Novel QCD Phenomena at JLab 12 GeV

Fourth Workshop on Hadron Physics in China and Opportunities in US Beijing, July 16-20, 2012
Kavli Institute for Theoretical Physics China (KITPC)

Novel QCU Pnenomena atJLaw I 2 gev

and the EIC

- Intrinsic Heavy Quarks
- Charm at Threshold
- Novel Heavy Quark Resonances at Threshold
- Nuclear-Bound Quarkonium
- Exclusive and Inclusive Sivers Effect.
- Breakdown of pQCD Leading-Twist Factorization
- Non-universal antishadowing

- Hidden Color
- J=0 Fixed pole in DVCS

> Illuminate New Hadronic Physics

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab ${ }^{2} 2 \mathrm{GeV}$ and the EIC

Stan Brodsky, SLAC

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heary quarks
$\boldsymbol{s}(\boldsymbol{x}), \boldsymbol{c}(\boldsymbol{x}), \boldsymbol{b}(\boldsymbol{x})$ at high $\boldsymbol{x}!\bar{u}(x) \neq \bar{d}(x)$

Mueller: gluon Fock states BFKL

\qquad

$$
\bar{d}(x) / \bar{u}(x) \text { for } 0.015 \leq x \leq 0.35
$$

■ E866/NuSea (Drell-Yan)

$$
\bar{d}(x) \neq \bar{u}(x)
$$

Intrinsic glue, sea, heavy quarks

Light-Front QCD
Heisenberg Equation

$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Light-Front Wavefunctions: rigorous representation of composite

 systems in quantum field theory

Bethe-Salpeter WF integrated over \mathbf{k}^{-}

Each element of flash photograph illuminated at same LF time

$$
\tau=t+z / c
$$

Evolve in LF time

$$
P^{-}=i \frac{d}{d \tau}
$$

Eigenstate - independent of τ
Causality:
Measurements never at fixed time t

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

$$
\begin{array}{cl}
x= & \frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
P^{+}, \vec{P}_{\perp} \\
\boldsymbol{\Psi}_{n}\left(\boldsymbol{X}_{\boldsymbol{i}}, \overrightarrow{k_{\perp}} \boldsymbol{i}, \boldsymbol{\lambda}_{\boldsymbol{i}}\right) & \text { Fixed } \tau=t+z / c \\
x_{i} P^{+}, x_{i} \vec{P}_{\perp}+\vec{k}_{\perp i} \\
\sum_{i}^{n} x_{i}=1
\end{array}
$$

Structure functions and other distributions computed from the square of the LFWF $\quad \sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}$
Goal: Predict all features from first principles in QCD

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab ${ }_{2} \mathbf{G e V}$ and the EIC

Angular Momentum on the Light-Front

$$
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z} . \quad \begin{array}{cc}
\text { LC gauge } \\
\text { Conserved } \\
\text { LF Fock state by Fock State } \\
\text { All scales }
\end{array}
$$

Gluon orbital angular momentum defined in physical lc gauge

$$
\begin{aligned}
& l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right) \\
& \mathrm{n} \text {-ı orbital angular momenta } \\
& \text { Orbital Angular Momentum is a property of LFWFS } \\
& \text { Nonzero Anomalous Moment --> } \\
& \text { Nonzero quark orbital angular momentum! } \\
& \text { 4th China-US Workshop } \\
& \text { July 16, } 2012 \\
& \text { Novel QCD Opportunities } \\
& \text { at JLab } 12 \mathrm{GeV} \text { and the EIC } \\
& \text { Stan Brodsky, SLAC }
\end{aligned}
$$

Calculation of Form Factors in Equal-Time Theory

Instant Form

Calculation of Form Factors in Light-Front Theory

Front Form

Complete Answer

Absent for $q^{+}=0 \quad$ zero !!

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab i2 GeV and the EIC

No vacuum graphs
Stan Brodsky, SLAC

$$
\begin{aligned}
& <p+q\left|j^{+}(0)\right| p>=2 p^{+} F\left(q^{2}\right) \\
& \text { Drell \&Yan, West } \\
& \text { Exact LF formula } \\
& \text { spectators } \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp}
\end{aligned}
$$

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab ${ }^{2} 2 \mathrm{GeV}$ and the EIC

Light-Front Wave Function Overlap Representation

DVCS/GPD
Diehl, Hwang, sjb, NPB596, 200I
See also: Diehl, Feldmann, Jakob, Kroll

DGLAP

ERBL region

DGLAP region

Bakker \& JI
Lorce

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

QCD and the LF Hadron Wavefunctions

- LF wavefunctions play the role of Schrödinger wavefunctions in Atomic Physics
- LFWFs=Hadron Eigensolutions: Direct Connection to QCD Lagrangian
- Relativistic, frame-independent: no boosts, no disc contraction, Melosh built into LF spinors
- Hadronic observables computed from LFWFs: Form factors, Structure Functions, Distribution Amplitudes, GPDs, TMDs, Weak Decays, modulo `lensing' from ISIs, FSIs
- Cannot compute current matrix elements using instant or point form from eigensolutions alone -- need to include vacuum currents!
- Hadron Physics without LFWFs is like Biology without DNA!

4th China-US Workshop July 16, 2012

Nove1 QCD Opportunities at JLab i2 GeV and the EIC

Stan Brodsky, SLAC

- Hadron Physics without LFWFs is like Biology without DNA!

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Do heavy quarks exist in the proton at high x ?

Conventional wisdom: impossible!

Standard Assumption: Heavy quarks are generated via DGLAP evolution, from gluon splitting

$$
s\left(x, \mu_{F}^{2}\right)=c\left(x, \mu_{F}^{2}\right)=b\left(x, \mu_{F}^{2}\right) \equiv 0
$$

at starting scale μ_{F}^{2}
Conventional wisdom is wrong even in QED!

HERMES: Two components to $s\left(x, Q^{2}\right)$!

W. C. Chang and J.-C. Peng arXiv:IIO5.238I

Comparison of the HERMES $x(s(x)+\bar{s}(x))$ data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^{2}=2.5 \mathrm{GeV}^{2}$ using $\mu=0.5 \mathrm{GeV}$ and $\mu=0.3 \mathrm{GeV}$, respectively. The normalizations of the calculations are adjusted to fit the data at $x>0.1$ with statistical errors only, denoted by solid circles.

$$
s\left(x, Q^{2}\right)=s\left(x, Q^{2}\right)_{\text {extrinsic }}+s\left(x, Q^{2}\right)_{\text {intrinsic }}
$$

Proton's 5-quark Fock State from gluon splitting "Extrinsic" Heavy Quarks
$s\left(x, Q^{2}\right)_{\text {extrinsic }} \sim(1-x) g\left(x, Q^{2}\right) \sim(1-x)^{5}$

Proton Self Energy from g g to gg scattering QCD predicts Intrinsic Heavy Quarks!

