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Introduction 
          
      Single transverse-Spin Asymmetries(SSA) are asymmetries in the 

case where one initial hadron or one produced hadron is 
transversely polarized.  
Taking Drell-Yan processes as an example: 

The initial hadron is transversely polarized. 

hA(PA, s) + hB(PB) ! �⇤(q) +X ! `� + `+ +X,

AN =
d�" � d�#

d�" + d�# , sµ = (0, 0,~s?)



     
From general principles, SSA can only be generated  
   if  there exist scattering absorptive parts in scattering 

amplitudes ( T-odd effect)   
    AND   helicity-flip interactions.   
     
Two known facts:  
 
     from perturbation theory:  Absorptive parts only exists  
                                                beyond tree-level for two particle 
                                                scattering 
 
     from QCD:  Helicity of quarks are conserved.  (massless quarks)  
 
 
     One may expect: SSA =0 or very small  (???) 



p"p ! h+X

E581, E704,  (1991)  

Rather large asymmetries…… 
 
Various asymmetries have been observed in experiment.   

Experiments:  



Theoretically, SSA can be predicted with concepts of QCD 
factorizations.  
 Two factorizations:   Collinear factorization 
                                   TMD factorization for certain kinematical  
                                    regions.  
 
Collinear factorization:  Efremov and  Teryaev, Qiu and  Sterman.  
 
The nonperturbative effects are factorized with twist-3 matrix  
  elements.  E.g., quark-gluon correlators:  (ETQS matrix elements)  

There are 4 twist-3 operators only with gluon fields.  



P, s⊥ P, s⊥

x2P x1P

Graphical representation 

Momentum fraction 

Nonperturbative properties of the polarized hadron.  
 
SSA  =>    Information of quark-gluon correlations inside 
                  the hadron 
 
So far, only one method exists to derive factorizations for SSA  
      or to predict SSA in terms of ETQS matrix elements.   



The diagrammatic approach at hadron level:  

Quark density matrix of B 

Quark-Gluon density matrix  
 of A 

Hard scattering  



Expanding momenta of incoming partons collinearly, one derives  
 the factorized form.   Schematically (E.g., Drell-Yan ): 

d�(s?) ⇠fa ⌦Hh ⌦ TF [x1, x2]

+ fa ⌦Hgs ⌦ TF [x, x]

+ fa ⌦Hfs ⌦ TF [0, x]

+ · · ·

Hard-pole contribution 

Soft-gluon-pole contribution 

Soft-fermion-pole contribution 

fa
Hh,Hgs,Hfs

The standard parton distribution of the unpolarized hadron 

The perturbative coefficient functions  

Q： Is there another way to derive the factorization ? 
 
A:    Yes !  
 
Purpose: independent check, understanding soft-gluon-pole  
               contributions 
              …………. 



An important fact:  QCD factorization, if it is proven,  is a  
                                general property of QCD.   It holds for  
                                all states, not only for specific hadrons. 
                                It also holds for parton states.   

E.g.,  DIS with H as the initial hadron, the structure function is factorized as: 

F2 = H⌦ fq/H + · · · ,
The factorization holds for any hadron, especially if we replace the hadron  
 with partons,  H -> q,  
 
 The perturbative coefficient function is the same.  
 
 With a quark as the initial state, one can calculate the structure function  
  of the quark,  and PDF with the same quark state.    
  



At tree –level:  

At one-loop level:  

The collinear divergence in F2 is the same as that in 
the first term, so that H does not contain it.  This is 
the sense of factorization.  
 
Important: The collinear divergence at one-loop in F2  
 is “determined” by the tree-level H…..  
 
             Can we do the same for SSA??    
                             Yes or No……??  

F (0)
2 = H(0) ⌦ f (0)

q/q,

F (1)
2 = H(0) ⌦ f (1)

q/q +H(1) ⌦ f (0)
q/q



If we replace the hadron A with a transversely 
polarized quark, one can not have a nonzero SSA, 
because  the helicity conservation of QCD.  

 
One needs to consider  multi-parton states for  
 the replacement.   
 
