt-Cottingham Sum Rule

- BC sum rule $\Gamma_2 = 0 = \Gamma_2^{WW} + \overline{\Gamma}_2 + \Gamma_2(el)$
 - dispersion relation not from OPE, free from gluon radiation, TMC's
 - twist-2 part $\Gamma_2^{WW} \equiv 0$
- BC is higher-twist + elastic

$$-\Gamma_{2} = \overline{\Gamma}_{2}(\text{unm.}) + \overline{\Gamma}_{2}(\text{measur.}) + \Gamma_{2}(\text{el})$$
$$-\Delta\overline{\Gamma}_{2} = \Gamma_{2} - \overline{\Gamma}_{2}(\text{u}) = \overline{\Gamma}_{2}(\text{measur.}) + \Gamma_{2}(\text{el})$$

- $\Delta \Gamma_2 \neq 0$: assuming BC, implies significant HT at $x < x_{\min}$, <u>or</u>, if twist-3 ~ 0 at low x,
 - BC fails: isospin dependence? nuclear effects?

.3

Credits

- eg1b duality: PRC 75 035203 (2007)
- g_1^n duality: PRL 101 182502 (2008)
- Hall A g_2^n : P. Solvignon, Ph.D. thesis
- Hall C g_2^p : PRL 105 (2010) 101601
- $A_2^{3\text{He}}$: P. Solvignon, Ph.D. thesis
- SANE A_2^{p} , g_T : H. Baghdasaryan and the Analysis team
- *d*₂^{*p*,*n*}: K. Slifer, Seminar, Argonne Nat. Lab., 2009