

Single Transverse-Spin Asymmetries and Twist-3 Factorization
J.P. Ma, ITP, Beijing

Content:

- Introduction
- Partonic states and SSA
- SSA in Drell-Yan Processes
- Evolutions of Twist-3 operators
- Summary and outlook

Introduction

Single transverse-Spin Asymmetries(SSA) are asymmetries in case where one initial hadron or one produced hadron is transversely polarized.

Taking Drell-Yan processes as an example:

$$
\begin{gathered}
h_{A}\left(P_{A}, s\right)+h_{B}\left(P_{B}\right) \rightarrow \gamma^{*}(q)+X \rightarrow \ell^{-}+\ell^{+}+X \\
A_{N}=\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}}, \quad s^{\mu}=\left(0,0, \vec{s}_{\perp}\right)
\end{gathered}
$$

The initial hadron is transversely polarized.

From general principles, SSA can only be generated
if there exist scattering absorptive parts in scattering amplitudes (T-odd effect)
AND helicity-flip interactions.
Two known facts:
from perturbation theory: Absorptive parts only exists beyond tree-level for two particle scattering
from QCD: Helicity of quarks are conserved. (massless quarks)

One may expect: $S S A=0$ or very small (???)

Rather large asymmetries......

Various asymmetries have been observed in experiment.

Theoretically, SSA can be predicted with concepts of QCD factorizations.
Two factorizations: Collinear factorization
TMD factorization for certain kinematical regions.

Collinear factorization: Efremov and Teryaev, Qiu and Sterman.

The nonperturbative effects are factorized with twist-3 matrix elements. E.g., quark-gluon correlators: (ETQS matrix elements)

$$
T_{F}\left(x_{1}, x_{2}, \mu\right)=-\tilde{s}_{\mu} g_{s} \int \frac{d y_{1} d y_{2}}{4 \pi} e^{-i P^{+}\left(y_{2}\left(x_{2}-x_{1}\right)+y_{1} x_{1}\right)}\langle P, s| \bar{\psi}\left(y_{1} n\right) \gamma^{+} G^{+\mu}\left(y_{2} n\right) \psi(0)|P, s\rangle,
$$

$$
T_{\Delta, F}\left(x_{1}, x_{2}, \mu\right)=i s_{\mu} g_{s} \int \frac{d y_{1} d y_{2}}{4 \pi} e^{-i P^{+}\left(y_{2}\left(x_{2}-x_{1}\right)+y_{1} x_{1}\right)}\langle P, s| \bar{\psi}\left(y_{1} n\right) \gamma^{+} \gamma_{5} G^{+\mu}\left(y_{2} n\right) \psi(0)|P, s\rangle
$$

There are 4 twist-3 operators only with gluon fields.

Graphical representation

$$
x_{1}, x_{2}
$$

Momentum fraction

Nonperturbative properties of the polarized hadron.
SSA => Information of quark-gluon correlations inside the hadron

The diagrammatic approach at hadron level:

$$
\Gamma_{B}(q \bar{q})
$$

Quark density matrix of B

HHard scattering

$$
\Gamma_{A}(q G \bar{q})
$$

Quark-Gluon density matrix of A

Expanding momenta of incoming partons collinearly, one derives the factorized form. Schematically (E.g., Drell-Yan):
$d \sigma\left(s_{\perp}\right) \sim f_{a} \otimes \mathcal{H}_{h} \otimes T_{F}\left[x_{1}, x_{2}\right] \longrightarrow$ Hard-pole contribution $+f_{a} \otimes \mathcal{H}_{g s} \otimes T_{F}[x, x] \longrightarrow$ Soft-gluon-pole contribution $+f_{a} \otimes \mathcal{H}_{f s} \otimes T_{F}[0, x] \longrightarrow$ Soft-fermion-pole contribution $+\cdots$
f_{a} The standard parton distribution of the unpolarized hadron $\mathcal{H}_{h}, \mathcal{H}_{g s}, \mathcal{H}_{f s}$ The perturbative coefficient functions

Q: Is there another way to derive the factorization?
A: Yes!
Purpose: independent check, understanding soft-gluon-pole contributions

An important fact: QCD factorization, if it is proven, is a general property of QCD. It holds for all states, not only for specific hadrons. It also holds for parton states.
E.g., DIS with H as the initial hadron, the structure function is factorized as:

$$
F_{2}=\mathcal{H} \otimes f_{q / H}+\cdots
$$

The factorization holds for any hadron, especially if we replace the hadron with partons, H-> q,

The perturbative coefficient function is the same.
With a quark as the initial state, one can calculate the structure function of the quark, and PDF with the same quark state.