 The talk presents a study of QCD factorizations for 

SSA  by using partonic states.  



Partonic states and SSA 
Transverse spin corresponds to the non-diagonal part of spin  
 density matrix in helicity space.  
 
Define a spin ½  state as: 

Using this state to replace the transversely polarized hadron A, one will  
 get nonzero non-diagonal part of spin density matrix because of the   
 interference between the single quark- and the quark-gluon state.  
 i.e.,    

|n[�]i = |q(p,�)i+ c1|q(p1,�q)g(p2,�g)[� = �q + �g]i+ · · · ,
p1 = x0p, p2 = (1� x0)p

TF ⇠ hq(p,+)|O|q(p1,+)g(p2,�)i+ · · · ,



P, s⊥ P, s⊥

x2P x1P

Graphical representation: 

Helicity is flipped by ½.   

At tree-level:  

It is nonzero.  It is zero for  
x1 = x2

TF (x1, x2) = c1gs⇡

r
x2

2
(x2 � x1) [�(1� x1)�(x2 � x0)� �(1� x2)�(x1 � x0)]



At one loop TF(x,x) becomes nonzero 

TF (x, x) = �c1
gs↵s

4
Nc(N

2
c � 1)x0

p
2x0�(x0 � x)

✓
� 2

✏c
+ � � ln

µ

2

4⇡µ2
c

◆
.

Dimensional  regularization, U.V. poles  
 are subtracted.  
 
A collinear divergence:  

One can also calculate the function in general cases.  



P, s⊥ P, s⊥

x2P x1P

One can use the same multi-parton state to calculate differential  
 cross-sections to find or to establish factorizations.  
 
E.g., hadron-hadron collision:   

Standard way to calculate differential cross sections  
 of parton states.  



SSA in Drell-Yan process  

hA(PA, s) + hB(PB) ! �⇤(q) +X ! `� + `+ +X,

Consider the differential cross-section:   

d�(s?)

dQ2d⌦
=

↵2

SQ4

Z
d4q�(q2 �Q2) [kµ1 k

⌫
2 + k⌫1k

µ
2 � k1 · k2gµ⌫ ]Wµ⌫ .

⌦ The solid angle of the lepton in the rest-frame of the lepton pair.  
 We take here the Collins-Soper frame.  

We replace the hadron A with the multi-parton state 
                   the hadron B with an anti-quark,  
  
  and calculate the spin-dependent part.  



that the lepton momenta k1,2 in general depend on the solid angle Ω in Collins-Soper frame and the
momentum q in the moving frame. Because the integration over q with q2 fixed as Q2 one should perform
the factorization of the defined distribution, not the structure functions in the hadronic tensor W µν .
Only in the case with other distributions which are directly related to structure functions, one needs to
perform factorizations for these functions. We denote the spin-dependent and symmetric part of W µν as
Ŵ µν . Only this part will give contributions to AN . For !q⊥ != 0 the tensor can be decomposed into eight
structure functions [19, 20]. These structure functions are in general singular with !q⊥ → 0. In principle
one can have a part of Ŵ µν which is proportional to δ2(!q⊥). This part has a simple form:

Ŵ µν =

[

s̃µ
(

P ν
A

PA · q
−

P ν
B

PB · q

)

+ s̃ν
(

Pµ
A

PA · q
−

Pµ
B

PB · q

)]

Ŵ0 + · · · , (10)

with Ŵ0 ∝ δ2(!q⊥). The · · · represent the terms of the eight structure functions which can be found in
[19, 20].

One expects that these structure functions can have a factorized form. In [11, 12, 13], the trace
part, i.e., Ŵ µ

µ has been studied with collinear factorization. In [16, 17, 18], the factorization of the same
part has been studied with multi-parton states. It should be noted that the factorization of structure
functions can be different than that of AN . The structure functions are for fixed !q⊥. For AN , i.e., for
the differential cross section in Eq.(9) !q⊥ is integrated over. The collinear- and I.R. divergences in Eq.(9)
can appear in a different way than those in structure functions. This will be clearly seen in the results
obtained with the multi-parton state.