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}}$
Probability $(\mathrm{QCD})^{\propto} \propto \frac{1}{M_{Q}^{2}}$
Collins, Ellis, Gunion, Mueller, sjb
M. Polyakov, et al.

Fixed LF time

Proton 5 -quark Fock State : Intrinsic Heavy Quarks

QCD predicts Intrinsic Heavy Quarks at high x

Minimal offshellness

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}} \quad$ Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$
Collins, Ellis, Gunion, Mueller, sjb M. Polyakov

INTRINSIC CHEVROLETS AT THE SSC

Stisnley J. Brodsky

Stanford Linear Accelerator Center, Stanford University, Stanford CA 94305
John C. Collins
Department of Physics, Illinois Institute of Technology, Chicago IL 60816 and
High Energy Physics Division, Argonne National Laboratory, Argonne IL 60439
Stephen D. Ellis
Department of Physics, FM-15, University of Washington, Seattle WA 98195
John F. Gunion
Department of Physics, University of California, Davis CA 95616
Alfred H. Mueller
Department of Physics, Columbia University, New York NY 10027
$\mathcal{L}_{Q C D}^{e f f}=-\frac{1}{4} F_{\mu \nu a} F^{\mu \nu a}-\frac{g^{2} N_{C}}{120 \pi^{2} M_{Q}^{2}} D_{\alpha} F_{\mu \nu a} D^{\alpha} F^{\mu \nu a}+C \frac{g^{2} N_{C}}{120 \pi^{2} M_{Q}^{2}} F_{\mu}^{a \nu} F_{\nu}^{b \tau} F_{\tau}^{c \mu} f_{a b c}+\mathcal{O}\left(\frac{1}{M_{Q}^{4}}\right)$

Probability of Intrinsic Heavy Quarks ~ 1/M ${ }^{2}{ }_{Q}$

HERMES: Two components to $s\left(x, Q^{2}\right)$!

W. C. Chang and J.-C. Peng arXiv:IIO5.238I

Comparison of the HERMES $x(s(x)+\bar{s}(x))$ data with the calculations based on the BHPS model. The solid and dashed curves are obtained by evolving the BHPS result to $Q^{2}=2.5 \mathrm{GeV}^{2}$ using $\mu=0.5 \mathrm{GeV}$ and $\mu=0.3 \mathrm{GeV}$, respectively. The normalizations of the calculations are adjusted to fit the data at $x>0.1$ with statistical errors only, denoted by solid circles.

$$
s\left(x, Q^{2}\right)=s\left(x, Q^{2}\right)_{\text {extrinsic }}+s\left(x, Q^{2}\right)_{\text {intrinsic }}
$$

Apply $\frac{1}{m_{Q}^{2}}$ scaling, predict intrinsic charm

Calculations of the $\bar{c}(x)$ distributions based on the BHPS model. The solid curve corresponds to the calculation using Eq. 1 and the dashed and dotted curves are obtained by evolving the BHPS result to $Q^{2}=75 \mathrm{GeV}^{2}$ using $\mu=3.0 \mathrm{GeV}$, and $\mu=0.5 \mathrm{GeV}$, respectively. The normalization is set at $\mathcal{P}_{5}^{c \bar{c}}=0.01$.

Consistent with EMC

Comparison of the $x(\bar{d}(x)+\bar{u}(x)-s(x)-\bar{s}(x))$ data with the calculations based on the BHPS model. The values of $x(s(x)+\bar{s}(x))$ are from the HERMES experiment [6], and those of $x(\bar{d}(x)+\bar{u}(x))$ are obtained from the PDF set CTEQ6.6 [11]. The solid and dashed curves are obtained by evolving the BHPS result to $Q^{2}=2.5 \mathrm{GeV}^{2}$ using $\mu=0.5 \mathrm{GeV}$ and $\mu=0.3 \mathrm{GeV}$, respectively. The normalization of the calculations are adjusted to fit the data.

Figure 1: Comparison of the $\bar{d}(x)-\bar{u}(x)$ data from Fermilab E866 and HERMES with the calculations based on the BHPS model. Eq. 1 and Eq. 3 were used to calculate the $\bar{d}(x)-\bar{u}(x)$ distribution at the initial scale. The distribution was then evolved to the Q^{2} of the experiments and shown as various curves. Two different initial scales, $\mu=0.5$ and 0.3 GeV , were used for the E866 calculations in order to illustrate the dependence on the choice of the initial scale.

DGLAP / Photon-Gluon Fusion: factor of 30 too small
Two Components (separate evolution):
$c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\text {intrinsic }}$

Measurement of $\gamma+b+X$ and $\gamma+\boldsymbol{c}+X$ Production Cross Sections in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

$$
\frac{\Delta \sigma(\bar{p} p \rightarrow \gamma c X)}{\Delta \sigma(\bar{p} p \rightarrow \gamma b X)}
$$

Ratio insensitive to gluon PDF, scales

Signal for significant IC at $\mathrm{x}>0$.I ?

Novel QCD Opportunities at JLab i2 GeV and the EIC

Barger, Halzen, Keung
Evidence for charm at large x

- EMC data: $c\left(x, Q^{2}\right)>30 \times$ DGLAP $Q^{2}=75 \mathrm{GeV}^{2}, x=0.42$
- High $x_{F} p p \rightarrow J / \psi X$
- High $x_{F} p p \rightarrow J / \psi J / \psi X$
- High $x_{F} p p \rightarrow \wedge_{c} X$
- High $x_{F} p p \rightarrow \wedge_{b} X$
- High $x_{F} p p \rightarrow$ 三($c c d$) X (SELEX)

Critical Measurements at threshold for JLab, PANDA Interesting spin, charge asymmetry, threshold, spectator effects Important corrections to B decays, Quarkonium decays

Fig. 3. The $\psi \psi$ pair distributions are shown in (a) and (c) for the pion and proton projectiles. Similarly, the distributions of J / ψ 's from the pairs are shown in (b) and (d). Our calculations are compared with the $\pi^{-} N$ data at 150 and $280 \mathrm{GeV} / c$ [1]. The $x_{\phi \psi}$ distributions are normalized to the number of pairs from both pion beams (a) and the number of pairs from the 400 GeV proton measurement (c). The number of single J / ψ 's is twice the number of pairs.

