Quarkonium-like States

- Observed spectrum of"exotic" states above DD (BB) threshold
- Some proposed explanations
- Discussion of molecular hypothesis: X, Zb,...

Reviews: Voloshin 07I I.4556; Brambilla et al. I 0 I 0.5827; Eidelman, Heltsley, Hernandez-Rey, Navas, Patrignani I205.4I89

The Fourth Workshop on Hadron Physics in China and Opportunities in the US. Beijing, China 16-20 July 2012 R.P. Springer, Duke University

$$
3686=2^{3} S_{1}
$$

K. Seth, Prog. Part. Phys 67 (2012) 390.

CHARMONIA
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ states from Table 9, Brambilla et al. IOIO.5827

$Y(4360)$
$Y(4260)$

$\underline{X(4350)}$
$\underline{Y(4008)}$

$$
\underline{Y(4274)}{\underline{Z(4430)^{+}}}_{Z_{2}(4250)^{+}}
$$

$\underline{X(4160)}$
$\overline{Y(4140)} Z_{1}(4050)^{+}$
$\underline{X(3872)}$
$\underline{X(3915)} \ldots \underline{X(3940)}$
$D D(3730)$

$$
J^{P C} \quad 1^{--} \quad\left(1^{++}\right) \quad 0 / 2^{++} 0 / 2^{?+} \quad ? ?+\quad ?
$$

Techniques/Descriptions/Strategies

QCD Sum Rules
Non-relativistic QCD
Heavy Quark Effective Theory
Heavy Hadron Chiral Perturbation Theory
X-EFT Lattice Potential Models
Mixtures
Molecule
Baryonium
Tetraquark
Hybrids
Coupled channels
Hadrocharmonium

Hadrocharmonium

$J / \psi, \psi(2 S), \ldots$ even Υ ? affinity for light hadronic matter

light (excited) hadronic matter

$$
\begin{aligned}
& Y^{\prime} \text { s are } 1^{--} \\
& \quad \text { widths }(\mathrm{MeV})
\end{aligned}
$$

$$
\begin{array}{lc}
Z_{1}(4050)^{+} \rightarrow \pi^{+} \chi_{c 1}(1 P) & 82_{-55}^{+51} \\
Z_{2}(4250)^{+} \rightarrow \pi^{+} \chi_{c 1}(1 P) & 177_{-72}^{321} \\
Y(4260) \rightarrow \pi \pi J / \psi & 95 \pm 14 \\
Y(4360) \rightarrow \pi^{+} \pi^{-} \psi(2 S) & 74 \pm 18 \\
Z(4430)^{+} \rightarrow \pi^{+} \psi(2 S) & 107_{-71}^{+113} \\
Y(4660) \rightarrow \pi^{+} \pi^{-} \psi(2 S) & 48 \pm 15
\end{array}
$$

Y(4260): BaBar/Belle/Cleo; no D’s

- Charmonium Hybrid -- gluonic excitations Lattice; heavy quark symmetry; NRQCD Potential yields tower of excitations ${ }^{1}$
- Bound state or molecule (next slide)
-Tetraquark ${ }^{2,3} \quad[c s][\overline{c s}]$
- Hadrocharmonium (previous slide)
- QCDSR ${ }^{3} \quad[c \bar{q}]_{1}[\bar{c} q]_{1} ;(S+V),(P+A)$
- conventional $c \bar{c}+$ coupling to $\omega \chi_{c 0}{ }^{4}$
${ }^{1}$ Horn/Mandula; Hasenfratz/Horgan/Kuti/Richard; Juge/Kuti/
Morningstar; Bali/Pineda; Zhu; Kou/Pene; Close/Page
${ }^{2}$ Maiani/Riquer/Piccinini/Polosa ${ }^{3}$ Nielsen/Navarra/Lee
${ }^{4}$ Dai/Shi/Tang/Zheng