Now we replace hA with the state in Eq.(6) and hB with an antiquark q̄ with the momentum p̄µ = Pµ
B .

We will calculate the tensor Ŵ µν and then the differential cross-section at the leading order. The leading
order is at gsαs. Although we work at the leading order, the obtained differential cross-section contains
collinear divergences. We will show that the collinear divergences can be factorized with the collinear
divergence in TF (x, x) of Eq. (7). Because TF (x, x) is at order of gsαs, it results in that the perturbative
coefficient function is at order of α0

s as in Eq.(3). The finite contributions in the differential cross-section
will delivery corrections to the perturbative coefficient function at order of αs. Therefore, we only need
to find collinear divergences in the differential cross-section at the leading but nontrivial order.

(a) (b) (c)

Figure 2: Classes of diagrams for the contributions to the hadronic tensor with the multi-parton state in
Eq.(6). The black dots are insertion of electromagnetic current operators. The broken line is the cut.

With partonic states we need to study the forward scattering q̄(p̄) + (q(p1) + g(p2) → γ∗(q) +X →
q̄(p̄)+q(p), or the revered sccattering for calculating Ŵ µν . The polarization and color of q̄ are averaged. In
order to have nonzero SSA, scattering amplitudes must have nonzero absorptive part. The contributions
to Ŵ µν can be classified into three classes of Feynman diagrams for Ŵ µν , which are given in Fig.2. In
each diagram of Fig.2 there is a cut dividing the diagram into a left- and right part.
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At leading(nonzero order) there are 3 classes of diagrams  
 contributing to the hadronic tensor:  

Class (b):   No contributions at any order.  
 
We first consider the divergent contributions to the differential  
 cross-section, come back later to the finite contributions.  



In Class (a) of diagrams, represented with Fig.2a, there is no parton in the intermediate state. In
Class (b) of diagrams represented with Fig.2b, the initial gluon without interactions with partons in the
left part of the diagram, goes through the cut to interact partons in the right part. The intermediate
state only contains this gluon. It is clear that contributions from these two classes of diagrams are
proportional to δ2("q⊥). Fig.2c represnts diagrams of Class (c). In these diagrams the intermediate state
contains an emitted gluon. Hence, in contributions from Class (c) "q⊥ can be nonzero. It is possible to
have an additional class of contributions, which are those diagrams where the initial gluon in the left part
in Fig.2c can go without interactions through the cut. But at the leading order, there is no absorptive
part in the left- or right part. Hence the contributions from this additional class are zero at the order.

Not all classes of diagrams need to be considered. One can show that the contributions from Class (b)
are exactly zero. For Fig.2b we denote the left- and right part as the amplitude T µ

L and T ν
R , respectively.

These amplitudes are in fact the matrix elements:

T µ
L = 〈0̄|Jµ|q(p1,λq)q̄(p̄)〉, T ν

R = 〈q(p,λq)q̄(p̄)|Jν |g(p2,λg)〉, (11)

where we have labeled the helicity of the quark and gluon explicitly. It should be noted that The qq̄ in
T µ
L is in color-octet, i.e., the pair carries the same color as that of the gluon in T ν

R . These amplitudes
can be decomposed into the form factors:

T µ
L = v̄(p̄)γµT au(p,λq)F1(q

2), T ν
R =

(

pν1
q · p1

−
p̄ν

q · p̄

)

ū(p,λq)T
aγ · ε(λg)v(p̄)G1(q

2), (12)

where the color index a is the color of the gluon, ε(λg) is the polarization vector of the gluon and q is
fixed as q = p1 + p̄. The form factors F1 and G1 are complex functions of q2 in general. Using these
expressions one can calculate Ŵ µν directly. One easily finds:

Ŵ µν
(b) ∝ (1 + λqλg) . (13)

Since we take the state in Eq.(6) as a spin-1/2 system because hA is with spin-1/2, one always has
λqλg = −1. Therefore, the contributions from Class (b) are zero. This holds at any order of αs. In fact,
the conclusion about the contributions from Class (b) is a consequence of the helicity conservation of
QCD.