NA3 Data

Excludes PYTHIA 'color drag' model

$$
\begin{gathered}
\pi A \rightarrow J / \psi J / \psi X \\
\mathrm{R}, \text { Vogt, sjb }
\end{gathered}
$$

The probability distribution for a general n-particle intrinsic $c \bar{c}$ Fock state as a function of x and \boldsymbol{k}_{T} is written as

$$
\begin{aligned}
& \frac{d P_{\mathrm{ic}}}{\prod_{i=1}^{n} d x_{i} d^{2} k_{T, i}} \\
& \quad=N_{n} \alpha_{s}^{4}\left(M_{c \bar{c}}\right) \frac{\delta\left(\sum_{i=1}^{n} k_{T, i}\right) \delta\left(1-\sum_{i=1}^{n} x_{i}\right)}{\left(m_{h}^{2}-\sum_{i=1}^{n}\left(m_{T, i}^{2} / x_{i}\right)\right)^{2}},
\end{aligned}
$$

> Hoyer, Peterson, Sakai, sjb M. Polyakov, et. al

Intrinsic Heavy-Quark Fock States

- Rigorous prediction of QCD, OPE
- Color-Octet Color-Octet Fock State!

- Probability $\quad P_{Q \bar{Q}} \propto \frac{1}{M_{Q}^{2}} \quad P_{Q \bar{Q} Q \bar{Q}} \sim \alpha_{s}^{2} P_{Q \bar{Q}} \quad P_{c \bar{c} / p} \simeq 1 \%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production at high x_{F} (Kopeliovich, Schmidt, Soffer, Goldhaber, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin, Tung)
- Many empirical tests (Gardener, Karliner, ..)

Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.), U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp. Published in Phys.Lett.B246:217-220,1990
IC Explains large excess of quarkonia at large $\mathrm{x}_{\mathrm{F}}, \mathbf{A}$-dependence

NA60 pA data @ 158GeV

Clear dependence on x_{F} and
beam energy

Corr Opaque IC Fock state Kopeliovich, Color-Opaque IC Fock state Schmidt, Soffer, sjb interacts on nuclear front surface

Scattering on front-face nucleon produces color-singlet ci \bar{c} pair

$$
\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X)=A^{2 / 3} \times \frac{d \sigma}{d x_{F}}(p N \rightarrow J / \psi X)
$$

J. Badier et al, NA3

$$
\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X)=A^{1} \frac{d \sigma_{1}}{d x_{F}}+A^{2 / 3} \frac{d \sigma_{2 / 3}}{d x_{F}}
$$

$A^{2 / 3}$ contribution at high x_{F} !

Consistent with

 color -octet intrinsic charm!Energy loss effects?: Check $\gamma^{*} A \rightarrow J / \psi X$

Intrinsic Charm Mechanism for Inclusive High- X_{F} Higgs Production

Also: intrinsic bottom, top
Goldhaber, Soffer, Kopeliovich, Schmidt, sjb

Higgs can have 80\% of Proton Momentum!
New search strategy for Higgs

JLab 12 GeV : An Exotic Charm Factory!

$$
\begin{gathered}
\gamma^{*} p \rightarrow J / \psi+p \text { threshold } \\
\text { at } \sqrt{s} \simeq 4 \mathrm{GeV}, E_{\text {lab }}^{\gamma^{*}} \simeq 7.5 \mathrm{GeV} .
\end{gathered}
$$

Produce $[J / \psi+p]$ bound state $\mid u u d c \bar{c}>$

$$
\gamma^{*} d \rightarrow J / \psi+d \text { threshold }
$$

$$
\text { at } \sqrt{s} \simeq 5 \mathrm{GeV}, E_{\text {lab }}^{\gamma^{*}} \simeq 6 \mathrm{GeV}
$$

Produce $[J / \psi+d]$ nuclear-bound quarkonium state $\mid u u d d d u c \bar{c}>$
$\gamma p \rightarrow J / \psi p$

Phase space factor β cancelled by gluonic final-state interactions
Sommerfeld-Schwinger-Sakharov Effect

Charmonium Production at Threshold

(a)

- Each gluon transfers energy $\mathrm{m}_{\mathrm{c}} / 3$
- Compact proton size I/mc
- Equivalent to intrinsic charm
- SSS final state corrections enhance rate at small relative velocity
- color`singlet coalescence $\quad c \bar{c} \longrightarrow J / \psi$

4th China-US Workshop July 16, 2012

Novel QCD Opportunities atJLab 12 GeV and the EIC

Stan Brodsky, SLAC

Charmonium Production at Threshold

Formproton-charmonium bound state! |uudc $\bar{c}>$

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Stan Brodsky, SLAC

Charmonium Production at Threshold

Form nucleon-charmonium bound state! |uudc $\bar{c}>$

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Stan Brodsky, SLAC

Charmonium Production at Threshold

Form nuclear bound-charmonium bound state!

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab ${ }_{12} \mathbf{G e V}$ and the EIC

Stan Brodsky, SLAC

JLab 12 GeV: An Exotic Charm Factory!

- Charm quarks at high \mathbf{x}-- allows charm states to be produced with minimal energy
- Charm produced at low velocities in the target -- the target rapidity domain $\quad x_{F} \sim-1$
- Charm at threshold -- maximal domain for producing exotic states containing charm quarks
- Attractive QCD Van der Waals interaction --"nuclear-bound quarkonium" Miller, sjb; de Teramond,sjb
- Dramatic Spin Correlations in the threshold Domain $\quad \sigma_{L}$ vs. $\sigma_{T}, A_{N N}$
- Strong SSS Threshold Enhancement

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab i2 GeV and the EIC

Stan Brodsky, SLAC
$\gamma p \rightarrow J / \psi p$

Phase space factor β cancelled by gluonic final-state interactions

Coulomb Enhancement of Pair Production at Threshold

$$
\begin{aligned}
\sigma & \rightarrow \sigma S(\beta) \\
\beta & =\sqrt{1-\frac{4 m_{\ell}^{2}}{s}} \\
X(\beta) & =\frac{\pi \alpha \sqrt{1-\beta^{2}}}{\beta} \\
S(\beta) & =\frac{X(\beta)}{1-e^{-X(\beta)}}
\end{aligned}
$$

