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Introduction

Single transverse-Spin Asymmetries(SSA) are asymmetries in
case where one initial hadron or one produced hadron is

transversely polarized.

Taking Drell-Yan processes as an example:

ha(Pa,s)+hg(Pg) = v (q) + X =0~ +0T + X,

B doT — do?t
 do? + dot’

AN st = (anagJ—)

The initial hadron is transversely polarized.




From general principles, SSA can only be generated

if there exist scattering absorptive parts in scattering
amplitudes ( T-odd effect)

AND helicity-flip interactions.

Two known facts:
from perturbation theory: Absorptive parts only exists
beyond tree-level for two particle
scattering

from QCD: Helicity of quarks are conserved. (massless quarks)

One may expect: SSA =0 or very small (???)




Experiments:
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Rather large asymmetries......

Various asymmetries have been observed in experiment.



Theoretically, SSA can be predicted with concepts of QCD
factorizations.

Two factorizations: Collinear factorization
TMD factorization for certain kinematical
regions.

Collinear factorization: Efremov and Teryaev, Qiuand Sterman.

The nonperturbative effects are factorized with twist-3 matrix
elements. E.g., quark-gluon correlators: (ETQS matrix elements)

- dy1d —1 To—T T N
Tr(xy,x9,1t) = —Sugs/ yiﬂme P (y2(z2—e1)+u1 1)<P,slw(yln)7+G+“(y2n)¢(O)]P, s),

. dyrd —1 To—T T s
T plann )= ingy [ S4EEe 0 P )y 5 G an) (0 5

There are 4 twist-3 operators only with gluon fields.




Graphical representation

L1, L2

Momentum fraction

Nonperturbative properties of the polarized hadron.

SSA => Information of quark-gluon correlations inside
the hadron

o far, only one method exists to derive factorizations for SSA
or to predict SSA in terms of ETQS matrix elements.




The diagrammatic approach at hadron level:

- P T, (g §)

Quark density matrix of B

H

Hard scattering

.................................................................................................

L Talg G @)

Quark-Gluon density matrix
of A



Expanding momenta of incoming partons collinearly, one derive
the factorized form. Schematically (E.g., Drell-Yan ):

do(s1) ~fo @ Hp @ Tr |x1, 2] —> Hard-pole contribution
+ fa ® Hgs R I1F [CIJ, CIZ] —> Soft-gluon-pole contribution
+ fo ® Hfs ® 1'r [O, :13] ——> Soft-fermion-pole contributio

fa The standard parton distribution of the unpolarized hadron
Hn,Hgs, Hrs The perturbative coefficient functions
Q: Is there another way to derive the factorization ?
A. VYes!|

Purpose: independent check, understanding soft-gluon-pol
contributions




An important fact: QCD factorization, if it is proven, is a
general property of QCD. It holds for
all states, not only for specific hadrons.
It also holds for parton states.

E.g., DIS with H as the initial hadron, the structure function is factorized as:
FQ:H@fq/H‘I“"‘ :

The factorization holds for any hadron, especially if we replace the hadron
with partons, H ->q,

The perturbative coefficient function is the same.

With a quark as the initial state, one can calculate the structure function
of the quark, and PDF with the same quark state.




At tree -level: FZ(O) — 10 & fé%)

At one-loop level: F2(1) — 40 & f;}é L x5 f((/)zz

q

The collinear divergence in F, is the same as that in
the first term, so that H does not contain it. This is

the sense of factorization.

Important: The collinear divergence at one-loop in F,
is “determined” by the tree-level H.....

Can we do the same for SSA??
Yes or No.....??




If we replace the hadron A with a transversely
polarized quark, one can not have a nonzero SSA,
because the helicity conservation of QCD.

One needs to consider multi-parton states for
the replacement.

The talk presents a study of QCD factorizations for
SSA by using partonic states.




Partonic states and SSA

Transverse spin corresponds to the non-diagonal part of spin
density matrix in helicity space.

Define a spin 3 state as:
n[A]) = |g(p, A)) + cila(pr, Ag)g(D2, Ag)[A = Ag + Ag]) + -+,

p1 = zop, p2 = (1 —x)p

Using this state to replace the transversely polarized hadron A, one wi
get nonzero non-diagonal part of spin density matrix because of the
inferference between the single quark- and the quark-gluon state.

le.,

Tr ~ {q(p, +)|Olq(p1, +)g(p2, —)) + -,




Graphical representation:

Helicity is flipped by 3.

At tree-level:

Tr(x1,72) = 019377\/%(332 — 1) [0(1 —21)0(22 — 20) — O(1 — 22)d(21 — 20)]

It is nonzero. Itis zerofor X1 = X9




At one loop Tr(x,x) becomes nonzero

Dimensional regularization, U.V. poles
are subtracted.

A collinear divergence:

P1 k p

gsQs 2 2 ,u2
Tep(z,z) = —1 N.(NZ — 1)xov2x00(xg — ) | —— + 7 —1In :
4 €c A2

One can also calculate the function in general cases.




One can use the same multi-parton state to calculate differential
cross-sections to find or to establish factorizations.

E.g., hadron-hadron collision:

Standard way to calculate differential cross sections
of parton states.




