New Results on Nucleon Spin (Highlights from Jefferson Lab)

Oscar A. Rondón
INPP - U. of Virginia

V Workshop on Hadron Physics, Hadron 2013
Huangshan
July 3, 2013

Probing the Nucleon Spin with Polarized Electromagnetic Scattering

Charged Inelastic Lepton-Nucleon Scattering

- Use virtual photon γ^{*} as probe
- Best region for illuminating nucleon structure is Bjorken $x>0.1$, where the γ^{*} hadronic structure does not contribute to the scattering
- This region is JLab's domain
- Talk focus is on nucleon spin from double-polarization experiments
- transverse target polarization
- inclusive scattering results; connection to semi-inclusive studies
- summary of program at 11 GeV

Inelastic e - nucleon Scattering

- Inclusive EM scattering is described in terms of the hadronic and leptonic tensors: nucleon structure and beam.
- General expression for hadronic tensor involves eleven terms:
- six structure functions (SF's) for spin-averaged beam and target states and five for double-polarized scattering.
- symmetries reduce SF's to unpolarized $\boldsymbol{W}_{1}, \boldsymbol{W}_{2}$, polarized $\boldsymbol{G}_{1}, \boldsymbol{G}_{2}$
- Anti-symmetric part of hadronic tensor depends on $\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{G}_{\mathbf{2}}$:

$$
W_{\mu \nu}^{A}=2 \epsilon_{\mu \nu \lambda \sigma} q^{\lambda}\left\{M^{2} S^{\sigma} \boldsymbol{G}_{\mathbf{1}}\left(\nu, Q^{2}\right)+\left[M \vee S^{\sigma}-p^{\sigma} S \cdot q\right] \boldsymbol{G}_{\mathbf{2}}\left(\nu, Q^{2}\right)\right\}
$$

- lab frame nucleon's $p=(M, \mathbf{0})$; four-momentum transfer $q=\left(E-E^{\prime}\right.$, $\left.\boldsymbol{k}-\boldsymbol{k}^{\prime}\right), Q^{2}=-q^{2}$; energy transfer $\boldsymbol{v}=E-E^{\prime}$; angles relative to beam.

Structure Functions in Inclusive DIS

- The four SF's $\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{G}_{2}, \boldsymbol{W}_{\mathbf{1}}$ and \boldsymbol{W}_{2}, contain all the information on nucleon structure that can be extracted from inclusive data
- In the high energy regime of DIS, \boldsymbol{g}_{1} and \boldsymbol{g}_{2} are expected to scale like \boldsymbol{F}_{1} and \boldsymbol{F}_{2} (up to log violations)

$$
\begin{aligned}
\lim _{Q^{2}, v \rightarrow \infty} M^{2} v G_{1}\left(\nu, Q^{2}\right)=g_{1}(x) & \lim _{Q^{2}, v \rightarrow \infty} M W_{1}\left(\nu, Q^{2}\right)=F_{1}(x) \\
\lim _{Q^{2}, v \rightarrow \infty} M v^{2} G_{2}\left(\nu, Q^{2}\right)=g_{2}(x) & \lim _{Q^{2}, v \rightarrow \infty} v W_{2}\left(v, Q^{2}\right)=F_{2}(x) \\
x=Q^{2} /(2 M v) & \frac{F_{2}(x)}{F_{1}(x)}=2 x \quad(\text { Callan-Gross })
\end{aligned}
$$

- In the quark parton model \boldsymbol{g}_{1} and $\boldsymbol{F}_{\mathbf{1}}$ are also related to PDF's:

$$
\begin{aligned}
& F_{1}(x)=\frac{1}{2} \sum e_{f}^{2}\left(q_{f}^{\uparrow}(x)+q_{f}^{\downarrow}(x)\right) \\
& g_{1}(x)=\frac{1}{2} \sum e_{f}^{2}\left(q_{f}^{\uparrow}(x)-q_{f}^{\downarrow}(x)\right)
\end{aligned}
$$

Virtual Compton Asymmetries

- For polarized beam and target, the spin SF's are also related to photon cross-sections and asymmetries
- Along the γ^{*} axis, the helicity of the photon-nucleon system is $3 / 2$ or $1 / 2$ for transverse photons, $1 / 2$ for longitudinal ones
- The spin asymmetry (SA) \boldsymbol{A}_{1} is defined in terms of the difference for $3 / 2$ and $1 / 2$ helicity cross sections
- The SA \boldsymbol{A}_{2} is defined in terms of the interference between initial transverse and final longitudinal amplitudes

$$
\boldsymbol{A}_{\mathbf{1}}=\frac{1}{F_{1}}\left(g_{1}-\gamma^{2} g_{2}\right) ; \quad \gamma=\frac{2 \times M}{\sqrt{Q^{2}}}
$$