Sommerfeld-Schwinger-Sakharov Effect

Bjorken: Analytical Connection to Rydberg Levels below Threshold

$$
Q C D: \pi \alpha \rightarrow \frac{4}{3} \alpha_{s}\left(\beta^{2} s\right)
$$

Kühn, Hoang, sjb

Open Charm Production at Threshold

c-and u- quark interchange

Open Charm Production at Threshold

Nuclear binding at low relative velocity

$\gamma^{*} d \rightarrow \bar{D}^{0}(\bar{c} u)\left[\Lambda_{c} n\right](c u d u d d)$
Possible charmed $\mathrm{B}=2$ nucleus

Open Charm Production at Threshold

Possible charmed pentaquark formed at low relative velocity

JLab 12 GeV : An Exotic Charm Factory!

Electroproduce open charm at threshold

$$
\gamma^{*} p \rightarrow D^{0}(u \bar{c}) \Lambda_{c}(u d c)
$$

Use deuteron or light nuclear target

$$
\begin{array}{lc}
\gamma^{*} d \rightarrow D+\left[\Lambda_{c} n\right] & \text { New baryonic state } \\
\gamma^{*} d \rightarrow \Lambda_{c}+\left[D^{0} n\right] & \text { Pentaquark }
\end{array}
$$

Binding at threshold: covalent bonds from quark interchange Also: Dramatic Spin Effects Possible at Threshold!

Coulomb Enhancement of Pair Production at Threshold

$$
\begin{aligned}
\sigma & \rightarrow \sigma S(\beta) \\
\beta & =\sqrt{1-\frac{4 m_{\ell}^{2}}{s}} \\
X(\beta) & =\frac{\pi \alpha \sqrt{1-\beta^{2}}}{\beta} \\
S(\beta) & =\frac{X(\beta)}{1-e^{-X(\beta)}}
\end{aligned}
$$

Sommerfeld-Schwinger-Sakharov Effect

Bjorken: Analytical Connection to Rydberg Levels below Threshold

$$
Q C D: \pi \alpha \rightarrow \frac{4}{3} \alpha_{s}\left(\beta^{2} s\right)
$$

Kühn, Hoang, sjb

JLab 12 GeV: An Exotic Charm Factory!

- Charm quarks at high x-- allows charm states to be produced with minimal energy
- Charm produced at low velocities in the target -- the target rapidity domain $x_{F} \sim-1$
- Charm at threshold -- maximal domain for producing exotic states containing charm quarks
- Attractive QCD Van der Waals interaction --"nuclear-bound quarkonium"
- Dramatic Spin Correlations in the threshold Domain
- Strong SSS Threshold Enhancement

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab i2 GeV and the EIC

Why is IQ Important for Flavor Physics?

- New perspective on fundamental nonperturbative hadron structure
- Charm structure function at high x
- Dominates high \mathbf{x}_{F} charm and charmonium production
- Hadroproduction of new heavy quark states such as ccu, ccd, bcc, bbb, at high \mathbf{x}_{F}
- Intrinsic charm-- long distance contribution to penguin mechanisms for weak decay Gardner, sjb
- $J / \psi \rightarrow \rho \pi \quad$ BES puzzle explained Karliner, sjb
- Novel Nuclear Effects from color structure of IC, Heavy Ion Collisions
- New mechanisms for high $\mathbf{x F}_{\mathrm{F}}$ Higgs hadroproduction
- Dynamics of b production: LHCb

> New Multi-leptonSignals

- AFTER: Fixed target program at LHC: produce bbb states

Novel QCD Opportunities at JLab i2 GeV and the EIC

- IC Explains Anomalous $\alpha\left(x_{F}\right)$ not $\alpha\left(x_{2}\right)$ dependence of $p A \rightarrow J / \psi X$ (Mueller, Gunion, Tang, SJB)
- Color Octet IC Explains $A^{2 / 3}$ behavior at high x_{F} (NA3, Fermilab)
(Kopeliovitch, Schmidt, Soffer, SJB)
- IC Explains $J / \psi \rightarrow \rho \pi$ puzzle (Karliner, SJB)
- IC leads to new effects in B decay (Gardner, SJB)

Higgs production at $\mathrm{x}_{\mathrm{F}}=0.8$

Use extreme caution when using $\gamma g \rightarrow c \bar{c}$ or $g g \rightarrow \bar{c} c$ to tag gluon dynamics

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Measure strangeness distribution in Semi-Inclusive DIS at JLab

$$
\text { Is } s(x)=\bar{s}(x) ?
$$

- Non-symmetric strange and antistrange sea?
- Non-perturbative physics; e.g $|u u d s \bar{s}>\simeq| \wedge(u d s) K^{+}(\bar{s} u)>$
- Crucial for interpreting NuTeV anomaly
B. Q. Ma, sjb

Tag struck quark flavor in semi-inclusive DIS $e p \rightarrow e^{\prime} K^{+} X$

Krisch, Crabb, et al

Unexpected

spin-spin correlation in pp elastic scattering

polarizations normal to scattering plane

"Exclusive Transversity"

Spin-dependence at large- $\mathrm{P}_{\mathrm{T}}\left(90^{\circ}{ }_{\mathrm{cm}}\right)$: Hard scattering takes place only with spins $\uparrow \uparrow$

Charm and Strangeness Thresholds

> Heppelmann et al: Quenching of Color Transparency
$\mathcal{B}=2$ Octoquark Resonances?

4th China-US Workshop July 16, 2012
A. Krisch, Sci. Am. 257 (1987)
"The results challenge the prevailing theory that describes the proton's structure and forces"

Stan Brodsky, SLAC

$A_{n n}=1!$

QCD

Schwinger-Sommerfeld Enhancement at Heavy

Quark Threshold

Hebecker, Kuhn, sjb
S. J. Brodsky and G. F. de Teramond, "Spin Correlations, QCD Color Transparency And Heavy Quark Thresholds In Proton Proton Scattering," Phys. Rev. Lett. 60, 1924 (1988).

$$
\sigma(p p \rightarrow c \bar{c} X) \simeq 1 \mu b \text { at threshold } \quad \sigma(\gamma p \rightarrow c \bar{c} X) \simeq 1 n b \text { at threshold }
$$

- New QCD physics in proton-proton elastic scattering at the charm threshold
- Anomalously large charm production at threshold!!?
- Octoquark resonances?
- Color Transparency disappears at charm threshold
- Key physics at GSI: second charm threshold

$$
\begin{aligned}
& \bar{p} p \rightarrow \bar{p} p J / \psi \\
& \bar{p} p \rightarrow \bar{p} \wedge_{c} D
\end{aligned}
$$

Dramatic Spin Effects Possible at Threshold!