At tree-level: $\quad F_{2}^{(0)}=\mathcal{H}^{(0)} \otimes f_{q / q}^{(0)}$,

At one-loop level: $\quad F_{2}^{(1)}=\mathcal{H}^{(0)} \otimes f_{q / q}^{(1)}+\mathcal{H}^{(1)} \otimes f_{q / q}^{(0)}$

The collinear divergence in F_{2} is the same as that in the first term, so that H does not contain it. This is the sense of factorization.

Important: The collinear divergence at one-loop in F_{2} is "determined" by the tree-level H.....

Can we do the same for SSA??
Yes or No......??

If we replace the hadron A with a transversely polarized quark, one can not have a nonzero SSA, because the helicity conservation of QCD.

One needs to consider multi-parton states for the replacement.

The talk presents a study of QCD factorizations for SSA by using partonic states.

Partonic states and SSA

Transverse spin corresponds to the non-diagonal part of spin density matrix in helicity space.

Define a spin $\frac{1}{2}$ state as:

$$
\begin{aligned}
& |n[\lambda]\rangle=|q(p, \lambda)\rangle+c_{1}\left|q\left(p_{1}, \lambda_{q}\right) g\left(p_{2}, \lambda_{g}\right)\left[\lambda=\lambda_{q}+\lambda_{g}\right]\right\rangle+\cdots \\
& \quad p_{1}=x_{0} p, \quad p_{2}=\left(1-x_{0}\right) p
\end{aligned}
$$

Using this state to replace the transversely polarized hadron A, one will get nonzero non-diagonal part of spin density matrix because of the interference between the single quark- and the quark-gluon state. i.e.,

$$
T_{F} \sim\langle q(p,+)| \mathcal{O}\left|q\left(p_{1},+\right) g\left(p_{2},-\right)\right\rangle+\cdots,
$$

Graphical representation:

Helicity is flipped by $\frac{1}{2}$.

At tree-level:

$$
T_{F}\left(x_{1}, x_{2}\right)=c_{1} g_{s} \pi \sqrt{\frac{x_{2}}{2}}\left(x_{2}-x_{1}\right)\left[\delta\left(1-x_{1}\right) \delta\left(x_{2}-x_{0}\right)-\delta\left(1-x_{2}\right) \delta\left(x_{1}-x_{0}\right)\right]
$$

It \dagger is nonzero. I \dagger is zero for $X_{1}=x_{2}$

At one loop $T_{F}(x, x)$ becomes nonzero

One can also calculate the function in general cases.

One can use the same multi-parton state to calculate differential cross-sections to find or to establish factorizations.
E.g., hadron-hadron collision:

Standard way to calculate differential cross sections of parton states.

SSA in Drell-Yan process
$h_{A}\left(P_{A}, s\right)+h_{B}\left(P_{B}\right) \rightarrow \gamma^{*}(q)+X \rightarrow \ell^{-}+\ell^{+}+X$,

Consider the differential cross-section:
$\frac{d \sigma\left(s_{\perp}\right)}{d Q^{2} d \Omega}=\frac{\alpha^{2}}{S Q^{4}} \int d^{4} q \delta\left(q^{2}-Q^{2}\right)\left[k_{1}^{\mu} k_{2}^{\nu}+k_{1}^{\nu} k_{2}^{\mu}-k_{1} \cdot k_{2} g^{\mu \nu}\right] W_{\mu \nu}$.
Ω The solid angle of the lepton in the rest-frame of the lepton pair. We take here the Collins-Soper frame.

