Where does the proton spin come from?

- Quark and glue spins -- status
- Gauge field tensor operator
- Momentum and angular momentum sum rules and renormalization
 - Lattice calculation

QCD Collaboration:

M. Deka, T. Doi, B. Chakraborty, Y. Chen, S.J. Dong, T. Draper, M. Gong, H.W. Lin, K.F. Liu, D. Mankame N. Mathur, T. Streuer, Y. Yang

KITPC – July 17, 2012

Scanned at the American Institute of Physics

Anisotropy at a surface

- Free atomic spin is rotationally invariant: all spin orientations are degenerate.
- Loss of rotational symmetry breaks degeneracy of spin orientations.

Magnetic field dependence varies with angle of magnetic field.

Twenty⁴₄years since the "spin crisis"

□ EMC experiment in 1988/1989 – "the plot":

$$g_1(x) = \frac{1}{2} \sum_{q} e_q^2 \left[\Delta q(x) + \Delta \overline{q}(x) \right] + \mathcal{O}(\alpha_s) + \mathcal{O}(1/Q)$$
$$\Delta q = \int_0^1 dx \Delta q(x) = \langle P, s_{\parallel} | \overline{\psi}_q(0) \gamma^+ \gamma_5 \psi_q(0) | P, s_{\parallel} \rangle$$

q

Given Spin crisis" or puzzle: $\Delta \Sigma = \sum \Delta q + \Delta \overline{q} = 0.2 - 0.3$

Summary Gluon Polarization

Presently all Analysis in LO only

Quark Orbital Angular Momentum (connected insertion)

Status of Proton Spin

- Quark spin ΔΣ ~ 20 30% of proton spin (DIS, Lattice)
- Quark orbital angular momentum? (lattice calculation (LHPC,QCDSF)→ ~ 0)
- Glue spin ΔG/G small (COMPASS, STAR) ?
- Glue orbital angular momentum is zero (Brodsky and Gardner) ?

Hadron Structure with Quarks and Glue

Quark and Glue Momentum and Angular Momentum in the Nucleon

Momenta and Angular Momenta of Quarks and Glue

Energy momentum tensor operators decomposed in quark and glue parts gauge invariantly --- Xiangdong Ji (1997)

$$T_{\mu\nu}^{q} = \frac{i}{4} \left[\bar{\psi} \gamma_{\mu} \vec{D}_{\nu} \psi + (\mu \leftrightarrow \nu) \right] \rightarrow \vec{J}_{q} = \int d^{3}x \left[\frac{1}{2} \bar{\psi} \vec{\gamma} \gamma_{5} \psi + \vec{x} \times \bar{\psi} \gamma_{4} (-i\vec{D}) \psi \right]$$

$$T^{g}_{\mu\nu} = F_{\mu\lambda}F_{\lambda\nu} - \frac{1}{4}\delta_{\mu\nu}F^{2} \longrightarrow \vec{J}_{g} = \int d^{3}x \left[\vec{x} \times (\vec{E} \times \vec{B})\right]$$

Nucleon form factors

$$\langle p, s | T_{\mu\nu} | p's' \rangle = \overline{u}(p, s) [T_1(q^2)\gamma_\mu \overline{p}_\nu - T_2(q^2)\overline{p}_\mu \sigma_{\nu\alpha} q_\alpha / 2m$$

-iT_3(q^2)(q_\mu q_\nu - \delta_{\mu\nu} q^2) / m + T_4(q^2) \delta_{\mu\nu} m / 2]u(p's')

Momentum and Angular Momentum

$$Z_{q,g}T_1(0)_{q,g} \quad \left[\text{OPE} \right] \rightarrow \left\langle x \right\rangle_{q/g} \left(\mu, \overline{\text{MS}} \right), \quad Z_{q,g} \left[\frac{T_1(0) + T_2(0)}{2} \right]_{q,g} \rightarrow J_{q/g}(\mu, \overline{\text{MS}})$$

 $T_1(q^2)$ and $T_2(q^2)$ 3-pt to 2-pt function ratios $G_{\mu\nu}^{3\,pt}(\vec{p},t_2;\vec{q},t_1) = \sum e^{-i\vec{p}\cdot\vec{x}_2 + i\vec{q}\cdot\vec{x}_1} \left\langle 0 \,|\, T \left[\chi_N(\vec{x}_2,t_2)T_{\mu\nu}(t_1)\,\overline{\chi}_N(0) \right] \right\rangle$ $\operatorname{Tr}\left[\Gamma_{m}G_{\mu\nu}^{3\,pt}(\vec{p}=0,t_{2};\vec{q},t_{1})\right] = We^{-m(t_{2}-t_{1})}e^{-Et_{1}}\left[T_{1}(q^{2})+T_{2}(q^{2})\right]$