$$
\begin{aligned}
& \boldsymbol{A}_{\mathbf{1}}=\frac{\sigma_{T}^{(3 / 2)}-\sigma_{T}^{(1 / 2)}}{\sigma_{T}^{(3 / 2)}+\sigma_{T}^{(1 / 2)}} \\
& \boldsymbol{A}_{\mathbf{2}}=\frac{\sigma_{T L}^{(1 / 2)}}{\sigma_{T}^{(3 / 2)}+\sigma_{T}^{(1 / 2)}} \leq \boldsymbol{R}=\frac{\sigma_{L}}{\sigma_{T}}
\end{aligned}
$$

$$
\boldsymbol{A}_{2}=\frac{\gamma}{F_{1}}\left(g_{1}+g_{2}\right)=\frac{\gamma}{F_{1}} \boldsymbol{g}_{T}
$$

Nucleon Spin "Crisis"

- Nucleon spin is calculated from the first moment of \boldsymbol{g}_{1}

$$
\begin{gathered}
\int_{0}^{1} d x g_{1}^{p}(x)=\frac{1}{36}\left[4 E_{0} a_{0}+3 E_{3} a_{3}+E_{8} a_{8}\right] \\
a_{0}=\sum q=\Delta u+\Delta d+\Delta s
\end{gathered}
$$

- Singlet axial-vector matrix element \boldsymbol{a}_{0} is sum of quark spins: $a_{0}=0.33 \pm .03 \pm .05$ (COMPASS 2007)

Nucleon Spin "Crisis"

- Nucleon spin is calculated from the first moment of \boldsymbol{g}_{1}

$$
\begin{gathered}
\int_{0}^{1} d x g_{1}^{p}(x)=\frac{1}{36}\left[4 E_{0} a_{0}+3 E_{3} a_{3}+E_{8} a_{8}\right] \\
a_{0}=\sum q=\Delta u+\Delta d+\Delta s
\end{gathered}
$$

- Singlet axial-vector matrix element \boldsymbol{a}_{0} is sum of quark spins: $a_{0}=0.33 \pm .03 \pm .05$ (COMPASS 2007)
- $\Delta \mathrm{g} \sim 0$: need L to get $1 / 2 \mathrm{~h} / 2 \pi$

$$
\begin{aligned}
& \frac{1}{2}=\frac{1}{2} \sum \Delta q+\Delta g+L \\
& \quad=(.12 \pm .03)+(.11 \pm .12)+L \\
& \bar{M} S \text { scheme at } 4 \mathrm{GeV}^{2} \\
& \text { (Nocera et al. (NFRR) arXiv:1206.0201) }
\end{aligned}
$$

Nucleon Spin beyond G_{1} and G_{2}

- Need to go beyond a_{0} to understand nucleon spin
- Orbital angular momentum (OAM) \boldsymbol{L} is needed.
- Partons have transverse momentum, implies OAM
- Muller, Ji, Radyushkin, Generalized Parton Distributions - GPDs
- functions of Mandelstam t, light cone momentum ξ

$$
\begin{gathered}
H(x, \xi=t=0)=q(x)=f_{1}(x) \\
\tilde{H}(x, \xi=t=0)=\Delta q(x)=g_{1}(x) \\
E(x, \xi, t), \tilde{E}(x, \xi, t) \\
\text { (no partonic analogs) }
\end{gathered}
$$

$$
\begin{gathered}
J_{q}=\frac{1}{2} \int_{-1}^{1} d x x\left[H^{q}(x, \xi, t=0)\right. \\
\left.+E^{q}(x, \xi, t=0)\right] \\
\text { (Ji's sum rule) } \\
\sum J_{q}=\sum \Delta q+L_{q}
\end{gathered}
$$

- exclusive scattering, DV

Compton, meson

Nucleon Spin beyond G_{1} and G_{2}

- Need to go beyond a_{0} to understand nucleon spin
- Orbital angular momentum (OAM) \boldsymbol{L} is needed.
- Partons have transverse momentum, implies OAM
- Mulders et al., Transverse Momentum Distributions TMDs
- functions of x and k_{t}
- Semi-inclusive scattering (detect final e, one hadron)

Transverse Momentum Distributions by Polarization			
Target $\downarrow \backslash$ quark \rightarrow	U	L	T
U	$f_{1}\left(x, k_{t}\right)$		$h_{1}{ }^{\perp-}$
L		g_{1}	$h_{11}{ }^{\perp-}$
T	$f_{1 T}{ }^{\perp}$	$\mathrm{g}_{1 T}{ }^{\text {- }}$	$h_{1} h_{1 T}{ }^{\text {d }}$