We replace the hadron A with the multi-parton state the hadron B with an anti-quark,

and calculate the spin-dependent part.

At leading(nonzero order) there are 3 classes of diagrams contributing to the hadronic tensor:

Class (b): No contributions at any order.
We first consider the divergent contributions to the differential cross-section, come back later to the finite contributions.

Class (a) contributions are proportional to $\delta^{2}\left(\vec{q}_{\perp}\right)$

The sum is free of any soft-divergences (Glauber-divergence) Only finite contributions.

Class (c) : there is a soft divergence in small q_{\dagger} region.

We scale $q_{\perp} \sim \lambda, \lambda \rightarrow 0$,

Only one diagram gives the divergence if we integrated over q_{t} :

$$
\begin{array}{r}
\tilde{W}^{\mu \nu}=-\frac{g_{s} \alpha_{s}}{4 \pi}\left(N_{c}^{2}-1\right) \sqrt{2 x_{0}} \delta(1-y) \delta\left(x-x_{0}\right)\left[\frac{1}{\left(q_{\perp}^{2}\right)^{2}}\left(x_{0} \tilde{s} \cdot q_{\perp} g_{\perp}^{\mu \nu}-\frac{\tilde{s} \cdot q_{\perp}}{\bar{p} \cdot p} \bar{p}^{\{\mu} q_{\perp}^{\nu\}}\right)\right. \\
\left.+\frac{1}{2 p \cdot \bar{p} q_{\perp}^{2}}\left(x_{0} p^{\left\{\mu \tilde{s}^{\nu\}}\right.}-\bar{p}^{\left\{\mu \tilde{s}^{\nu\}}\right.}\right)\right]+\mathcal{O}\left(\lambda^{-1}\right)
\end{array}
$$

The divergent part of the differential cross section: $\frac{d \sigma\left(\vec{s}_{\perp}\right)}{d Q^{2} d \Omega}=\left[\frac{g_{s} \alpha_{s}}{4}\left(N_{c}^{2}-1\right) x_{0} \sqrt{2 x_{0}}\left(-\frac{2}{\epsilon_{c}}\right)\right](-1+2) \frac{\delta\left(x_{0} s-Q^{2}\right)}{128 \pi^{2} Q^{3}} \sin (2 \theta) \sin \phi+$

With the results of T_{F} and pdf of parton states one finds the factorized form for the asymmetry in the lepton angular distribution:

$$
A_{N}=-\frac{\sin (2 \theta) \sin \phi}{2 Q\left(1+\cos ^{2} \theta\right)} \frac{\int d x d y T_{F}(x, x) \bar{q}(y) \delta\left(x y S-Q^{2}\right)}{\int d x d y q(x) \bar{q}(y) \delta\left(x y S-Q^{2}\right)} .
$$

The perturbative coefficient function here is at order of 1 .
There is a discrepancy about the asymmetry in literature.....

The argument for the factorization:
When integrating q_{t} :

The finite contributions will be factorized with tree-level
T_{F}, gives the contributions to the perturbative coefficient function at α_{s}

There is a order mixing!

Another asymmetry:
$\frac{d \sigma}{d Q^{2} d^{2} q_{\perp} d q^{+} d q^{-}}=\frac{4 \pi \alpha_{e m}^{2} Q_{q}^{2}}{3 S Q^{2}} \delta\left(q^{2}-Q^{2}\right)\left(\frac{q_{\mu} q_{\nu}}{q^{2}}-g_{\mu \nu}\right) W^{\mu \nu}, \quad S=2 P_{A}^{+} P_{B}^{-}$.

With those multi-parton states we find the factorized form:

$$
\begin{aligned}
\frac{d \sigma\left(s_{\perp}\right)}{d Q^{2} d q_{\perp}^{2} d q^{+} d q^{-}} \sim & f_{a} \otimes \mathcal{H}_{h} \otimes T_{F}\left[x_{1}, x_{2}\right] \\
& +f_{a} \otimes \mathcal{H}_{g s} \otimes T_{F}[x, x] \\
& +f_{a} \otimes \mathcal{H}_{f s} \otimes T_{F}[0, x] \\
& +\cdots
\end{aligned}
$$

All perturbative functions start at order α_{s} Details in:
J.P. Ma, H.Z. Sang \& S.J. Zhu, e-Print: arXiv:1111.3717 J.P. Ma, H.Z. Sang, e-print: arXiv: 1102.2679.