Need both polarized and unpolarized nucleon and different kinematics (p_i, q_j, s) to separate out T₁ (q²), T₂ (q²) and T₃ (q²)

Renormalization and Quark-Glue Mixing

Momentum and Angular Momentum Sum Rules

$$\begin{split} \langle x \rangle_{q}^{R} &= Z_{q} \langle x \rangle_{q}^{L}, \quad \langle x \rangle_{g}^{R} = Z_{g} \langle x \rangle_{g}^{L}, \\ J_{q}^{R} &= Z_{q} J_{q}^{L}, \quad J_{g}^{R} = Z_{g} J_{g}^{L}, \\ Z_{q} \langle x \rangle_{q}^{L} + Z_{g} \langle x \rangle_{g}^{L} = 1, \quad Z_{q} T_{1}^{q}(0) + Z_{g} T_{1}^{g}(0) = 1, \\ Z_{q} J_{q}^{L} + Z_{g} J_{g}^{L} &= \frac{1}{2} \quad \Rightarrow \begin{cases} Z_{q} T_{1}^{q}(0) + Z_{g} T_{1}^{g}(0) = 1, \\ Z_{q} (T_{1}^{q} + T_{2}^{q})(0) + Z_{g} (T_{1}^{g} + T_{2}^{g})(0) = 1, \\ Z_{q} T_{2}^{q}(0) + Z_{g} T_{2}^{g}(0) = 0 \end{cases}$$

Mixing

$$\begin{bmatrix} \langle x \rangle_q^{\overline{MS}}(\mu) \\ \langle x \rangle_g^{\overline{MS}}(\mu) \end{bmatrix} = \begin{bmatrix} C_{qq}(\mu) & C_{qg}(\mu) \\ C_{gq}(\mu) & C_{gg}(\mu) \end{bmatrix} \begin{bmatrix} \langle x \rangle_q^R \\ \langle x \rangle_g^R \end{bmatrix}$$

Lattice Parameters

- Quenched 16³ x 24 lattice with Wilson fermion
- Quark spin and <x> were calculated before for both the C.I. and D.I.
- κ = 0.154, 0.155, 0.1555 (m_n = 650, 538, 478 MeV)
- 500 configurations
- 400 noises (Optimal Z₄ noise with unbiased subtraction) for DI
- 16 nucleon sources

Connected Insertions of $T_1 (q^2)$ and $T_2 (q^2)$ for u/d Quarks

cross check

page 12

Disconnected Insertions of $T_1(q^2)$ and $T_2(q^2)$ for u/d Quarks

Gauge Operators from the Overlap Dirac Operator

Overlap operator

 $D_{ov} = 1 + \gamma_5 \varepsilon(H); \quad H = \gamma_5 D_W(m_0)$ Index theorem on the lattice (Hasenfratz, Laliena, Niedermayer, Lüscher) index $D_{ov} = -Tr\gamma_5(1 - \frac{a}{2}D_{ov})$ Local version (Kikukawa & Yamada, Adams, Fujikawa, Suzuki) $q_L(x) = -tr\gamma_5(1 - \frac{a}{2}D_{ov}(x,x)) \xrightarrow{a \to 0} a^4q(x) + O(a^6)$

Study of topological structure of the vacuum

 Sub-dimensional long range order of coherent charges (Horvàth et al; Thacker talk in Lattice 2006)
 Negativity of the local topological charge correlator (Horvàth et al)

We obtain the following result

$$\mathbf{tr}_{s}\sigma_{\mu\nu}aD_{o\nu}(x,x) = c^{T}a^{2}F_{\mu\nu} + O(a^{3}),$$

$$c^{T} = \rho \int_{-\pi}^{\pi} \frac{d^{4}k}{(2\pi)^{4}} \frac{2\left[(\rho + r\sum_{\lambda}(c_{\lambda} - 1))c_{\mu}c_{\nu} + 2rc_{\mu}s_{\nu}^{2}\right]}{(\sum_{\mu}s_{\mu}^{2} + [\rho + \sum_{\nu}(c_{\nu} - 1)]^{2})^{3/2}}$$

where, r = 1, $\rho = 1.368$, $c^T = 0.11157$

Liu, Alexandru, Horvath – PLB 659, 773 (2007)

Noise estimation $D_{ov}(x,x) \rightarrow \langle \eta_x^{\dagger} (D_{ov} \eta)_x \rangle$ with Z_4 noise with color-spin dilution and some dilution in space-time as well.