Longitudinal SSF (leading twist)
$g_{1}(x)=\sum g_{1}^{q}(x)=\sum \int d^{2} \vec{k}_{t} g_{1 L}\left(x, \vec{k}_{t}^{2}\right)$
Transverse SSF (twist-3)
$g_{1 \mathrm{~T}}^{(1)}(x)=\sum g_{1 \mathrm{~T}}^{q(1)}(x)=\sum \int d^{2} \vec{k}_{t} \frac{\vec{k}_{t}^{2}}{2 M^{2}} g_{1 \mathrm{~T}}^{q}\left(x, \vec{k}_{t}^{2}\right)$
$g_{T}(x)=g_{1}(x)+\frac{d}{d x} g_{1 \mathrm{~T}}^{(1)}=g_{1}(x)+g_{2}(x)$

PDF's: an Experimentalist's View

| Type of scattering | Beam polarization | Target
 polarization | Probed properties | Observable |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Inclusive | None | None | parton longitudinal momentum | W1, W2 |

Transverse Polarized Scattering: Unlocking Twist-3

- Twist-2 and twist-3 operators contribute at same order in transverse polarized scattering

- twist-2: handbag diagram
- twist-3: qgq correlations
- direct access to twist-3 via \boldsymbol{g}_{2} :

> - "Unique feature of spin-dependent scattering" (R. Jaffe)

$\log Q^{2}$
$\alpha_{a C D}$
twist-3
(Comments NPP, 19,239 (1990))

- difference of transverse cross sections

$$
\frac{d^{2} \sigma^{(\uparrow \rightarrow)}}{d \Omega d E^{\prime}}-\frac{d^{2} \sigma^{(\downarrow \rightarrow)}}{d \Omega d E^{\prime}}=\frac{4 \alpha^{2} E^{\prime}}{Q^{2} E} E^{\prime} \sin \theta \cos \phi\left[M G_{1}\left(\nu, Q^{2}\right)+2 E \boldsymbol{G}_{2}\left(\nu, \boldsymbol{Q}^{2}\right)\right]
$$

Why is \boldsymbol{g}_{2} interesting?

- test twist-3 effects = quark-gluon correlations
- higher twist corrections to \boldsymbol{g}_{1} with $\boldsymbol{d}_{\mathbf{2}}$ matrix element
- test of lattice $\mathrm{QCD}, \mathrm{QCD}$ sum rules, quark models from moments
- polarizabilities of color fields (with twist-4 matrix element f_{2})
- magnetic $\chi_{\mathrm{B}}=\left(4 d_{2}+f_{2}\right) / 3$ and electric $\chi_{\mathrm{E}}=\left(4 d_{2}-2 f_{2}\right) / 3$.
- third moment related to color Lorentz force on transverse polarized quark (M. Burkardt, AIP Conf.Proc. 1155 (2009) 26)
- sign of \boldsymbol{d}_{2} related to sign of transverse deformation (\mathcal{K}^{q})
- contains chiral odd twist-2 = quark transverse spin (mass term)
- test quark masses (covariant parton models)

\boldsymbol{g}_{2} and $\boldsymbol{g}_{\mathrm{T}}$ Spin Structure Functions

Experimentally measured quantities

$$
g_{T}(x)=g_{1}(x)+g_{2}(x)=F_{1}(x) A_{2}(x) / \gamma
$$

Decomposition of $g_{T}{ }^{[1]}$

$$
\begin{gathered}
g_{T}(x)=\int d^{2} \vec{k}_{t} \frac{\vec{k}_{t}^{2}}{2 M^{2}} \frac{g_{\text {TT }}^{q}\left(x, \vec{k}_{t}^{2}\right)}{x}+\frac{m}{M} \frac{h_{1}(x)}{x}+\tilde{g}_{T}(x) \\
\text { TMD } \quad \text { quark mass term } \text { qgq interaction }
\end{gathered}
$$

Applying twist-2 Wandzura-Wilczek approximation of g_{2}

$$
\begin{gathered}
g_{2}^{w W}(x)=-g_{1}(x)+\int_{x}^{1} d y g_{1} \frac{(y)}{y} \\
g_{T}(x)=\int_{x}^{1} d y \frac{g_{1}(y)}{y}+\frac{m}{M}\left[\frac{h_{1}(x)}{x}-\int_{x}^{1} d y \frac{h_{1}(y)}{y}\right]+\tilde{g}_{T}(x)-\int_{x}^{1} d y \frac{\tilde{g}_{T}(y)-\hat{g}_{T}(y)}{y}
\end{gathered}
$$

Twist-3 for the nucleon (neglecting quark mass)

$$
\bar{g}_{2}=\frac{1}{2} \sum e_{q}^{2}\left[\tilde{g}_{T}^{q}-\int_{x}^{1} \frac{d y}{y}\left(\hat{g}_{T}^{q}(y)-\tilde{g}_{T}^{q}(y)\right)\right] ; \tilde{g}_{T}=q g \text { term, } \hat{g}_{T}=\text { Lorentz invariance }[2]
$$