(b)(a) (c) (d)

(e) (f)

+ · · ·

Figure 3: The diagrams of Class(a) contributions. These diagrams contains soft divergences. The
diagrams which do not contain soft divergences are represented with · · ·.
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Class (a) contributions are proportional to  �2(~q?)

The sum is free of any soft-divergences (Glauber –divergence)  
 
Only finite contributions.  



q? ⇠ �, � ! 0,

W̃

µ⌫ = �gs↵s

4⇡
(N2

c � 1)
p
2x0�(1� y)�(x� x0)


1

(q2?)
2

✓
x0s̃ · q?gµ⌫? � s̃ · q?

p̄ · p p̄

{µ
q

⌫}
?

◆

+
1

2p · p̄q2?
⇣
x0p

{µ
s̃

⌫} � p̄

{µ
s̃

⌫}
⌘�

+O(��1).

Class (c) : there is a soft divergence in small qt region.   

We scale  

(a) (b) (c)

(d) (e) (f)

Figure 4: The diagrams for Class (c).

By expanding the contribution from each diagrams in Fig.4, we find that all contributions except
those from Fig.4e are at order of λ−1 or higher order. Therefore, we have the divergent part of Ŵ µν of
Class (c):

W̃ µν = −
gsαs

4π
(N2

c − 1)
√
2x0δ(1 − y)δ(x− x0)

[

1

(q2⊥)
2

(

x0s̃ · q⊥gµν⊥ −
s̃ · q⊥
p̄ · p

p̄{µqν}⊥

)

+
1

2p · p̄q2⊥

(

x0p
{µs̃ν} − p̄{µs̃ν}

)

]

+O(λ−1). (17)

In the above, the contribution with gµν⊥ is at order of λ−3 and the contribution from the remaining three
terms is at order of λ−2. These two contributions will give divergent contributions to the differential
distribution in Eq.(9). The contribution at λ−1 will only give finite contributions. Our result of is U(1)-
electromagnetic gauge invariant up to order of λ−1. This can be checked by noting qµ = pµ1 + p̄µ + qµ⊥ +
O(λ2):

qµW̃
µν = qνW̃

µν = 0 +O(λ−1). (18)

Before using our results to calculate the differential distribution in Eq.(9) and to derive its factorized
form, some remarks are needed. At leading order of αs, the hadronic tensor W̃ µν calculated with our
multi-parton state can be divided into two parts. One part is proportional to δ2(q⊥). This part is free
from collinear singularities as shown in Eq.(15). Another part is with nonzero q⊥ because the gluon in
the intermediate state as shown in Fig.4. This is in contrast to the unpolarized case. In this case, the
hadronic tensor W µν at leading order of αs and leading twist has only the contribution proportional to
δ2(%q⊥) from the scattering qq̄ → γ∗ → qq̄ without any parton in the intermediate state.

Substituting the result in Eq.(17) into Eq.(9) and performing the integration over q⊥, one will find the
divergence in the region q⊥ ∼ 0. By expressing the lepton momenta k1,2 in Eq.(9) with the momentum
'− in the Collins-Soper frame and the momentum q, one can perform the q-integration. We have the
divergence in the spin-dependent part of the differential cross-section as:

dσ(%s⊥)

dQ2dΩ
=
[

gsαs

4
(N2

c − 1)x0
√
2x0

(

−
2

εc

)]

(−1 + 2)
δ(x0s−Q2)

128π2Q3
sin(2θ) sin φ+ · · · , (19)

where · · · denote finite contributions and εc = 4−d. These finite contributions are from the contributions
at order O(λ−1) in Eq.(17) and the part of W̃ µν with δ2(%q⊥). We notice here that the upper limit
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Only one diagram gives the divergence if we integrated over qt :  



d�(~s?)

dQ

2
d⌦

=


gs↵s

4
(N2

c � 1)x0

p
2x0

✓
� 2

✏c

◆�
(�1 + 2)

�(x0s�Q

2)

128⇡2
Q

3
sin(2✓) sin�+ · · · ,

AN = � sin(2✓) sin�

2Q(1 + cos

2
✓)

Z
dxdyTF (x, x)q̄(y)�(xyS �Q

2
)

Z
dxdyq(x)q̄(y)�(xyS �Q

2
)

.

