Fourth Workshop on

Hadron Physics in China and Opportunities in US

The radiative decays of ϕ mesons in pp collisions

Chuan Zheng (郑 川)

Institute of Modern Physics, Fudan University

July 16-20, 2012

Kavli ITP, Beijing

Introduction

In quark model, ϕ is the lightest quarkonium:

♦ (ss) (1020 MeV)

Estimate the strong and EM fields energy:

$$H = \frac{p^2}{2\mu} + V_{strong} + V_{EM}$$

$$V_{strong} = \sigma r - \frac{4}{3} \frac{\alpha_s}{r} + C \qquad V_{EM} = -\frac{\alpha}{r} Q_q^2$$

$$p \cdot r \approx \hbar$$
, $r = 1 \text{ fm} (= 5 \text{ GeV}^{-1})$, $p = 0.2 \text{ GeV/c}$

$$\sigma=0.18 \text{ GeV}^2$$
, $\alpha_{s} \approx 0.5$, $V_{stong} \approx 770 \text{ MeV}$

$$\mu = m_q m_{\bar{q}} / (m_q + m_{\bar{q}}), m_s = m_{\bar{s}} = 0.45 \text{ GeV/c}^2$$

$$p^2/2\mu = 90 \text{ MeV}$$
 $V_{EM} = -0.16 \text{ MeV} \ll V_{strong}$

$$φ → η γ$$
 (363 MeV)
 $φ → π0 γ$ (501 MeV)

Radiative energy ~ hundreds MeV, which could only come from the strong field.

OZI rule plays the role:

$$\phi \rightarrow K\overline{K}$$
 (83.1%)

$$\phi \rightarrow \mathbf{ggg} \rightarrow \pi^{+}\pi^{-}\pi^{0} / \rho \pi$$
 (15.32%)

$$\phi \rightarrow \gamma \mathbf{g} \mathbf{g} \rightarrow \gamma \mathbf{M} / \gamma \mathbf{M}_1 \mathbf{M}_2$$

M (10⁻²-10⁻⁵) = η , π^0 , $a_0/f_0(980)$, $\eta'(958)$

$$M_1M_2$$
 (10⁻⁴-10⁻⁵) = $\pi^+\pi^-$, $\pi^0\pi^0$, $\pi^0\eta$

$$\phi \rightarrow \gamma^* \rightarrow e^+e^- / \mu^+\mu^-$$
 (10⁻⁴)

Radiative modes have small branch ratios, but they can decay to most of lightest ones.

Theoretical models

Two theoretical models can calculate the radiative decay widths:

Vector meson dominance

O'Donnell Rev. Mod. Phys. 53(1981)673

$$\Gamma(V \to e^+ e^-) = \frac{4\pi}{3} \frac{\alpha^2}{\gamma_V^2} m_V$$

It is not based on gluons and quarks to understand hadron production and decays.

$$\oint (s\bar{s}) (1020 \text{ MeV})$$

$$\eta'(958) - M1 = 1(?) a_0/f_0(980)$$

$$\eta = 0^{++} - 0^{++}$$

$$Quark \text{ model}$$

$$Close et.al. PRD 65(2002)092003$$

$$E1 \quad M \sim (E_A - E_B) \int d^3 r \psi_B^*(\vec{r}) \hat{r} \psi_A(\vec{r})$$

$$M1 \quad M \sim \frac{1}{m_q} E_\gamma \int d^3 r \psi_B^*(\vec{r}) \psi_A(\vec{r})$$

What about the case when constituents change after decay?

Energy conversion between two fields

Hypothesis: gluon field could be coupled with photon field

$$H = H_{0} + H_{I}$$

$$H_{0} = \frac{\vec{p}^{2}}{2\mu} + V_{strong} + V_{EM}$$

$$H_{I} = \frac{1}{2\mu} \left\{ (\vec{p} - \frac{Qe}{c}\vec{A} - \frac{g}{c}\frac{\lambda^{a}}{2}\vec{B}^{a})^{2} - \vec{p}^{2} \right\}$$
The square items of A, B
are not considered here,
so only cross-items left.
photon gluon
$$= \frac{1}{2\mu} \left\{ -\frac{Qe}{c}(\vec{p} \cdot \vec{A} + \vec{A} \cdot \vec{p}) - \frac{g}{c}\frac{\lambda^{a}}{2}(\vec{p} \cdot \vec{B}^{a} + \vec{B}^{a} \cdot \vec{p}) + \frac{gQe}{c^{2}}\frac{\lambda^{a}}{2}(\vec{A} \cdot \vec{B}^{a} + \vec{B}^{a} \cdot \vec{A}) \right\}$$
quark - photon quark - gluon quark - gluon gluon - photon
 $\vec{q} \rightarrow Qe$
 $\vec{q} \rightarrow Qe$

Could we test this hypothesis in the experiment?