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

$H_{Q E D}$

$\left(H_{0}+H_{\text {int }}\right)|\Psi>=E| \Psi>$

$$
\left[-\frac{\Delta^{2}}{2 m_{\mathrm{red}}}+V_{\mathrm{eff}}(\vec{S}, \vec{r})\right] \psi(\vec{r})=E \psi(\vec{r})
$$

QED atoms: positronium and muonium

Effective two-particle equation
Includes Lamb Shift, quantum corrections

$$
\left[-\frac{1}{2 m_{\mathrm{red}}} \frac{d^{2}}{d r^{2}}+\frac{1}{2 m_{\mathrm{red}}} \frac{\ell(\ell+1)}{r^{2}}+V_{\mathrm{eff}}(r, S, \ell)\right] \psi(r)=E \psi(r)
$$

$$
V_{e f f} \rightarrow V_{C}(r)=-\frac{\alpha}{r}
$$

Semiclassical first approximation to QED

SphericalBasis $\quad r, \theta, \phi$

Coulomb potential
Bohr Spectrum

$H_{Q C D}^{L F}$

QCD Meson Spectrum

$\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>$
$\left[\frac{\vec{k}_{\perp}^{2}+m^{2}}{x(1-x)}+V_{\text {eff }}^{L F}\right] \psi_{L F}\left(x, \vec{k}_{\perp}\right)=M^{2} \psi_{L F}\left(x, \vec{k}_{\perp}\right)$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{m^{2}}{x(1-x)}+\frac{-1+4 L^{2}}{4 \zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta) \zeta^{2}=x(1-x) b_{\perp}^{2}
$$

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Semiclassical füst approximation to QCD

Confining AdS/QCD potential

Light-Front Schrödinger Equation

G. de Teramond, sjb

Relativistic LF single-variable radial equation for QCD \& QED

Frame Independent!

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{4 L^{2}-1}{4 \zeta^{2}}+U\left(\zeta^{2}, J, L, M^{2}\right)\right] \Psi_{J, L}\left(\zeta^{2}\right)=M^{2} \Psi_{J, L}\left(\zeta^{2}\right)} \\
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} .
\end{gathered}
$$

where the potential $U\left(\zeta^{2}, J, L, M^{2}\right)$ represents the contributions from higher Fock states. It is also the kernel for the forward scattering amplitude $q \bar{q} \rightarrow q \bar{q}$ at $s=M^{2}$. It has only "proper" contributions; i.e. it has no $q \bar{q}$ intermediate state. The potential can be constructed systematically using LF time-ordered perturbation theory. Thus the exact QCD theory has the identical form as the AdS theory, but with the quantum fieldtheoretic corrections due to the higher Fock states giving a general form for the potential. This provides a novel way to solve nonperturbative QCD. Complex eigenvalues for excited states $\mathbf{n}>\mathbf{o}$

Light-Front Schrödinger Equation

G. de Teramond, sjb

Relativistic LF single-variable radial equation for QCD \& QED

Frame Independent!

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{4 L^{2}-1}{4 \zeta^{2}}+U\left(\zeta^{2}, J, L, M^{2}\right)\right] \Psi_{J, L}\left(\zeta^{2}\right)=M^{2} \Psi_{J, L}\left(\zeta^{2}\right)
$$

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
$$

U is the exact $Q C D$ potential Conjecture: 'H'-diagrams generate

$$
U(\zeta, S, L)=\kappa^{2} \zeta^{2}+\kappa^{2}(L+S-1 / 2)
$$

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Stan Brodsky, SLAC

Light-Front Holography and Non-Perturbative QCD

Goal:

Use AdS/QCD duality to construct a first approximation to QCD

Hadron Spectrum Light-Front Wavefunctions, Running coupling in IR

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

in collaboration with Guy de Teramond

Central problem for strongly-coupled gauge theories

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab i2 GeV and the EIC

Stan Brodsky, SLAC

$$
e^{\phi(z)}=e^{+\kappa^{2} z^{2}}
$$

AdS Soft-Wall Schrodinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action Dülaton-Modified $A d S_{5}$

4th China-US Workshop
July 16, 2012

Stan Brodsky, SLAC

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$.

Soft Wall

 ModelPion mass
automatically zero!
$m_{q}=0$

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6 \mathrm{GeV}$.

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

- $J=L+S, I=1$ meson families $\mathcal{M}_{n, L, S}^{2}=4 \kappa^{2}(n+L+S / 2)$

$$
\begin{aligned}
& 4 \kappa^{2} \text { for } \Delta n=1 \\
& 4 \kappa^{2} \text { for } \Delta L=1 \\
& 2 \kappa^{2} \text { for } \Delta S=1
\end{aligned}
$$

$\mathrm{I}=1$ orbital and radial excitations for the $\pi(\kappa=0.59 \mathrm{GeV})$ and the ρ-meson families ($\kappa=0.54 \mathrm{GeV}$)

- Triplet splitting for the $I=1, L=1, J=0,1,2$, vector meson a-states

$$
\mathcal{M}_{a_{2}(1320)}>\mathcal{M}_{a_{1}(1260)}>\mathcal{M}_{a_{0}(980)}
$$

Novel QCD Opportunities
at JLab 12 GeV and the EIC

Hadron Form Factors from AdS/CFT

Propagation of external perturbation suppressed inside AdS.

$$
\begin{aligned}
J(Q, z) & =z Q K_{1}(z Q) \\
F\left(Q^{2}\right)_{I \rightarrow F} & =\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
\end{aligned}
$$

Polchinski, Strassler de Teramond, sjb

Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small z, Φ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}
$$

where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$. The twist is equal to the number of partons, $\tau=n$.