Extracting TMD $g_{1 \mathrm{~T}}^{(1)}$ from measured inclusive g_{2}

$$
g_{2}(x)=\frac{d}{d x} g_{1 \mathrm{~T}}^{(1)}(x)+\hat{g}_{T}(x) . \quad[1] \text { hep-ph/9408305v1 } \quad[2] \text { JHEP } 0911 \text { (2009) } 093
$$

Recent SSF Studies at JLab

Hall	Publication	Measurement	Experiment
CLAS	$\begin{aligned} & \text { PL B672 (2009) } \\ & 12 \end{aligned}$	Moments of g1p and g1d for $0.05<Q^{* * 2<~}$ $3.0-\mathrm{GeV}^{* *} 2$	eg1b
CLAS	$\begin{aligned} & \text { PL B704 (2011) } \\ & 397 \end{aligned}$	Beam Spin Asymmetries in Semi-Inclusive pi0 production	eg1b
CLAS	$\begin{aligned} & \text { PR C80 (2009) } \\ & 035206 \end{aligned}$	Beam Spin Asymmetries in DVCS with CLAS at $4.8-\mathrm{GeV}$	eg1-dvcs
CLAS	$\begin{aligned} & \text { PRL } 105 \text { (2010) } \\ & 262002 \end{aligned}$	Single and Double Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target	eg1b
Hall A	arXiv:1304.4497	Moments of Neutron g2 SF at Intermediate $Q^{* *} 2$	01-012
Hall A	$\begin{aligned} & \text { PRL } 107 \text { (2011) } \\ & 072003 \end{aligned}$	Single Spin Asymmetries in Charged Pion Production from SIDIS on a Transversely Polarized 3He Target	06-010
Hall A	$\begin{aligned} & \text { PRL } 108 \text { (2012) } \\ & 052001 \end{aligned}$	Beam-Target Double Spin Asymmetry A LT in Charged Pion Production from DIIS on a Transversely Polarized He-3 Target	06-010
Hall C	$\begin{aligned} & \text { PRL } 105 \text { (2010) } \\ & 101601 \end{aligned}$	Probing Quark-Gluon Interactions with Transverse Polarized Scattering	01-006
Hall A	Very preliminary	Precision d2n: Color Polarizabilities	06-014
Hall C	Very preliminary	Spin Asymmetries of the Nucleon - SANE	07-003
Hall A	Very very preliminary	g2p and the Longitudinal-Transverse Spin Polarizability	08-027
JAM JLab lar Moment	APS April 2013	Global PDF fits	enomenology

\boldsymbol{g}_{2} in the Resonances

- \boldsymbol{g}_{2} in Hall A (below) and Hall C (right)

\boldsymbol{g}_{2} in DIS and Resonances

- Proton $\left(\mathrm{NH}_{3}\right)$

$$
-0.3<x<0.8 \quad 2.5<Q^{2}<6.5
$$

- Neutron (on ${ }^{3} \mathrm{He}$)
- Hall A d2n (E06-014)
- 4.7 and 5.9 GeV beam

Spin Asymmetries $\boldsymbol{A}_{\mathbf{1}}$ and $\boldsymbol{A}_{\mathbf{2}}$

- Model independent separation of proton spin asymmetries in the resonances from longitudinal and transverse measured asymmetries

Spin Asymmetry \boldsymbol{A}_{2}

- DIS $\boldsymbol{A}_{2^{p}}{ }^{\mathrm{p}}$ not zero:
- signal of transverse momentum

More DIS $\boldsymbol{A}_{2}{ }^{\mathbf{3 H e}}$ coming (E06-014)

SANE Goal: DIS Transverse Spin SF $\boldsymbol{g}_{\mathbf{T}}{ }^{\mathbf{p}}$

- $\boldsymbol{g}_{\mathrm{T}}{ }^{\mathrm{p}}=\boldsymbol{F}_{1} \boldsymbol{A}_{2} / \gamma$, measures spin distribution normal to γ
- SANE $\left\langle\mathrm{g}_{\mathrm{T}} \mathrm{p}(x\rangle .3\right)>=0.023 \pm 0.006$

- Bag Model (1990's)
- Data scaled by 2.5
- Model updates needed

SANE Goal: DIS Transverse Spin SF $\boldsymbol{g}_{\mathbf{T}}{ }^{\mathbf{p}}$

- $\boldsymbol{g}_{\mathrm{T}}{ }^{\mathrm{p}}=\boldsymbol{F}_{1} \boldsymbol{A}_{2} / \gamma$, measures spin distribution normal to γ^{*}
- SANE $\left\langle\boldsymbol{g}_{\mathrm{T}} \mathrm{p}(x>.3)>=0.023 \pm 0.006\right.$