Evolutions of Twist-3 Operators

The defined twist-3 operators have scale-dependence, e.g., the non-singlet part of the quark-gluon correlators has:

$$
\begin{gathered}
\frac{\partial T_{ \pm}\left(x_{1}, x_{2}, \mu\right)}{\partial \ln \mu}=\frac{\alpha_{s}}{\pi} \int d \xi_{1} d \xi_{2} \mathcal{F}_{ \pm}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) T_{ \pm}\left(\xi_{1}, \xi_{2}, \mu\right) \\
T_{ \pm}\left(x_{1}, x_{2}\right)=T_{F}\left(x_{1}, x_{2}\right) \pm T_{\Delta, F}\left(x_{1}, x_{2}\right)
\end{gathered}
$$

Again, the dependence is determined by QCD and is not related to any specific hadron. One can use the multi-parton states to calculate the twist-3 matrix elements and derived the evolution.

One-loop diagrams for the twist-3 matrix elements:

(a)

(g)

(b)

(h)
(d)

(e)

(j)

(n)
(m)

(c)

(d)

(e)

24 diagrams in Feynman gauge +
diagrams with pure gluon-states

The general results are too long to give here. But some special cases are interesting to give here.

The soft-gluon case:

$$
\begin{aligned}
& \frac{\partial T_{F}(x, x, \mu)}{\partial \ln \mu}=\frac{\alpha_{s}}{\pi}\left\{\int _ { x } ^ { 1 } \frac { d z } { z } \left[P_{q q}(z) T_{F}(\xi, \xi)+\frac{N_{c}}{2} \frac{(1+z) T_{F}(x, \xi)-\left(1+z^{2}\right) T_{F}(\xi, \xi)}{1-z}+T_{\Delta, F}(x, \xi)\right.\right. \\
& \left.\quad+\frac{1}{2 N_{c}}\left((1-2 z) T_{F}(x, x-\xi)+T_{\Delta, F}(x, x-\xi)\right)\right]-N_{c} T_{F}(x, x) \\
& z=x / \xi
\end{aligned}
$$

Twist-3 gluonic matrix elements
There were discrepancies about terms in the second line in literature.

Soft-Fermion cases:

$$
\begin{aligned}
\frac{\partial T_{+}(0, x, \mu)}{\partial \ln \mu} & =\frac{\alpha_{s}}{\pi}\left\{\int_{x}^{1} \frac{d z}{z}\left[-\frac{1}{2 N_{c}} \frac{T_{+}(\xi-x, \xi)}{(1-z)_{+}}+\frac{N_{c}}{2} \frac{1+z^{3}}{(1-z)_{+}} T_{+}(0, \xi)\right]\right. \\
& +\frac{3\left(N_{c}^{2}-1\right)}{4 N_{c}} T_{+}(0, x)+\int_{x}^{1} \frac{d z}{z}\left[\frac{N_{c}}{2} \frac{z^{2}}{(1-z)_{+}} T_{+}(x-\xi, x)+\frac{1}{2 N_{c}}(1-z)^{2} T_{+}(0,-\xi)\right] \\
& \left.-\frac{1}{2 x} T_{+G}(0, x)-\frac{1}{2} \int_{x}^{1} \frac{d z}{z \xi} T_{+G}(\xi, \xi-x)\right\}
\end{aligned}
$$

Details in e-Print: arXiv:1205.0611 [hep-ph] by J.P. Ma and Q. Wang

Summary

Soft gluons for soft-gluon-pole contributions are Glauber gluons.
There is a non-trivial order mixing in the collinear factorization of SSA.

The "best" way to access the soft-gluon-pole contributions is to measure the asymmetry in the lepton angular distribution in Drell-Yan.

Questions:
SIDIS? (a simple prediction with the soft-gluon-pole contribution)
Higher-order corrections?
A proof for the factorization?