Novel QCD Opportunities
at JLab 12 GeV and the EIC

Spacelike pion form factor from AdS/CFT

Data Compilation
Baldini, Kloe and Volmer
\qquad
\qquad Hard Wall: Truncated Space Confinement
One parameter - set by pion decay constant
de Teramond, sjb See also: Radyushkin

$$
\psi\left(x, \vec{b}_{\perp}\right) \quad \phi(z)
$$

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

z

$$
\begin{equation*}
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \tag{1-x}
\end{equation*}
$$

Light Front Holography: Unique mapping derived from equality of LF and AdS formula for EM and gravitational current matrix elements

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab ${ }_{2} 2 \mathbf{G e V}$ and the EIC

Light-Front Holography:
 Map AdS/CFT to 3+1 LF Theory

Relativistic LF radial equation
Frame Independent

$$
\begin{aligned}
& {\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)} \\
& \zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
\end{aligned}
$$

Novel QCD Opportunities at JLab 12 GeV and the EIC

Prediction from AdS/CFT: Meson LFWF

de Teramond, sjb
 "Soft Wall" model

$$
\kappa=0.375 \mathrm{GeV}
$$

$\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x})} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}}$

$$
\phi_{M}\left(x, Q_{0}\right) \propto \sqrt{x(1-x)}
$$

Connection of Confinement to TMDs

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab i2 GeV and the EIC

Second Moment of Pion Distribution Amplitude

$$
<\xi^{2}>=\int_{-1}^{1} d \xi \xi^{2} \phi(\xi)
$$

$$
\xi=1-2 x
$$

$$
\begin{array}{rcc}
<\xi^{2}>_{\pi}=1 / 5=0.20 & \phi_{\text {asympt }} \propto x(1-x) \\
<\xi^{2}>_{\pi}=1 / 4=0.25 & \phi_{A d S / Q C D} \propto \sqrt{x(1-x)}
\end{array}
$$

Lattice (I) $<\xi^{2}>_{\pi}=0.28 \pm 0.03$
Donnellan et al.
Lattice (II) $<\xi^{2}>_{\pi}=0.269 \pm 0.039$

Braun et al.

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab i2 GeV and the EIC

Stan Brodsky, SLAC

Second Moment of Pion Distribution Amplitude

$$
<\xi^{2}>=\int_{-1}^{1} d \xi \xi^{2} \phi(\xi)
$$

$$
\xi=1-2 x
$$

$$
\begin{array}{rcc}
<\xi^{2}>_{\pi}=1 / 5=0.20 & \phi_{\text {asympt }} \propto x(1-x) \\
<\xi^{2}>_{\pi}=1 / 4=0.25 & \phi_{A d S / Q C D} \propto \sqrt{x(1-x)}
\end{array}
$$

Lattice (I) $<\xi^{2}>_{\pi}=0.28 \pm 0.03$
Donnellan et al.
Lattice (II) $<\xi^{2}>_{\pi}=0.269 \pm 0.039$

Braun et al.

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab i2 GeV and the EIC

Stan Brodsky, SLAC

Generalized parton distributions in AdS/QCD

Alfredo Vega ${ }^{1}$, Ivan Schmidt ${ }^{1}$, Thomas Gutsche ${ }^{2}$, Valery E. Lyubovitskij ${ }^{2 *}$
${ }^{1}$ Departamento de Física y Centro Científico y Tecnológico de Valparaíso,
Universidad Técnica Federico Santa María,
Casilla 110-V, Valparaíso, Chile
2 Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

Bosonic Modes and Meson Spectrum

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+J / 2+L / 2) \rightarrow 4 \kappa^{2}(n+L+S / 2) \begin{gathered}
4 \kappa^{2} \text { for } \Delta n=1 \\
4 \kappa^{2} \text { for } \Delta L=1 \\
2 \kappa^{2} \text { for } \Delta S=1
\end{gathered}
$$

Same slope in n and L

Regge trajectories for the $\pi(\kappa=0.6 \mathrm{GeV}$) and the $I=1 \rho$-meson and $I=0 \omega$-meson families ($\kappa=0.54 \mathrm{GeV}$)

Novel QCD Opportunities at JLab 12 GeV and the EIC

de Teramond, sjb

$$
\begin{array}{ll}
\mathcal{M}_{n, L, S}^{2(+)}=4 \kappa^{2}\left(n+L+\frac{S}{2}+\frac{3}{4}\right), & \text { positive parity } \\
\mathcal{M}_{n, L, S}^{2(-)}=4 \kappa^{2}\left(n+L+\frac{S}{2}+\frac{5}{4}\right), & \text { negative parity }
\end{array}
$$

Includes all confirmed resonances from PDG 2012

- Fix the energy scale to the proton mass for the lowest state $n=0, L=0$
- Subtraction to mass scale may be understood as displacement required to describe nucleons with $N_{C}=3$ as composite system with twist $3+L$ instead of a quark-squark bound state with twist $2+L$
- Phenomenological rules for increase in mass \mathcal{M}^{2} to construct full baryon spectrum from proton state

$$
\begin{aligned}
& 4 \kappa^{2} \text { for } \Delta n=1 \\
& 4 \kappa^{2} \text { for } \Delta L=1 \\
& 2 \kappa^{2} \text { for } \Delta S=1 \\
& 2 \kappa^{2} \text { for } \Delta P= \pm
\end{aligned}
$$

- Eigenvalues

$$
\begin{aligned}
& \mathcal{M}_{n, L, S}^{2(+)}=4 \kappa^{2}(n+L+S / 2+3 / 4) \\
& \mathcal{M}_{n, L, S}^{2(-)}=4 \kappa^{2}(n+L+S / 2+5 / 4)
\end{aligned}
$$

Baryon Spectrum in Soft-Wall Model

- Upon substitution $z \rightarrow \zeta$ and

$$
\Psi_{J}(x, z)=e^{-i P \cdot x} z^{2} \psi^{J}(z) u(P),
$$

find LFWE for $d=4$
AdS Soft Wall $\frac{d}{d \zeta} \psi_{+}^{J}+\frac{\nu+\frac{1}{2}}{\zeta} \psi_{+}^{J}+U(\zeta) \psi_{+}^{J}=\mathcal{M} \psi_{-}^{J}$,
Dirac Equation $\quad-\frac{d}{d \zeta} \psi_{-}^{J}+\frac{\nu+\frac{1}{2}}{\zeta} \psi_{-}^{J}+U(\zeta) \psi_{-}^{J}=\mathcal{M} \psi_{+}^{J}$,

Linear potential $U(\zeta)=\kappa^{2} \zeta$

- Eigenfunctions

$$
\psi_{+}^{J}(\zeta) \sim \zeta^{\frac{1}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} \zeta^{2}\right), \quad \psi_{-}^{J}(\zeta) \sim \zeta^{\frac{3}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu+1}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+\nu+1), \quad \nu=L+1 \quad(\tau=3)
$$

- Full $J-L$ degeneracy (different J for same L) for baryons along given trajectory !