Molecules: do the constituents retain their identify as hadrons?
(more details in the $X(3872)$ section)

$$
\begin{aligned}
& X(3872) \\
& X(3915) \\
& Y(4140) \\
& Y(4260) \\
& Z(4430)^{+} \\
& X(4630) \\
& Y(4660)
\end{aligned}
$$

$$
\begin{array}{cc}
\bar{D}^{0} D^{* 0} & \\
\bar{D}^{* 0} D^{* 0}+D^{*+} D^{*-} & \text { BGL } \\
D_{s}^{*+} D_{s}^{*-} & \text { BGL } \\
\Lambda_{c} \bar{\Lambda}_{c}, \chi_{c 0} \bar{D}_{c 0}^{*}, \psi(2 S) \chi_{c 1} \omega, f_{0}(980) & \text { AN,TKGO } \\
D^{*+} \bar{D}_{1}^{0} & \text { Q,LZL,YWM,R } \\
\psi(2 S) f_{0}(980) & \text { LMNN/BGL } \\
\psi(2 S) f_{0}(980) & \text { GHHM } \\
\text { GHM }
\end{array}
$$

BGL=Branz,Gutsche,Lyubovitskij LMNN=Lee,Miharo,Navarro,Nielsen TKGO=Torres,Kehmchandari,Gamermann,Oset AN=Albuquerque,Nielsen Q=Qiao LZL=Liu,Zeng,Li YWM=Yuan,Wang,Mo R=Rosner GH(H)M=Guo,(Haidenbauer),Hanhart,Meissner
b Exotics above threshold - Belle II03.34I9

hybrid $b \bar{b} g$
disturbed $\Upsilon(5 S)$
molecule

$$
Y_{b}\left(1^{--}\right) \sim Y(4260) \text { analog }
$$

$$
Z_{b}(10610)^{+} \quad 10607.2 \pm 2.0 \quad 18.4 \pm 2.4 \quad 1^{+} \quad \Upsilon(5 S) \rightarrow \pi^{-}\left(\pi^{+}[b \bar{b}]\right)
$$

$$
Z_{b}(10650)^{+} \quad 10652.2 \pm 1.5 \quad 11.5 \pm 2.2 \quad 1^{+} \quad \Upsilon(5 S) \rightarrow \pi^{-}\left(\pi^{+}[b \bar{b}]\right)
$$

$$
Y_{b}(10888) \quad 10888.4 \pm 3.0 \quad 30.7_{-7.7}^{+8.9} \quad 1^{--} e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} \Upsilon(n S)\right)
$$

Eidelman, Heltsley, Hernandez-Rey, Navas, Patrignani I205.4I89

$$
\begin{aligned}
Z_{b}: & I^{G}=1^{+} J^{P}=1^{+} \\
& \text {charged } \Rightarrow \text { cannot be } \bar{b} b \text { alone }
\end{aligned}
$$

Tetraquarks
Guo/Cao/Zhou/Chen II 06.2284
Ali I $108.2 \mid 97$
Cui/Liu/Huang IIO7.I343
Karliner/Lipkin prediction

$$
\Upsilon(n S) \rightarrow \pi^{ \pm} T_{b b}^{\mp} \rightarrow \Upsilon(m S) \pi^{-} \pi^{+}
$$

isovector charged tetraquark $\quad \bar{b} b \bar{d} u \quad \bar{b} b \bar{u} d$
prediction: look for subthreshold $I=0$ state
Molecules: Bound states of $\mathrm{B} * \mathrm{~B}\left({ }^{*}\right)$
Liu/Liu/Deng/Zhu 080I.3540; Liu/Luo/Liu/Zhu 0808.0073;
Bondar/Garmash/Milstein/Mizuk/Voloshin II05.4473;
Zhang/Zhong/Huang II05.5472;Yang/Ping/Deng/Zong II05.5935
Nieves/Valderrama II06.0600; Sun/He/Liu/Luo II06.2965

Like the Deuteron? Systematic NN treatment: NN-EFT (no pions)

