Spin Structure with JLab 6 and 12 GeV

Jian-ping Chen (陈剑平), Jefferson Lab, USA 4th Hadron Workshop / KITPC Program, Beijing, China, July, 2012

- Introduction
- Selected Results from JLab 6 GeV
 - Moments of Spin Structure Functions GDH/Bjorken Sum Rules, Spin Polarizabilities g₂/d₂: B-C Sum Rule, Color Lorentz Force (Polarizability)
- Planned experiments with JLab 12 GeV

Strong Interaction and QCD

- Strong interaction, running coupling ~1
 - -- asymptotic freedom (2004 Nobel)
 - perturbation calculation works at high energy
 - -- interaction significant at intermediate energy quark-gluon correlations
 - -- interaction strong at low energy confinement
 - -- gluons self interacting
- A major challenge in fundamental physics:
 -- Understand QCD in all regions, including strong (confinement) region
- Fundamental degrees of freedom: quarks, gluons
 Natural effective degrees of freedom: hadrons
- Theoretical Tools: pQCD (OPE), Lattice QCD, ChPT, ...

running coupling "constant"

Introduction

- Spin experiments provide fundamental information as well as insights into QCD dynamics
- Experiments: polarized beams(e, p), polarized targets (p, d, ³He/n) longitudinal and transverse target polarization

 $A_{\parallel}, A_{\perp} \rightarrow A_1, A_2$

 $\Delta \sigma_{\parallel}, \Delta \sigma_{\perp} \rightarrow \text{Spin Structure Functions } g_1(x, Q^2), g_2(x, Q^2)$

• Polarized PDFs $\Delta q(x)$

LO, NLO,..., QCD evolution,

Higher-twists

• Comparison with theories

1. High-x

- 2. Moments: sum rules/po larizabilities
- World data (CERN, SLAC, HERMES, RHIC-spin, JLab, ...)
- JLab 6 GeV: high-x, low Q², high-precision.
- Future : JLab 12 GeV, (EIC)

Polarized Deep Inelastic Electron Scattering

 $x = \frac{Q^2}{2M\nu}$ Fraction of nucleon momentum carried by the struck quark

 Q^2 = 4-momentum transfer of the virtual photon, ν = energy transfer, θ = scattering angle

All information about the nucleon vertex is contained in

 F_2 and F_1 the unpolarized (spin averaged) structure functions,

and

 g_1 and g_2 the spin dependent structure functions

Quark-Parton Model

$$F_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} f_{i}(x) \qquad g_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} \Delta q_{i}(x)$$
$$f_{i}(x) = q_{i}^{\uparrow}(x) + q_{i}^{\downarrow}(x)$$
$$\Delta q_{i}(x) = q_{i}^{\uparrow}(x) - q_{i}^{\downarrow}(x)$$

 $q_i\left(x
ight)$ quark momentum distributions of flavor i

 $\uparrow(\downarrow)$ parallel (antiparallel) to the nucleon spin

 $F_2 = 2xF_1$ $g_2 = 0$ (higher-twists)

$$A_{1}(x) = \frac{g_{1}(x)}{F_{1}(x)} = \frac{\sum \Delta q_{i}(x)}{\sum f_{i}(x)}$$

EMC/SLAC Polarized DIS – Spin "Crisis" or "Surprise"

The sum of Quark Spins contribute little to the proton spin, and strange quarks are negatively polarized.

Polarized Structure functions

Polarized Parton Distributions

DSSV, PRL101, 072001 (2008)

Three Decades of Spin Structure Study

- 1980s: EMC (CERN) + early SLAC quark contribution to proton spin is very small ΔΣ = (12+-9+-14)% ! 'spin crisis' (Ellis-Jaffe sum rule violated)
- 1990s: SLAC, SMC (CERN), HERMES (DESY) $\Delta \Sigma = 20-30\%$

the rest: gluon and quark orbital angular momentum A⁺=0 (light-cone) gauge $(\frac{1}{2})\Delta\Sigma + L_q + \Delta G + L_g = 1/2$ (Jaffe) gauge invariant $(\frac{1}{2})\Delta\Sigma + L_q + J_G = 1/2$ (Ji) Bjorken Sum Rule verified to <10% level

2000s: COMPASS (CERN), HERMES, RHIC-Spin, JLab, ... : $\Delta\Sigma \sim 30\%$; ΔG probably small, orbital angular momentum probably significant **New spin decomposition (X. Chen,** *et. Al, Wakamatsu, ...***) What observable directly corresponds to L_z \sim b_x X p_y? Valence Quark Spin Distributions Sum Rules at low Q², Higher-Twists Transversity, TMDs, GPDs, multi-d structure**

JLab Spin Experiments

- Results: Published and Preliminary/Upcoming
 - Spin in the Valence (High-*x*) Region
 - Spin (g_1/g_2) Moments: Spin Sum Rules and Polarizabilities,
 - Color Polarizability/Lorentz Force: d₂
- Just completed data taking
 - g_2^p at low Q^2
- Future: 12 GeV
 - Inclusive: A₁/d₂,
 - Semi-Inclusive:, Flavor-decomposition, Transversity ,TMDs,
 - GPDs

• Reviews: S. Kuhn, J. P. Chen, E. Leader, Prog. Part. Nucl. Phys. 63, 1 (2009)

JLab Polarized Proton/Deuteron Target

- Polarized NH₃/ND₃ targets
- Dynamical Nuclear Polarization
- In-beam average polarization 70-90% for p 30-50% for d
- Luminosity ~ 10³⁵ (Hall C/A)
 ~ 10³⁴ (Hall B)