July 16, 2012

Table 1: $S U(6)$ classification of confirmed baryons listed by the PDG. The labels S, L and n refer to the internal spin, orbital angular momentum and radial quantum number respectively. The $\Delta \frac{5}{2}^{-}(1930)$ does not fit the $S U(6)$ classification since its mass is too low compared to other members 70-multiplet for $n=0, L=3$.

Using $S U(6)$ flavor symmetry and normalization to static quantities

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Stan Brodsky, SLAC

Data from I. Aznauryan, et al. CLAS (2009)

$$
F_{1_{N \rightarrow N^{*}}^{p}}^{p}\left(Q^{2}\right)=\frac{2 \sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{P}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}{ }^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Chiral Features of Soft-Wall AdS/ QCD Model

- Boost Invariant

Trivial LF vacuum.
Massless Pion

- Hadron Eigenstates have LF Fock components of different $\mathbf{L}^{\mathbf{z}}$
- Proton: equal probability $S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$

$$
J^{z}=+1 / 2:<L^{z}>=1 / 2,<S_{q}^{z}=0>
$$

Self-Dual Massive Eigenstates: Proton is its own chimal narmor.

- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o.

AdS/QCD and Light-Front Holography

- AdS/QCD: Incorporates scale transformations characteristic of QCD with a single scale -- RGE
- Light-Front Holography; unique connection of AdS5 to Front-Form
- Profound connection between gravity in 5 th dimension and physical $3+1$ space time at fixed LF time τ
- Gives unique interpretation of z in AdS to physical variable ζ in $3+1$ space-time

4th China-US Workshop
July 16, 2012

Stan Brodsky, SLAC

- Definition of $\pi-\gamma$ TFF from $\gamma^{*} \pi^{0} \rightarrow \gamma$ vertex in the amplitude $e \pi \rightarrow e \gamma$

$$
\Gamma^{\mu}=-i e^{2} F_{\pi \gamma}\left(q^{2}\right) \epsilon_{\mu \nu \rho \sigma}\left(p_{\pi}\right)_{\nu} \epsilon_{\rho}(k) q_{\sigma}, \quad k^{2}=0
$$

- Asymptotic value of pion TFF is determined by first principles in QCD:
$Q^{2} F_{\pi \gamma}\left(Q^{2} \rightarrow \infty\right)=2 f_{\pi} \quad$ [Lepage and Brodsky (1980)]
- Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]

$$
\begin{aligned}
\int d^{4} x \int d z \epsilon^{L M N P Q} A_{L} \partial_{M} & A_{N} \partial_{P} A_{Q} \\
& \sim(2 \pi)^{4} \delta^{(4)}\left(p_{\pi}+q-k\right) F_{\pi \gamma}\left(q^{2}\right) \epsilon^{\mu \nu \rho \sigma} \epsilon_{\mu}(q)\left(p_{\pi}\right)_{\nu} \epsilon_{\rho}(k) q_{\sigma}
\end{aligned}
$$

- Find for $A_{z} \propto \Phi_{\pi}(z) / z$

$$
F_{\pi \gamma}\left(Q^{2}\right)=\frac{1}{2 \pi} \int_{0}^{\infty} \frac{d z}{z} \Phi_{\pi}(z) V\left(Q^{2}, z\right)
$$

with normalization fixed by asymptotic QCD prediction

- $V\left(Q^{2}, z\right)$ bulk-to-boundary propagator of γ^{*}

Novel QCD Opportunities at JLab 12 GeV and the EIC

Meson Transition Form-Factors

[S. J. Brodsky, Fu-Guang Cao and GdT, arXiv:1005.39XX]

- Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]

$$
\begin{aligned}
\int d^{4} x \int d z \epsilon^{L M N P Q} A_{L} \partial_{M} & A_{N} \partial_{P} A_{Q} \\
& \sim(2 \pi)^{4} \delta^{(4)}\left(p_{\pi}+q-k\right) F_{\pi \gamma}\left(q^{2}\right) \epsilon^{\mu \nu \rho \sigma} \epsilon_{\mu}(q)\left(p_{\pi}\right)_{\nu} \epsilon_{\rho}(k) q_{\sigma}
\end{aligned}
$$

- Take $A_{z} \propto \Phi_{\pi}(z) / z, \quad \Phi_{\pi}(z)=\sqrt{2 P_{q \bar{q}}} \kappa z^{2} e^{-\kappa^{2} z^{2} / 2}, \quad\left\langle\Phi_{\pi} \mid \Phi_{\pi}\right\rangle=P_{q \bar{q}}$
- Find $\quad\left(\phi(x)=\sqrt{3} f_{\pi} x(1-x), \quad f_{\pi}=\sqrt{P_{q \bar{q}}} \kappa / \sqrt{2} \pi\right)$

$$
Q^{2} F_{\pi \gamma}\left(Q^{2}\right)=\frac{4}{\sqrt{3}} \int_{0}^{1} d x \frac{\phi(x)}{1-x}\left[1-e^{-P_{q \bar{q}} Q^{2}(1-x) / 4 \pi^{2} f_{\pi}^{2} x}\right]
$$

normalized to the asymptotic DA $\left[P_{q \bar{q}}=1 \rightarrow\right.$ Musatov and Radyushkin (1997)]
G.P. Lepage, sjb

- Large Q^{2} TFF is identical to first principles asymptotic QCD result $\quad Q^{2} F_{\pi \gamma}\left(Q^{2} \rightarrow \infty\right)=2 f_{\pi}$
- The CS form is local in AdS space and projects out only the asymptotic form of the pion DA

Novel QCD Opportunities at JLab i2 GeV and the EIC

Photon-to-pion transition form factor

Pion-gamma transition form factor

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Running Coupling from Light-Front Holography and AdS/QCD
Analytic, defined at all scales, IR Fixed Point

Deur, de Teramond, sjb

Features of Soft-Wall AdS/QCD

- Single-variable frame-independent radial Schrödinger equation
- Massless pion ($\mathbf{m}_{\mathrm{q}}=\mathbf{0}$)
- Regge Trajectories: universal slope in n and L
- Valid for all integer J \& S.
- Dimensional Counting Rules for Hard Exclusive Processes
- Phenomenology: Space-like and Time-like Form Factors
- LF Holography: LFWFs; broad distribution amplitude
- No large Nc limit required
- Add quark masses to LF kinetic energy
- Systematically improvable -- diagonalize $H_{\text {LF }}$ on AdS basis

Novel QCD Opportunities at JLab 12 GeV and the EIC

Deep Inelastic Electron-Proton Scattering

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Deep Inelastic Electron-Proton Scattering

Conventional wisdom:
Final-state interactions of struck quark canbe neglected

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

can interfere

and produce a T-odd effect! (also need $L_{z} \neq 0$)

Hermes coll., A. Airapetian et al., Phys. Rev. Lett. 94 (2005) 012002.