Glue $T_1(q^2)$ and $T_2(q^2)$

Renormalized results: $Z_q = 1.05, Z_q = 1.05$

	CI(u)	CI(d)	CI(u+d)	DI(u/d)	DI(s)	Glue
	0.428	0.156	0.586	0.038	0.024	0.313
<x></x>	(40)	(20)	(45)	(6)	(6)	(56)
$T_{2}(0)$	0.297	218	0.064	-0.002	001	059
	(112)	(80)	(22)	(2)	(3)	(52)
	0.726	072	0.651	0.036	0.023	0.254
2J	(128)	(82)	(51)	(7)	(7)	(76)

 $T_2(0)_{CI}^R + T_2(0)_{DI}^R + T_2(0)_g^R = 0.002(56)$

S. Brodsky et al. NPB 593, 311(2001) → no anomalous gravitomagnetic moment

E. Leader, arXiv:1109.1230 \rightarrow transverse angular momentum

■ DI(s) ■ Glue

Flavor-singlet g_A

 $\Delta\Sigma$

- Quark spin puzzle (dubbed `proton spin crisis') - $g_A^0 = \Delta u + \Delta d + \Delta s = \begin{cases} \frac{1}{0.75} & \text{NRQM} \\ \text{RQM} \end{cases}$
 - Experimentally (EMC, SMC, ...

$$= g_A^0 \sim 0.2 - 0.3$$

$$g_{A,con}^{0} = (\Delta u + \Delta d)_{con}$$

S.J. Dong, J.-F. Lagae, and KFL, PRL 75, 2096 (1995)

 DI sea contribution independent of quark mass ∆u = ∆d ≅ ∆s
 This suggests U(1) anomaly at work.

$$g_A^\circ = \Delta u + \Delta d - 2\Delta s \approx g_A^\circ(\text{CI})$$

Lattice resolution: U(1) anomaly

 $g_A^0 = (\Delta u + \Delta d)_{con} + (\Delta u + \Delta d + \Delta s)_{dis} = 0.62(9) + 3(-0.12(1)) = 0.25(12)$

	Lattice	Expt. (SMC)	NRQM	RQM
$g_A^0 = \Delta u + \Delta d + \Delta s$	0.25(12)	0.22(10)	1	0.75
$g_A^3 = \Delta u - \Delta d$	1.20(10)	1.2573(28)	5/3	1.25
$g_A^8 = \Delta u + \Delta d - 2\Delta s$	0.61(13)	0.579(25)	1	0.75
Δu	0.79(11)	0.80(6)	1.33	1
Δd	42(11)	-0.46(6)	-0.33	-0.25
Δs	12(1)	-0.12(4)	0	0
F_A	0.45(6)	0.459(8)	0.67	0.5
D_A	0.75(11)	0.798(8)	1	0.75
F_A / D_A	0.60(2)	0.575(16)	0.67	0.67

 $F_A = (\Delta u - \Delta s)/2; \quad D_A = (\Delta u - 2\Delta d + \Delta s)/2$

Renormalized results:

	CI(u)	CI(d)	CI(u+d)	DI(u/d)	DI(s)	Glue
	0.726	072	0.651	0.036	0.023	0.254
2J	(128)	(82)	(51)	(/)	(/)	(/6)
	0.95	-0.32	0.65	-0.12	-0.12	
g _A	(11)	(12)	(8)	(1)	(1)	
	-0.25	0.26	0.00	0.17	0.15	
2 L	(18)	(14)	(10)	(2)	(2)	

Quark Spin, Orbital Angular Momentum, and Gule Angular Momentum

$\Delta q \approx 0.25;$ 2 $L_q \approx 0.49 \ (0.0(CI)+0.49(DI));$ 2 $J_g \approx 0.25$

Summary

- Momentum fraction of quarks (both valence and sea) and glue have been calculated for a quenched lattice:
 - Glue momentum fraction is ~ 31%.
 - $-g_A^0 \sim 0.25$ in agreement with expt.
 - Glue angular momentum is ~ 25%.
 - Quark orbital angular momentum is large for the sea quarks (~ 50%).
- These are quenched results so far.

Le Taureau of Pablo Picasso (1945)

5th stage

11th stage

Dynamical fermion with chiral symmetry and light quark masses

Quenched approximation

Current project

- Dynamical domain-wall fermion gauge (RBC + UKQCD configurations, lowest pion mass ~ 140 MeV on 5.5 fm box)
 + overlap fermion for the valence.
- Quark loops with low mode averaging and improved nucleon propagator.