7656A1

JLab Polarized ³He Target

Moments of Spin Structure Functions

Sum Rules, Polarizabilities

First Moment of g_1^p : Γ_1^p

Total Quark Contribution to Proton Spin (at high Q²) Twist expansion at intermediate Q², LQCD, ChPT at low Q²

EG1b, arXiv:0802.2232 EG1a, PRL 91, 222002 (2003) Spokespersons: V. Burkert, D. Crabb, G. Dodge,

 Γ_1^p

First Moment of g_1^n **:** Γ_1^n

E94-010, PRL 92 (2004) 022301 **E97-110, preliminary** EG1a, from *d-p*

Γ_1 of *p*-*n*

Effective Coupling Extracted from Bjorken Sum

A. Deur, V. Burkert, J. P. Chen and W. Korsch

PLB 650, 244 (2007) and PLB 665, 349 (2008)

Second Spin Structure Function g₂

Burkhardt - Cottingham Sum Rule d₂: Color Lorentz Force (Polarizability) Spin Polarizabilities

Precision Measurement of $g_2^n(x,Q^2)$: Search for Higher Twist Effects

- Measure higher twist \rightarrow quark-gluon correlations.
- Hall A Collaboration, K. Kramer et al., PRL 95, 142002 (2005)

BC Sum Rule

$$\frac{d}{2} = \int_0^1 g_2(x) dx = 0$$

Brawn: SLAC E155x Red: Hall C RSS Black: Hall A E94-010 Green: Hall A E97-110 (preliminary) Blue: Hall A E01-012 (spokespersons: N. Liyanage, former student, JPC) (preliminary)

BC = Meas+low_x+Elastic

"Meas": Measured x-range

"low-x": refers to unmeasured low x part of the integral.

Assume Leading Twist Behaviour

Elastic: From well know FFs (<5%)

BC Sum Rule

BC satisfied w/in errors for JLab Proton 2.8σ violation seen in SLAC data

BC satisfied w/in errors for Neutron (But just barely in vicinity of Q²=1!)

BC satisfied w/in errors for ³He

Color Lorentz Force (Polarizability): *d*₂

• 2^{nd} moment of $g_2 - g_2^{WW}$ d_2 : twist-3 matrix element

$$d_{2}(Q^{2}) = 3\int_{0}^{1} x^{2} [g_{2}(x,Q^{2}) - g_{2}^{WW}(x,Q^{2})] dx$$
$$= \int_{0}^{1} x^{2} [2g_{1}(x,Q^{2}) + 3g_{2}(x,Q^{2})] dx$$

 d_2 and g_2 - g_2^{WW} : clean access of higher twist (twist-3) effect: q-g correlations Color polarizabilities χ_E, χ_B are linear combination of d_2 and f_2 Provide a benchmark test of Lattice QCD at high Q^2 Avoid issue of low-x extrapolation Relation to Sivers and other TMDs

Preliminary results on neutron from E01-012

Spokespersons: J. P. Chen, S. Choi, N. Liyanage, plots by P. Solvignon

Moments from E01-012 and E94-010 include the resonance region only

Preliminary A₁(p) Results, Hall C SANE

Spokespersons: S. Choi, M. Jones, Z. Meziani and O. Rondon

Courteous of O. Rondon

Generated by James Maxwell on 01/13/2012

Preliminary A₂(p) Results, Hall C SANE

Spokespersons: S. Choi, M. Jones, Z. Meziani and O. Rondon

Courteous of O. Rondon

Projection on d2p from Hall C SANE

Preliminary A₁(³He) Results, Hall A E06-014

Spokespersons: S. Choi, Z. Meziani, X. Jiang and B. Sawasky

Projection on Hall A E06-014 (d₂ⁿ)

Spokespersons: S. Choi, Z. Meziani, X. Jiang and B. Sawasky

Courteous of D. Flay

Spin Polarizabilities

Preliminary E97-110 (and Published E94-010)

Spokesperson: J. P. Chen, A. Deur, F. Garibaldi, plots by V. Sulkosky

- Significant disagreement between data and both ChPT calculations for δ_{LT}
- Good agreement with MAID model predictions

E08-027 : Proton g₂ Structure Function

Fundamental spin observable has never been measured at low or moderate Q²

Spokespersons: A. Camsonne, J. P. Chen, D. Crabb, K. Slifer, 7 PhD students

<u>BC Sum Rule</u> : violation suggested for proton at large Q², but found satisfied for the neutron & ³He.

<u>Spin Polarizability</u> : Major failure (>8 σ) of χ PT for neutron δ_{LT} . Need g_2 isospin separation to solve.

<u>Hydrogen HyperFine Splitting</u> : Lack of knowledge of g_2 at low Q^2 is one of the leading uncertainties.

<u>Proton Charge Radius</u> : also one of the leading uncertainties in extraction of $< R_p >$ from μ -H Lamb shift. Completed data taking (5/2012)

Summary

- Spin structure study full of surprises and puzzles
- A decade of experiments from JLab: exciting results
 - precision measurements of moments of spin structure functions
 - spin sum rules and polarizabilities
 - g₂/d₂: high-twist effects (twist-3), quark-gluon correlations
- Bright future

. . .

- 12 GeV Upgrade will greatly enhance our capability
 - Precision determination of the valence quark spin structure flavor separation
 - Precision measurements of g₂/d₂
 - Precision extraction of transversity/tensor charge
- EIC: Precision Study of Gluons and Sea
 - Precision ΔG and Sea Quarks, Δs
 - 3-D: TMDs, GPDs