- $\boldsymbol{g}_{\mathrm{T}}$ evolution non-trivial
- no simplification possible at NLO (NPB 608 (2001) 235)

Double Spin SIDIS A ${ }_{\text {LT }}$

- $\mathrm{g}_{1 \mathrm{~T}}{ }^{\perp}\left(x, \boldsymbol{k}_{\boldsymbol{t}}\right)$ is chiral-even TMD for quarks with longitudinal helicity in a transverse polarized target
- Weighted by $\boldsymbol{k}_{\mathrm{t}}^{2} / 2 M^{2}$ and integrated over k_{t}, generates a $\cos \left(\phi-\phi_{\mathrm{s}}\right)$ azimuthal A_{LT}, measurable in SIDIS

Hall A E06-010,
PRL 108 (2012) 05200

$$
\frac{A_{L T}(x, y, z)}{\left(\mid \vec{P}_{T} / M\right) \cos \left(\phi-\phi_{s}\right)}=\frac{C(x, y) \sum e^{2} g_{1 T}^{(1)(x)} D^{h}(z)}{C^{\prime}(x, y) \sum e^{2} f_{1}(x) D^{h}(z)}
$$

OPE for Polarized SF's

- C-N moments of \boldsymbol{g}_{1} and \boldsymbol{g}_{2} connected by OPE to twist-2 and twist-3 matrix elements $\boldsymbol{a}_{\mathrm{N}}$ and $\boldsymbol{d}_{\mathrm{N}}$

$$
\begin{aligned}
& \Gamma_{1}^{(N)}=\int_{0}^{1} x^{N} g_{1}\left(x, Q^{2}\right) d x=\frac{1}{2} \boldsymbol{a}_{N}+O\left(M^{2} / Q^{2}\right), \quad N=0,2,4, \ldots \\
& \Gamma_{2}^{(N)}=\int_{0}^{1} x^{N} g_{2}\left(x, Q^{2}\right) d x=\frac{N}{2(N+1)}\left(\boldsymbol{d}_{N}-\boldsymbol{a}_{N}\right)+O\left(M^{2} / Q^{2}\right), \quad N=2,4, \ldots
\end{aligned}
$$

- twist-3 \boldsymbol{d}_{2} - mean color-magnetic field along spin
- $\boldsymbol{d}_{\mathbf{n}}$ is shorthand for $\tilde{d}_{n}=\sum_{i} d_{i}^{n}\left(\mu^{2}\right) E_{i, 3}^{n}\left(Q^{2} / \mu^{2}, \alpha_{s}\left(\mu^{2}\right)\right)$
- At low-moderate Q^{2} Nachtmann moments are needed to obtain dynamic twist-3 matrix elements (no target mass effects to $O\left(M^{8} / Q^{8}\right)$)

$$
\boldsymbol{d}_{2}\left(\boldsymbol{Q}^{\mathbf{2}}\right)=\int_{0}^{1} d x \xi^{2}\left(2 \frac{\xi}{x} g_{1}+3\left(1-\frac{\xi^{2} M^{2}}{2 Q^{2}}\right) g_{2}\right) \Rightarrow_{Q^{2} \rightarrow \infty} \int_{0}^{1} d x x^{2}\left(2 g_{1}+3 g_{2}\right)
$$

Resonances $\boldsymbol{d}_{\mathbf{2}}$

- Plots show contribution of resonances to $\boldsymbol{d}_{\mathbf{2}} \mathrm{CN}$ integral
- Data with $Q^{2}<\sim 4 \mathrm{GeV}^{2}$ need Nachtmann integrals
- Add Nachtmann elastic: dominant at $Q^{2<} 2 \mathrm{GeV}^{2}$
(E155x, E99-117 DIS too)

7/3/1.

$g_{2}{ }^{p}$ at Low $Q^{2}-\mathrm{E} 08-027$

- Goals:
- BC Sum Rule: violation suggested for proton at large Q^{2}, but found satisfied for the neutron and ${ }^{3} \mathrm{He}$.
- Spin Polarizability: Major failure $(>8 \sigma)$ of χ PT for neutron $\delta_{\text {LT }}$. Need g_{2} isospin separation to solve.
- Hydrogen Hyper Fine Splitting and Proton Charge Radius: Lack of knowledge of g_{2} at low Q^{2}, is one of the leading uncertainties (E08-007)
- Took data in 2012. Analysis in progress