The divergent part of the differential cross section:  

With the results of TF and pdf of parton states one finds the factorized  
 form for the asymmetry in the lepton angular distribution: 

There is a discrepancy about the asymmetry in literature…..  

Details in:  J.P. Ma and G.P. Zhang, e-Print: arXiv:1203.6415 

The perturbative coefficient function here is at order of 1.  



The argument for the factorization:  
When integrating qt : 

= H   ⊗

The soft gluon, in fact it is a Glauber gluon.   
 
The collinear gluon 

(a) (b) (c)

(d) (e) (f)

Figure 4: The diagrams for Class (c).

By expanding the contribution from each diagrams in Fig.4, we find that all contributions except
those from Fig.4e are at order of λ−1 or higher order. Therefore, we have the divergent part of Ŵ µν of
Class (c):

W̃ µν = −
gsαs

4π
(N2

c − 1)
√
2x0δ(1 − y)δ(x− x0)

[

1

(q2⊥)
2

(

x0s̃ · q⊥gµν⊥ −
s̃ · q⊥
p̄ · p

p̄{µqν}⊥

)

+
1

2p · p̄q2⊥

(

x0p
{µs̃ν} − p̄{µs̃ν}

)

]

+O(λ−1). (17)

In the above, the contribution with gµν⊥ is at order of λ−3 and the contribution from the remaining three
terms is at order of λ−2. These two contributions will give divergent contributions to the differential
distribution in Eq.(9). The contribution at λ−1 will only give finite contributions. Our result of is U(1)-
electromagnetic gauge invariant up to order of λ−1. This can be checked by noting qµ = pµ1 + p̄µ + qµ⊥ +
O(λ2):

qµW̃
µν = qνW̃

µν = 0 +O(λ−1). (18)

Before using our results to calculate the differential distribution in Eq.(9) and to derive its factorized
form, some remarks are needed. At leading order of αs, the hadronic tensor W̃ µν calculated with our
multi-parton state can be divided into two parts. One part is proportional to δ2(q⊥). This part is free
from collinear singularities as shown in Eq.(15). Another part is with nonzero q⊥ because the gluon in
the intermediate state as shown in Fig.4. This is in contrast to the unpolarized case. In this case, the
hadronic tensor W µν at leading order of αs and leading twist has only the contribution proportional to
δ2(%q⊥) from the scattering qq̄ → γ∗ → qq̄ without any parton in the intermediate state.

Substituting the result in Eq.(17) into Eq.(9) and performing the integration over q⊥, one will find the
divergence in the region q⊥ ∼ 0. By expressing the lepton momenta k1,2 in Eq.(9) with the momentum
'− in the Collins-Soper frame and the momentum q, one can perform the q-integration. We have the
divergence in the spin-dependent part of the differential cross-section as:

dσ(%s⊥)

dQ2dΩ
=
[

gsαs

4
(N2

c − 1)x0
√
2x0

(

−
2

εc

)]

(−1 + 2)
δ(x0s−Q2)

128π2Q3
sin(2θ) sin φ+ · · · , (19)

where · · · denote finite contributions and εc = 4−d. These finite contributions are from the contributions
at order O(λ−1) in Eq.(17) and the part of W̃ µν with δ2(%q⊥). We notice here that the upper limit
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The finite contributions will be factorized with tree-level  
 TF,  gives the contributions to the perturbative coefficient 
 function at  ↵s

There is a order mixing! 



d�

dQ2d2q?dq+dq�
=

4⇡↵2
emQ2

q

3SQ2
�(q2 �Q2)

✓
qµq⌫
q2

� gµ⌫

◆
Wµ⌫ , S = 2P+

A P�
B .