 Only now it is an infinite sum of ($\bar{D} D^{*}+c c$) or $\left(\bar{B}^{*} B^{(*)}+c c\right)$ etc.

$$
A=\frac{4 \pi}{M}\left[-a+i a^{2} p+\frac{1}{2}\left(a^{3}-a^{2} r_{0}\right) p^{2}+\cdots\right]
$$

does not converge
NN system: $\quad a^{\left({ }^{1} S_{0}\right)} \sim-\frac{1}{8 \mathrm{MeV}}$

$$
a^{\left(3 S_{1}\right)} \sim \frac{1}{36 \mathrm{MeV}}
$$

Both S-wave scattering lengths anomalously large => momentum expansion fails => reorganize to treat C's nonperturbatively

$$
A=-\frac{4 \pi}{M} \frac{1}{1 / a+i p}+\cdots
$$

with effective range:

$$
A=-\frac{4 \pi}{M} \frac{1}{1 / a-\frac{1}{2} r p^{2}+i p}+\cdots
$$

EM effects easily included

$X(3872)$ as molecule

$\frac{1}{\sqrt{2}}\left(D^{0} \bar{D}^{0 *}+\bar{D}^{0} D^{0 *}\right) \quad$ Isospin issue:
(Objections about charged pieces noted)

$$
\begin{aligned}
& \frac{\Gamma\left[X \rightarrow J / \psi \pi^{+} \pi^{-} \pi^{0}\right]}{\Gamma\left[X \rightarrow J / \psi \pi^{+} \pi^{-}\right]}= \\
& \frac{\Gamma[X \rightarrow J / \psi \omega]}{\Gamma\left[X \rightarrow J / \psi \pi^{+} \pi^{-}\right]}=0.8 \pm 0.3
\end{aligned}
$$

$$
J^{P C}=1^{++} \text {or } 2^{-+} \quad \text { multipole question }
$$

$$
m_{D^{0} \bar{D}^{0 *}}-m_{X(3872)}=0.16 \pm 0.33 \mathrm{MeV}
$$

X-Effective Field Theory: Fleming, Kusunoki, Mehen, van Kolck

Factorization theorems: Braaten/Kusunoki/Lu

$$
\begin{aligned}
\text { Rate }=\frac{1}{3} \sum_{\lambda} \left\lvert\,\langle 0| \frac{1}{\sqrt{2}} \epsilon_{i}(\lambda)\right. & \left.\left(V^{i} \bar{P}+\bar{V}^{i} P\right)|X(3872, \lambda)\rangle\right|^{2} \\
& \times(\text { phase space }) \times\left|\mathcal{C}\left(\bar{D} D^{*} \rightarrow f\right)\right|^{2}
\end{aligned}
$$

Universal shallow-bound-state properties from effective range theory: Braaten/Voloshin...

$$
\psi_{D D^{*}}(r) \propto \frac{e^{-\gamma r}}{r} \quad B=\frac{1}{2 \mu_{D^{*} D} a^{2}} \quad \begin{aligned}
& \gamma \sim 20 \mathrm{MeV} \\
& \quad a \sim 10 \mathrm{fm} \\
& \langle r\rangle \sim 12 \mathrm{fm}
\end{aligned}
$$

$$
\begin{gathered}
X(3872)-D^{(*)} \text { scattering Canham/Hammer/RPS } \\
\text { IF } X(3872) \sim \frac{1}{\sqrt{2}}\left(D^{0} \bar{D}^{* 0}+D^{* 0} \bar{D}^{0}\right) \\
m_{X}=(3871.68 \pm 0.17) \mathrm{MeV} \quad B_{X}=(0.16 \pm 0.36) \mathrm{MeV} \\
a^{-1} \sim \sqrt{2 \mu_{X} B_{X}} \\
\mathcal{L}=\sum_{j=D^{0}, D^{* 0}, \bar{D}^{0}, \bar{D}^{* 0}} \psi_{j}^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 m_{j}}\right) \psi_{j}+\Delta X^{\dagger} X \\
-\frac{g}{\sqrt{2}}\left(X^{\dagger}\left(\psi_{D^{0}} \psi_{\bar{D}^{* 0}}+\psi_{D^{* 0}} \psi_{\bar{D}^{0}}\right)+\text { h.c. }\right)+\cdots \\
\text { Integral equation: }
\end{gathered}
$$