SSA in Drell-Yan process

hA(PA,S) _|_hB(PB) %7*(61) + X =L —|_€+ —|_X7

Consider the differential cross-section:

do(s a2 ) .
dQ(zdng — 501 /d4q5(q2 — Q) [KVEY + EVEY — Ky - kogM”] W

The solid angle of the lepton in the rest-frame of the lepton pair.
We take here the Collins-Soper frame.

We replace the hadron A with the multi-parton state
the hadron B with an anti-quark,

and calculate the spin-dependent part.




At leading(nonzero order) there are 3 classes of diagrams
contributing to the hadronic tensor:

Class (b): No contributions at any order.

We first consider the divergent contributions to the differential
cross-section, come back later to the finite contributions.




Class (a) contributions are proportional to  §2(q,

> <2< %é< <
< B

2]

\—_____.

The sum is free of any soft-divergences (Glauber -divergence)

Only finite contributions.




Class (c) : there is a soft divergence in small g, region.

We scale 4| ™~ )\7 A — O,

Only one diagram gives the divergence if we integrated over g, :

¢ oo
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Y

—o

Y

(00,0[0] [0[0]0]0/0)

’OOOOOOOOOOOOOOOO —

4 s Qv 5- H v
WHY — g (N2 — 1)\/ 5(1 — y)5(:c — .CIS'()) |: 5 <3303 QJ_g_L — _—QJ_p{MQJ_}>
(¢7) D-p
+2p - (opts }_p{ugl/})] O]
1




The divergent part of the differential cross section:

do(s sl 2 ) - Q?%) . ,
e e O | R

With the results of T and pdf of parton states one finds the factorized
form for the asymmetry in the lepton angular distribution:

sin(26) sin ¢ / dzdyTr(z, 2)q(y)o(zyS = Qz).

2Q(1 + cos2 ) / drdyq(z)q(y)d(zyS — Q%)

Ay =

The perturbative coefficient function here is at order of 1.

There is a discrepancy about the asymmetry in literature.....

Details in: J.P. Ma and G.P. Zhang, e-Print: arXiv:1203.6415




The argument for the factorization:
When integrating g :

A

P

S
S
S
S
o,
S
S
000

he soft gluon, in faef it is a Glauber gluon.

The collinedr gluon

The finite contributions will be factorized with tree-level
Tr, gives the contributions to the perturbative coefficient
functionat (v g

There is a order mixing!




Another asymmetry:

d drag,, Q v
o) _ Qq 5(q2 - Q2) (QM;] . g,UJ/) W,U,V’ S — ZPXPB_

dQ?d?q, dqtdq~ 35Q)? q

With those multi-parton states we find the factorized form:
dO'(SJ_)
dQ?dq? dgtdq~

~fo @ HR QTE |1, x2]

_|'fa ®Hgs ®TF [CE,QZ’]
+ fa @Hss @TFE |0, x]

4o
All perturbative functions start at order (X g

Details in:

Xal=L) 7P Ma, HZ Sang & S.J. Zhu, e-Print: arXiv:1111.3717
" 4 J.P. Ma, H.Z. Sang, e-print: arXiv: 1102.2679.




Evolutions of Twist-3 Operators

The defined twist-3 operators have scale-dependence, e.g.,
the non-singlet part of the quark-gluon correlators has:

0 T:t(x17aj27/’b)
Oln

— %/d€1d€2f:|:(x17$27€17£2)Tﬂ:(£17§27u)‘

Ty (x1,22) = Tr(x1,22) £ TA r(21,22).

Again, the dependence is determined by QCD and is not related
to any specific hadron. One can use the multi-parton states
to calculate the twist-3 matrix elements and derived the
evolution.




One-loop diagrams for the twist-3 matrix elements:

H T

24 diagrams in
Feynman gauge

+

diagrams with
pure gluon-states




The general results are too long to give here. But some special cases
are interesting to give here.

The soft-gluon case:

Ne (1+2)Tp(x,8) — (1 4+ 22)Tr (£, €)
1—z2

oT y Ly s 1d
%(lwnz m o %{/x _Z[qu<z)TF(€,£)+

. +Tar(x,§)

+

! ((1 ) Tw(2, 7 — €) + Ta (2,7 — g))] - N Tw(z,7)

2N,
3 [T (o 16 0) |

z

2=/ Yo

Twist-3 gluonic matrix elements

There were discrepancies about terms in the second line in literature.




Soft-Fermion cases:

8T_|_(O,$,,U,) _%{/1%[ 1 T—I—(é-_xa‘f)_i_Nc 1+Z3 T+(O 5)

Olnpy  w | 2N, (1-2z2)4 2 (1—2)4

3(N2 —1) Ldz[N, 22 1 )
e 7 = T (z — 1 — 2)*T, (0, —
1 1 [t dz

— 5. 14c(0,2) = 5 ) Z—£T+G(§,§ - 96)}7

Details in e-Print: arXiv:1205.0611 [hep-ph] by J.P. Ma and Q. Wang




Summary

Soft gluons for soft-gluon-pole contributions are Glauber gluons.

There is a non-trivial order mixing in the collinear factorization
of SSA.

The "best"” way to access the soft-gluon-pole contributions is

to measure the asymmetry in the lepton angular distribution

in Drell-Yan.

Questions:

SIDIS? (asimple prediction with the soft-gluon-pole contribution)

Higher-order corrections ?

A proof for the factorization?