Another asymmetry:  

d�(s?)

dQ

2
dq

2
?dq

+
dq

� ⇠fa ⌦Hh ⌦ TF [x1, x2]

+ fa ⌦Hgs ⌦ TF [x, x]

+ fa ⌦Hfs ⌦ TF [0, x]

+ · · ·

With those multi-parton states we find the factorized form: 

All perturbative functions start at order  ↵s

J.P. Ma, H.Z. Sang & S.J. Zhu, e-Print: arXiv:1111.3717  
J.P. Ma, H.Z. Sang, e-print: arXiv: 1102.2679. 

Details in: 



Evolutions of Twist-3 Operators 

The defined twist-3 operators have scale-dependence, e.g.,  
 the non-singlet part of the quark-gluon correlators has: 

@ T±(x1, x2, µ)

@ lnµ
=

↵s

⇡

Z
d⇠1d⇠2F±(x1, x2, ⇠1, ⇠2)T±(⇠1, ⇠2, µ).

T±(x1, x2) = TF (x1, x2)± T�,F (x1, x2).

Again,  the dependence is determined by QCD and is not related  
    to any specific hadron.  One can use the multi-parton states  
    to calculate the twist-3 matrix elements and derived the  
     evolution.  



[14]. We will also call the contribution extracted from 〈q, g|O|q〉, 〈q, q̄|O|g〉 and 〈g, g|O|g〉 as qg-, qq̄- and
gg contribution, respectively. For detailed description of those parton states and spin-density matrices
we refer to [14]. We will also use the same notations for these multi-parton states as used in [14].

(a) (b) (c) (d)

(f) (g) (h) (i)

(e)

(j)

(k) (l) (m) (n) (o)

Figure 1: A set of diagrams of one-loop corrections to T±(x1, x2) from the qg-contribution. This set only
contains the self-energy corrections represented by black dots, and corrections with one gluon emission
from a gauge link.

Now we turn to the first part in Eq.(6). The scale dependence of this part can be written as the
evolution:

∂ T±(x1, x2, µ)

∂ lnµ

∣

∣

∣

∣

qg
=
αs

π

∫ 1

0
dξ1dξ2F±(x1, x2, ξ1, ξ2)T±(ξ1, ξ2, µ). (9)

With the tree-level result given in Eq.(8), the kernel F+ can be determined by calculating the one-loop

correction of T+. The one-loop contributions, denoted as T (1)
+ (x1, x2, x0), are represented by diagrams

given in Fig.1 and Fig.2. With the tree-level result and the scaling property of F+ we have at the leading
order:

gsαsF+(x1, x2, ξ1, ξ2) =
1

N2
c − 1

ξ1
ξ2 − ξ1

√

ξ1
2ξ2

∂

∂ lnµ
T (1)
+ (x1/ξ1, x2/ξ1, ξ2/ξ1) + · · · , (10)

where · · · denote the contribution from the µ-dependence of gs appearing in the definition in Eq.(1). We

notice here that the calculation of T (1)
+ (x1/ξ1, x2/ξ1, ξ2/ξ1) , hence of F+, is slightly different than that

of T (1)
+ (x1, x2, x0). In the later, all variables x0,1,2 are always smaller than 1. Especially, with x0 < 1 one

finds that T+(x1, x2, x0) are nonzero only for x1,2 < 1 and |x1 − x2| < 1. While in the former, any of the

variables in T (1)
+ (x1/ξ1, x2/ξ1, ξ2/ξ1) can be larger than 1. We take Fig.1h as an example to explain the

difference.
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the NF -dependence is canceled. Adding all contributions from Fig.1 to F+ and the contribution from
the scale dependence of gs in the definition we have:

F+(x1, x2, ξ1, ξ2)

∣

∣

∣

∣

F ig.1
= δ(ξ1 − x1)δ(ξ2 − x2)

(

−Nc ln |x1 − x2|+
N2

c − 1

Nc

(

3

4
−

1

2
lnx2 −

1

2
lnx1

)

)

+
Nc

4
δ(ξ1 − x1)

(

θ(x1 − x2)θ(x2 − ξ2)− θ(x2 − x1)θ(ξ2 − x2)
)