Gluon production in γp collisions

JLab 12 GeV upgrade

- $3 \otimes \overline{3} = 8 + 1$
- SU(3) flavor singlet: $\eta_1 \quad \omega_1$ $(u\overline{u} + d\overline{d} + s\overline{s})/\sqrt{3}$

SU(3) color singlet: glueball? $(r\overline{r} + g\overline{g} + b\overline{b})/\sqrt{3}$

Search color singlet states or glueballs

COSY at FZ-Jülich, Germany ANKE(COSY) Colla. PRL 96(2006)242301

 $P_{p1} = 3.7 \text{ GeV/c}, P_{p2} = 0$

CEBAF 6 GeV at JLab, US CLAS(JLab) Colla. PRL 85(2000)4682

 P_{γ} = 3.3-3.9 GeV/c, P_{p} = 0

or meson study in pp collisions and the study in pp collisions and the

It is possible to study ϕ meson radiative decays with WASA@COSY.

Monte Carlo (1): event generator

p(3.7 GeV/c) + p(fixed)→pp ϕ →pp $\gamma\eta$ →pp 3 γ

simulate 10.10⁵ events

Monte Carlo (2): detector reconstruction

It is for the final particles of 2 protons and 3 photons.

Monte Carlo (3): physical analysis

				Miss. Mass ² (total final)		
Accept.	Recon. Eff.		Cut Eff.	22000		Entries 38567
36.6%	10.5%		95.0% 🔨	20000 18000		Constant 2.387e+04
				16000 14000		Sigma 0.01196
2 protons	particle		4-momenta	12000		M.M. ² (total) <= 0.05
in forward,	identificatio	on &	conservation	8000		
3 photons	4-momenta		& INV. Mass	6000 4000		
In central	reconstruct	lion	& IVIISS. IVIASS	2000 0 -1		
detectors			elc.			M.M. ² (total)
Inv. Mass (γ-	Pairs) -(9,1,92) Entries 38567 1020) -> η (548) γ 3 γ (g1, g2, g3) (548) resonance -60 -40 20	20000 18000 16000 14000 12000 8000 6000 1 4000 ge	Niss. Mass (pp) Entries 38567 Constant 1.847e+04 Wean 1.02 Sigma 0.01977 $M(\phi) = 1020 \text{ MeV}$ $\Gamma(\phi) = 4.66 \text{ MeV}$ enerator input 4.26 MeV		The total is 3.65% reduces statistics in one m	l efficiency , which the final s to 2.4-10 ³ onth.
	0.6 0.7 0.8 0.9 1 Inv.M. ² (g1, g2)	0 ^E	0.2 0.4 0.6 0.8	1 1.2 M.M.(pp)		

Background decays to be study

 $pp \rightarrow pp \omega(782)(0.05\%) \rightarrow pp \gamma\eta(39.3\%) \rightarrow pp 3\gamma$ $N_3 = 9.6 \cdot 10^4$ total $\sigma(pp \rightarrow pp \omega) \approx 7500 \text{ nb}$
DISTO Colla. PRL 83(1999)4921 month L_{int} $pp \rightarrow pp \omega(782)(8.3\%) \rightarrow pp \gamma\pi^0(98.8\%) \rightarrow pp 3\gamma$ $N_4 = 4.0 \cdot 10^7$ $pp \rightarrow pp \rho^0(770)(0.03\%) \rightarrow pp \gamma\eta(39.3\%) \rightarrow pp 3\gamma$ $N_5 = 1.8 \cdot 10^5$ total $\sigma(pp \rightarrow pp \rho^0) \approx 23400 \text{ nb}$
DISTO Colla. PRL 89(2002)0920011 month L_{int} $pp \rightarrow pp \rho^0(770)(0.06\%) \rightarrow pp \gamma\pi^0(98.8\%) \rightarrow pp 3\gamma$ $N_6 = 9.0 \cdot 10^5$

4γ in final state, but one is lost in forward detector

pp \rightarrow pp $\pi^0\pi^0 \rightarrow$ pp $4\gamma \rightarrow$ pp $3\gamma (\gamma)$

WASA(CELSIUS) Colla. PLB 679(2009)30

main background

Thank you!

July 16-20, 2012

Kavli ITP, Beijing

Chuan Zheng (郑 川)

兰州重离子加速器上的强子物理研究

兰州重离子加速器-冷却储存环

兰州强子物理谱仪 CSRm: 1.1 AGeV(¹²C⁶⁺) 2.8 GeV (¹H¹⁺) 质子束流 CSRe:

0.76 AGeV (12C6+)

轻介子

- q = u , d , s 夸克
- _____ q = u , d , s 反夸克

在质子-质子反应中 的产生和衰变

Meson $(q\bar{q})$

Hadron Physics LanzhoU Spectrometer

由于经费来源问题,什么时候建造这个谱仪还没有明确。

国外的研究情况

德国GSI的正在建造的反质子 研究项目中的PANDA探测器

- 粲偶素的介子谱
- 胶子激发态的寻找(如胶球)
- •核介质效应等

~2014年

TOF

美国JLAB在升级到12 GeV的改 造项目中要建造的GlueX探测器

- •9 GeV线性极化的光子束流
- •核子中的胶子激发及胶子激发态
- QCD和轻介子谱等

模拟研究的内容和意义