Jefferson Angular Momentum - JAM Collaboration

- Joint theorists and experimentalists effort to "study the quark and gluon spin structure of the nucleon by performing global fits of PDFs".
- JAM's spin PDFs are tailored for studies at large Bjorken \underline{x}, as well as the resonance-DIS transition region at low and intermediate \boldsymbol{W} and \boldsymbol{Q}^{2}. http://wwwold.jlab.org/theory/jam/

Deuteron Tensor S. F. \boldsymbol{b}_{1}

- Spin structure beyond $1 / 2 h / 2 \pi$
- Deuteron tensor b_{1} due to nuclear spin $1 \mathrm{~h} / 2 \pi$
- could result from rescattering at small Bjorken x
- reproducing HERMES $\boldsymbol{b}_{1}(x \sim 0.4)<0$ important
- Measure tensor $\boldsymbol{A}_{z z}=-(2 / 3) \boldsymbol{b}_{1} / \boldsymbol{F}_{1}$
- use tensor polarized ND_{3} target
- PR12-13-010 C1 approved by JLab PAC40 with A- rating

Kinematics Space at JLab

PAC Approved and Conditionally Approved (C1) Nucleon Spin Program at 12 GeV

Experiment	Hall	Title	Beam days	g
E12-06-114	A	Measurements of Electron-Helicity Dependent Cross Sections of Deeply Virtual Compton Scattering with CEBAF at 12 GeV	100	A
E12-06-122	A	Measurement of neutron asymmetry A1n in the valence quark region using 8.8 GeV and 6.6 GeV beam energies and Bigbite spectrometer in Hall A	23	A-
E12-09-018	A	Measurement of the Semi-Inclusive pi and kappa electro-production in DIS regime from transversely polarized 3 He target with the SBS\&BB spectrometers in Hall A	64	A-
E12-10-006	A	An update to PR12-09-014: Target Single Spin Asymmetry in Semi-Inclusive Deep-Inelastic Electro Pion Production on a Trasversely Polarized 3 He Target at 8.8 and 11 GeV	90	A
E12-11-007	A	Asymmetries in Semi-Inclusive Deep-Inelastic Electro-Production of Charged Pion on a Longitudinally Polarized $\mathrm{He}-3$ Target at 8.8 and 11 GeV	35	A
E12-11-108	A	Target Single Spin Asymmetry in Semi-Inclusive Deep-Inelastic (e, e'lpi^\{ $\{\mathrm{pm}\}$) Reaction on a Transversely Polarized Proton Target	120	A
E12-06-109	B	The Longitudinal Spin Structure of the Nucleon	80	A
E12-06-119	B	Deeply Virtual Compton Scattering with CLAS at 11 GeV	200	A
E12-07-107	B	Studies of Spin-Orbit Correlations with Longitudinally Polarized Target	103	A-
E12-09-008	B	Studies of the Boer-MuldersAsymmetry in Kaon Electroproduction with Hydrogen and Deuterium Targets	56	A-
E12-09-009	B	Studies of Spin-Orbit Correlations in Kaon Electroproduction in DIS with polarized hydrogen and deuterium targets	103	B+
E12-11-003	B	Deeply Virtual Compton Scattering on the Neutron with CLAS12 at 11 GeV	90	A
PR12-12-009	B	Measurement of transversity with dihadron production in SIDIS with transversely polarized target		A
PR12-12-010	B	Deeply Virtual Compton Scattering at 11 GeV with transversely polarized target using the CLAS12 Detector		A
E12-06-110	C	Measurement of Neutron Spin Asymmetry A1n in the Valence Quark Region Using an 11 GeV Beam and a Polarized 3He Target in Hall C	36	A
E12-06-121	C	A Path to 'Color Polarizabilities' in the Neutron:A Precision Measurement of the Neutron \$g_2\$ and \$d $2 \$$ at High $\$ Q^{\wedge} 2 \$$ in Hall C	29	A-
E12-09-017	C	Transverse Momentum Dependence of Semi-Inclusive Pion Production	32	A-
PR12-12-005		The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Electroproduction		
PR12-11-111	B	Transverse spin effects in SIDIS at 11 GeV with a transversely polarized target using the CLAS12 Detector		A
PR12-12-009	B	Measurement of transversity with dihadron production in SIDIS with transversely polarized target		A
PR12-12-010	B	Deeply Virtual Compton Scattering at 11 GeV with transversely polarized target using the CLAS12 Detector		A
PR12-13-011		The Deuteron Tensor Structure Function b1		A-

The JLab Nucleon Spin Program goes on

- New results from recent and older SF experiments still to come
- Twenty one experiments on spin in all Halls at 11 GeV
- over 1150 beam days
- over half rated A
- Strong theory - experiment interaction
- Bright future for nucleon spin physics in the 12 GeV era