·
(

−
x1 − x2

(x1 − ξ2)2
+

2

(x2 − ξ2)+
−

2

x1 − ξ2

)

+
Nc

4
δ(ξ2 − x2)

(

θ(x1 − x2)θ(ξ1 − x1)− θ(x2 − x1)θ(x1 − ξ1)
)

·
(

−
x1 − x2

(ξ1 − x2)2
+

2

(ξ1 − x1)+
−

2

ξ1 − x2

)

+
Nc

2

[

δ(ξ1 − x1)θ(ξ2 − x2)
x2
ξ2

(

1

(ξ2 − x2)+
−

1

ξ2 − x1

)

+δ(ξ2 − x2)θ(ξ1 − x1)
x1
ξ1

(

1

(ξ1 − x1)+
−

1

ξ1 − x2

)]

−
1

2Nc
δ(x1 − x2 − ξ1 + ξ2)θ(ξ2 − x2)

(

x2
ξ2

+
x1
ξ1

)

1

(ξ2 − x2)+
. (15)

The +-distributions appearing in the above are defined as:
∫ 1

0
dξ
θ(x− ξ)f(ξ)

(x− ξ)+
=

∫ x

0
dξ

f(ξ)− f(x)

x− ξ
+ f(x) lnx,

∫ 1

0
dξ
θ(ξ − x)f(ξ)

(ξ − x)+
=

∫ 1

x
dξ

f(ξ)− f(x)

ξ − x
+ f(x) ln(1− x). (16)

These +-distributions are different than the standard +-distribution which will be given later.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2: Another set of diagrams for one-loop corrections of T± from the qg-contribution.

The contributions from Fig.2 can easily be worked out. The results are:

F+(x1, x2, ξ1, ξ2)

∣

∣

∣

∣

2a
=

Nc

4

δ(ξ2 − x2)

ξ2 − ξ1

[

θ(ξ1 − x1)
(

− 2
x1
ξ1
θ(x2 − x1)

6

One-loop diagrams for the twist-3 matrix elements:  

24 diagrams in  
 Feynman gauge 
 + 
 diagrams with  
  pure gluon-states 
 



The general results are too long to give here. But some special cases  
 are interesting to give here.  

The soft-gluon case:  

@T

F

(x, x, µ)

@ lnµ
=

↵

s

⇡

⇢Z 1

x

dz

z


P

qq
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N
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2)T
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(⇠, ⇠)

1� z
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+
1

2N
c

✓
(1� 2z)T
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(x, x� ⇠) + T�,F
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◆�
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T
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2
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x

dz
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(1� z)2 + z

2

⇠

⇣
T

(f)
G
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(d)
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(⇠, ⇠)
⌘�

,

There were discrepancies  about terms in the second line in literature.  

Twist-3 gluonic matrix elements 

z = x/⇠



Soft-Fermion cases:  

@T+(0, x, µ)

@ lnµ
=

↵

s

⇡

⇢Z 1

x

dz

z


� 1

2N
c

T+(⇠ � x, ⇠)

(1� z)+
+

N

c

2

1 + z

3

(1� z)+
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�

+
3(N2

c

� 1)
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c
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Z 1

x

dz

z


N

c

2

z

2

(1� z)+
T+(x� ⇠, x) +

1

2N
c

(1� z)2T+(0,�⇠)

�

� 1

2x
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(0, x)� 1

2

Z 1

x

dz

z⇠

T+G

(⇠, ⇠ � x)

�
,

Details in  e-Print: arXiv:1205.0611 [hep-ph]  by J.P. Ma and Q. Wang 



Summary 
 
Soft gluons for soft-gluon-pole contributions are Glauber gluons. 
 
There is a non-trivial order mixing in the collinear factorization  
  of SSA.  
 
The “best” way to access the soft-gluon-pole contributions is  
 to measure the asymmetry in the lepton angular distribution  
 in Drell-Yan.   
 
Questions: 
 
 SIDIS?  (a simple prediction with the soft-gluon-pole contribution) 
 
        Higher-order corrections ? 
 
                   A proof for the factorization?   
                          ………….  
 
 