Results depend only on scattering length

$$
a_{D^{0} X}=-9.7 a \quad a_{D^{* 0} X}=-16.6 a
$$

Three body cross section vs scattering length

LHC possibilities: $\quad B_{c} \sim 10^{7}$ per week

$$
\begin{array}{rr}
B \bar{B} & \text { final state interactions } \\
\sigma(b \bar{b}) \sim 0.4 \mathrm{mb} & \sigma(b \bar{b} b \bar{b}) \sim 5 \mathrm{fb}
\end{array}
$$

$X(3872) \rightarrow \psi(2 S) \gamma \quad$ factorization
Mehen/RPS
$\beta^{-1} \sim 356 \mathrm{MeV}$
Hu , Mehen
$g_{2} \sim 2 \mathrm{GeV}^{-3 / 2}$
Guo et al., 0907.0521
1002.2712
c)
$\mathcal{L}=\frac{e \beta}{2} \operatorname{Tr}\left[H_{1}^{\dagger} H_{1} \vec{\sigma} \cdot \vec{B} Q_{11}\right]+$ c.c. $+i \frac{g_{2}}{2} \operatorname{Tr}\left[J^{\dagger} H_{1} \vec{\sigma} \cdot \stackrel{\leftrightarrow}{\partial} \bar{H}_{1}\right]+$ h.c.
$+i \frac{e c_{1}}{2} \operatorname{Tr}\left[J^{\dagger} H_{1} \vec{\sigma} \cdot \vec{E} \bar{H}_{1}\right]+h . c . \quad J=\left(\eta_{c}(2 S), \psi(2 S)\right)$
$H_{a} \sim\left(D_{a}, D_{a}^{*}\right) ; a=1,2,3$
$\frac{\Gamma(X(3872) \rightarrow \psi(2 S) \gamma)}{\Gamma_{t o t}}>0.03(\mathrm{BaBar}, \mathrm{PDG})$

- Polarization $\psi(2 S) \rightarrow \ell^{+} \ell^{-} \frac{d \Gamma}{d \cos \theta} \propto 1+\alpha \cos ^{2} \theta \quad \alpha=\frac{1-3 f_{L}}{1+f_{L}}$

contact interaction
i) $g_{2} \beta \ll c_{1}$ d) only

$$
f_{L}=\frac{1}{2} \alpha=-\frac{1}{3}
$$

$$
\mathcal{M} \propto \vec{\epsilon}_{X} \cdot \vec{\epsilon}_{\psi}^{*} \times \vec{\epsilon}_{\gamma}^{*}
$$

constituent decay
ii) $\left.g_{2} \beta \gg c_{1} \quad \mathrm{a}-\mathrm{c}\right)$ only b) dominate

$$
\begin{gathered}
f_{L}=\frac{4 E_{\gamma}^{4}}{4 E_{\gamma}^{4}+\left(2 E_{\gamma}+\Delta\right)^{2}\left(E_{\gamma}-\Delta\right)^{2}}=0.92 \\
\alpha=-0.91
\end{gathered}
$$

Polarization measurement would shed light on relative importance of decay mechanisms

- Polarization as function of $\lambda \equiv \frac{3 c_{1}}{g_{2} \beta} \approx 1.3 \frac{c_{1}}{\mathrm{GeV}^{-5 / 2}} \sim O(1)$

- Longitudinal Polarization $(\alpha<-0.5)$ for $-3.5 \leq \lambda \leq 5$
- $X(3872)$ as $2^{-+}: \alpha=0.08$
(BES?)
$\psi(4040)$ produced with polarization transverse to beam axis (LO) same (crossed) graphs as $X(3872) \rightarrow \psi(2 S) \gamma$