Extras

Moments and Higher Twists

- Beyond log scaling violations:
- Higher Twists (HT): inverse Q^{2} power corrections to SF's
- HT represent parton correlations beyond free quark picture
- Access to HT: Moments of SF's related by the OPE to matrix elements of quark operators of given twist
- Moments expanded in power series of $\left(A(x) / Q^{2}\right)^{(\text {(wist -2) }}$
- Moments integrate over full x range: $\quad M_{2,3}^{(n)}\left(Q^{2}\right)=\int_{0}^{1} d x x^{n} g_{1,2}\left(x, Q^{2}\right)$
- Resonances and elastic contribute at JLab's beam E
- HT clouded by kinematic operators of same twist, but higher spin
-"Target Mass" corrections required, or avoided using Nachtmann moments, instead of ordinary, Cornwall-Norton moments (above)

$\boldsymbol{d}_{\mathbf{2}}$ from RSS Third Moments

Moments at $\left\langle Q^{2>}>=1.3\right.$ GeV^{2}, in three regions:

- measured $.32<x<.8$; elastic (quasi-el. for deuteron);
- unmeasured $x<0.32$, suppressed by x^{2}.

x ranges	Proton	Deuteron	Neutron
Measured			
CN	0.006 ± 0.001	0.008 ± 0.002	0.003 ± 0.002
Nachtmann	0.004 ± 0.001	0.005 ± 0.002	0.002 ± 0.001
$0<x<1$			
CN	0.036 ± 0.003	0.017 ± 0.004	-0.018 ± 0.003
Nachtmann	$\mathbf{0 . 0 1 0} \pm \mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 0 3} \pm \mathbf{0 . 0 0 2}$	$\mathbf{- 0 . 0 0 8} \pm \mathbf{0 . 0 0 2}$

- Non-zero \boldsymbol{d}_{2} for both nucleons (total errors shown)
- OPE valid to $N=2<Q^{2} / M_{0}{ }^{2} \sim 1.3 / 0.5^{2}$ (DIS - resonances duality) (Ji \& Unrau, PR D52 (1995) 72)
- Neutron approximated as D-state corrected $d-p(\operatorname{good}$ to $O(1 \%))$
- Ratios Nachtmann/CN < 1: large contribution of kinematic HT

Spin Asymmetries of the Nucleon Experiment - SANE (TJNAF E07-003)

PHYSICS: proton spin structures $\boldsymbol{g}_{2}\left(x, Q^{2}\right)$ and $\mathbf{A}_{1}\left(x, Q^{2}\right)$ for $2.5 \leq \boldsymbol{Q}^{2} \leq 6.5 \mathrm{GeV}^{2}, 0.3 \leq \boldsymbol{x}_{\mathrm{Bj}} \leq 0.8$
Measure inclusive double polarization nearorthogonal asymmetries to:

- access quark-gluon correlations using LO twist3 effects (d_{2} quark matrix element)
- compare with Lattice QCD, QCD sum rules, bag model, chiral quarks
- test nucleon models (x dependence) and Q^{2} evolution
- explore $\mathbf{A}_{1}(x \rightarrow 1)$; test polarized local duality

METHOD:

- CEBAF 4.7 \& 5.9 GeV polarized electrons
- Solid polarized ammonia target
- BETA, novel large solid angle (. 2 sr) electron telescope:
- calorimeter + gas Cherenkov + tracking

7/3TOok data in Hall C Jan-March 2009

Big Electron Telescope Array - BETA

- BigCal lead glass calorimeter: main detector used in GEp-III.
- Tracking Lucite hodoscope
- Gas Cherenkov: pion rejection
- Tracking fiber-on-scintillator forward hodoscope
- BETA specs
- Effective solid angle $=0.194 \mathrm{sr}$
- Energy resolution $9 \% / \sqrt{ } E(\mathrm{GeV})$
- 1000:1 pion rejection
- angular resolution $\sim 1 \mathrm{mr}$

7/3/13 - $180 \mathrm{MeV} / \mathrm{c}$ cutoff
Lucite Hodoscope
Cherenkov

Polarized Target

- Dynamic Nuclear Polarized ammonia $\left(\mathrm{NH}_{3},<\mathrm{P}>\sim 70 \%\right.$ in beam) and deuterated ammonia $\left(\mathrm{ND}_{3},<\mathrm{P}>20-30 \%\right)$
- Wide range of field orientations
- Target used in six experiments before SANE:
- SLAC E143, E155, E155x (g_{2})
- JLab GEn98, GEn01, RSS

SANE Status and Plans

- SANE goals
- DIS $\boldsymbol{g}_{\mathrm{T}}{ }^{\mathrm{p}}=\boldsymbol{g}_{1}+\boldsymbol{g}_{2}-$ shown at conferences
- Moments of $\boldsymbol{g}_{1}, \boldsymbol{g}_{2}$, twist-3 matrix element \boldsymbol{d}_{2}
- working on extending x range, low x systematics, optimized binning
- Spin Asymmetries $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}$ - shown at conferences,
- parameterizing W and Q^{2} dependence for world data fits
- HMS inelastic asymmetries - preliminary results shown at DIS 2013
- extend RSS PRL 105 (2010) 101601 low x range for B-C sum rule, \boldsymbol{d}_{2}
- elastic form factors - publication in preparation
- Long paper draft in progress

Duality in \boldsymbol{g}_{1}

- Bloom - Gilman duality for spin SF's
- Local Duality only above Δ (1232)
- Global duality (for $W>\pi$ threshold, or from elastic) obtains above $Q^{2}>1.8 \mathrm{GeV}^{2}$
- seen in p, d, and ${ }^{3} \mathrm{He}$
- DIS SSF's from PDF's extrapolated with target mass corrections

Duality in \boldsymbol{g}_{1}

- Bloom - Gilman duality for spin SF's
- Local Duality only above Δ (1232)
- Global duality (for $W>\pi$ threshold, or from elastic) obtains above $Q^{2}>1.8 \mathrm{GeV}^{2}$
- seen in p, d, and ${ }^{3} \mathrm{He}$
- DIS SSF's from PDF's extrapolated with target mass corrections

Sum Rules

- First moment of \boldsymbol{g}_{1} (extended GDH or Ellis-Jaffe sum rule)

$$
\begin{aligned}
& \bar{\Gamma}_{1}\left(Q^{2}\right)=\int_{0}^{1-e l} g_{1}\left(x, Q^{2}\right) d x \\
& =\frac{1}{36}\left(\left(a_{8}+3 a_{3}\right) C_{N S}+4 a_{0} C_{S}\right)
\end{aligned}
$$

Sum Rules

- First moment of \boldsymbol{g}_{2} (Burkhardt-Cottingham S. R.)

$$
\Gamma_{2}\left(Q^{2}\right)=\int_{0}^{1} g_{2}\left(x, Q^{2}\right) d x=0
$$

- Free of QDC radiative and target mass corrections (Kodaira et al. PLB345(1995) 527)
- RSS full (solid), measured (open)
- Hall A E01-012 (preliminary)
 E97-110, E94-010
- SLAC E155x

Sum Rules

- First moment of \boldsymbol{g}_{2}
(Burkhardt-Cottingham S. R.)

$$
\Gamma_{2}\left(Q^{2}\right)=\int_{0}^{1} g_{2}\left(x, Q^{2}\right) d x=0
$$

- Free of QDC radiative and target mass corrections (Kodaira et al. PLB345(1995) 527)
- RSS full (solid), measured (open)
- Hall A E01-012 (preliminary) E97-110, E94-010

- SLAC E155x
(From K. Slifer)

Twist-3 and the Burkhardt-Cottingham Sum Rule

- BC sum rule $\boldsymbol{\Gamma}_{2}=0=\boldsymbol{\Gamma}_{2}^{\mathrm{ww}}+\bar{\Gamma}_{2}+\Gamma_{2}(\mathrm{el})$
- dispersion relation not from OPE, free from gluon radiation, TMC's
- twist-2 part $\Gamma_{2}{ }^{\mathrm{ww}} \equiv 0$
- BC is higher-twist + elastic

$$
\begin{aligned}
& -\Gamma_{2}=\bar{\Gamma}_{2}(\text { unm. })+\bar{\Gamma}_{2}(\text { measur. })+\Gamma_{2}(\mathrm{el}) \\
& -\Delta \bar{\Gamma}_{2}=\Gamma_{2}-\bar{\Gamma}_{2}(\mathrm{u})=\bar{\Gamma}_{2}(\mathrm{~m})+\Gamma_{2}(\mathrm{el})
\end{aligned}
$$

- $\Delta \bar{\Gamma}_{2} \neq 0$: assuming BC , implies significant HT at $x<x_{\text {min }}$, or, if twist-3 ~ 0 at low x,
- BC fails: isospin dependence? nuclear effects?

Credits

- eg1b duality: PRC 75035203 (2007)
- $g_{1}{ }^{n}$ duality: PRL 101182502 (2008)
- Hall A $g_{2}{ }^{n}:$ P. Solvignon, Ph.D. thesis
- Hall C $g_{2}{ }^{p}$: PRL 105 (2010) 101601
- $A_{2}{ }^{3 \mathrm{He}}:$ P. Solvignon, Ph.D. thesis
- SANE $A_{2}{ }^{p}, g_{\mathrm{T}}$: H. Baghdasaryan and the Analysis team
- $d_{2}{ }^{p, n}$: K. Slifer, Seminar, Argonne

Nat. Lab., 2009