- $J^{P C}=2^{-+}$predicts $\rho=0.08$
molecule predicts $\rho \approx-1 / 3$ for most of parameter space

$$
\psi(4040) \rightarrow X(3872) \gamma
$$

$g_{2} \rightarrow \tilde{g}_{2} ; \quad c_{1} \rightarrow \tilde{c}_{1}$
$E_{\gamma} \sim 165 \mathrm{MeV}$
$\left(\tilde{g}_{2}\right)^{2}<0.63 \mathrm{GeV}^{-3}$
from width of $\psi(4040)$

Estimate rate by using scattering length to estimate matrix element

Z_{b} as a molecule

HQET predicts additional states (Voloshin...)

$$
\begin{aligned}
& 1^{-}\left(0^{+}\right)=\frac{1}{2} 0_{b \bar{b}}^{-} \times 0_{l t}^{-}-\frac{\sqrt{3}}{2}\left(1_{b \bar{b}}^{-} \otimes 1_{l t}^{-}\right)_{J=0} \\
& Z_{b}=1^{+}\left(1^{+}\right)=\frac{1}{\sqrt{2}}\left(0_{b \bar{b}}^{-} \times 1_{l t}^{-}+1_{b \bar{b}}^{-} \otimes 0_{l t}^{-}\right) \\
& Z_{b}^{\prime}=1^{+}\left(1^{+}\right)=\frac{1}{\sqrt{2}}\left(0_{b \bar{b}}^{-} \times 1_{l t}^{-}-1_{b \bar{b}}^{-} \otimes 0_{l t}^{-}\right) \\
& 1^{-}\left(0^{+}\right)=\frac{\sqrt{3}}{2} 0_{b \bar{b}}^{-} \times 0_{l t}^{-}+\frac{1}{2}\left(1_{b \bar{b}}^{-} \otimes 1_{l t}^{-}\right)_{J=0} \rightarrow h_{b} \pi, \eta_{b} \rho
\end{aligned}
$$

Molecule treatment predicts decay ratios among them (Mehen/Powell)

$$
\begin{aligned}
& \mathcal{L}_{e f f}=\cdots-\frac{C_{10}}{4} \operatorname{Tr}\left[\bar{H}_{a}^{\dagger} \tau_{a a^{\prime}}^{A} \cdot H_{a^{\prime}}^{\dagger} H_{b} \tau_{b b^{\prime}}^{A} \bar{H}_{b^{\prime}}\right]+-\frac{C_{11}}{4} \operatorname{Tr}\left[\bar{H}_{a}^{\dagger} \tau_{a a^{\prime}}^{A} \sigma^{i} H_{a^{\prime}}^{\dagger} H_{b} \tau_{b b^{A}} \sigma^{i} \bar{H}_{\left.b^{\prime}\right]}\right] \\
& H_{a}=P_{a}+\vec{V} \cdot \vec{\sigma} \quad \text { now } B^{(*)} \text { multiplet rather than } D^{(*)} \text { multiplet } \\
& \Gamma\left[W_{0} \rightarrow \chi_{b 1} \ell\right] \Gamma\left[W_{0}^{\prime} \rightarrow \chi_{b 1} \ell\right]: \Gamma\left[Z \rightarrow h_{b} \ell\right]: \Gamma\left[Z^{\prime} \rightarrow h_{b} \ell\right]=\frac{3}{2}: \frac{1}{2}: 1: 1
\end{aligned}
$$

Summary

Many new and interesting states living in the charmonium/ bottomonium "sector" that we (still) do not understand Understanding them will be important progress towards understanding QCD and its bound states

Expected results from LHCb, BESIII, ... better masses, more decay information, etc. will clarify the character of "exotics"

Utilize polarization observables to probe $X(3872)$ quantum numbers and structure questions.

Look for Zb type-ratios to check for molecular "status"