Sivers asymmetry from HERMES

- First evidence for non-zero Sivers function!
- \Rightarrow presence of non-zero quark orbital angular momentum!
- Positive for π^{+}... Consistent with zero for π^{-}...

Gamberg: Hermes data compatible with BHS model

Schmidt, Lu: Hermes charge pattern follow quark contributions to anomalous moment
Novel QCD Opportunities at JLab ${ }_{2} 2 \mathbf{G e V}$ and the EIC

Stan Brodsky, SLAC

- Leading-Twist Bjorken Scaling!
- Requires nonzero orbital angular momentum of quark

$$
\mathbf{i} \vec{S} \cdot \vec{p}_{j e t} \times \vec{q}
$$

- Arises from the interference of Final-State QCD Coulomb phases in S- and Pwaves;
- Wilson line effect -- gauge independent
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD phase at soft scale!
- New window to QCD coupling and running gluon mass in the IR

- QED S and P Coulomb phases infinite -- difference of phases finite!
- Alternate: Retarded and Advanced Gauge: Augmented LFWFs Pasquini, Xiao, Yuan, sjb Mulders, Boer Qiu, Sterman

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Single-spin asymmetries in exclusive channels e^{-}

Exclusive Sivers Effect connects to Inclusive Effect
$\left.i \vec{S}_{\Lambda} \cdot \vec{q} \times{\overrightarrow{p_{K}}}^{{ }^{-}}\right\}^{*} \gamma^{*} p_{\uparrow} \rightarrow K^{+} \Lambda$
$i \vec{S}_{p} \cdot \vec{q} \times \vec{p}_{K}$
Psendo-T-Odd

Novel QCD Opportunities at JLab i2 GeV and the EIC

Stan Brodsky, SLAC

QCD Mechanism for Rapidity Gaps

Reproduces lab-frame color dipole approach DDIS: Input for leading twist nuclear shadowing

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Stan Brodsky, SLAC

DY $\cos 2 \phi$ correlation at leading twist from double ISI

Product of Boer -

$$
h_{1}^{\perp}\left(x_{1}, \boldsymbol{p}_{\perp}^{2}\right) \times \bar{h}_{1}^{\perp}\left(x_{2}, \boldsymbol{k}_{\perp}^{2}\right)
$$

Mulders Functions

Novel QCD Opportunities at JLab 12 GeV and the EIC

Stan Brodsky, SLAC

Double Initial-State Interactions generate anomatous $\cos 2 \phi$
Drell-Yan planar correlations

$$
\frac{1}{\sigma} \frac{d \sigma}{d \Omega} \propto\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)
$$

PQCD Factorization (Lam Tung): $\quad 1-\lambda-2 \nu=0$

$\pi N \rightarrow \mu^{+} \mu^{-} X$ NA1O

Violates Lam-Tung relation!

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab i2 GeV and the EIC

Model: Boer,
Stan Brodsky, SLAC

See also: Collins and Qiu

Problem for factorization when both ISI and FSI occur

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Predictionfor Single-Spin Asymmetry

4th China-US Workshop July 16, 2012

> Hwang, Schmidt, sjb

Stan Brodsky, SLAC

Static

Dynamic

- Square of Target LFWFs
- No Wilson Line
- Probability Distributions
- Process-Independent
- T-even Observables
- No Shadowing, Anti-Shadowing
- Sum Rules: Momentum and J
- DGLAP Evolution; mod. at large x
- No Diffractive DIS

Modified by Rescattering: ISI \& FSI
Contains Wilson Line, Phases
No Probabilistic Interpretation
Process-Dependent - From Collision
T-Odd (Sivers, Boer-Mulders, etc.)
Shadowing, Anti-Shadowing, Saturation
Sum Rules Not Proven
DGLAP Evolution
Hard Pomeron and Odderon Diffractive DIS

Hwang, Schmidt, sjb,

Mulders, Boer
Qiu, Sterman
Collins, Qiu
Pasquini, Xiao, Yuan, sjb

Is Antishadowing Non-Universal, Flavor Dependent?

4th China-US Workshop July 16, 2012

Novel QCD Opportunities
at JLab 12 GeV and the EIC

$$
Q^{2}=5 \mathrm{GeV}^{2}
$$

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Stan Brodsky, SLAC

Nuclear Shadowing in QCD

Shadowing depends on understanding leading twist-diffraction in DIS

Nuclear Shadowing not included in nuclear LFWF !
Dynamical effect due to virtual photon interacting in nucleus

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

QCD Mechanism for Rapidity Gaps

Reproduces lab-frame color dipole approach

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Stan Brodsky, SLAC

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

If the scattering on nucleon N_{1} is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \bar{q} flux reaching N_{2}.
\rightarrow Shadowing of the DIS nuclear structure functions.

Observed HERA DDIS produces nuclear shadowing

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab i2 GeV and the EIC

Origin of Regge Behavior of Deep Inelastic Structure Functions

$$
F_{2 p}(x)-F_{2 n}(x) \propto x^{1 / 2}
$$

Antiquark interacts with target nucleus at energy $\hat{s} \propto \frac{1}{x_{b j}}$

Regge contribution: $\sigma_{\bar{q} N} \sim \widehat{s}^{\alpha_{R}-1}$

Nonsinglet Kuti-Weisskoff $F_{2 p}-F_{2 n} \propto \sqrt{x}_{b j}$
 at small $x_{b j}$.

Shadowing of $\sigma_{\bar{q} M}$ produces shadowing of nuclear structure function.

Landshoff,
Polkinghorne, Short
Close, Gunion, sjb
Schmidt, Yang, Lu,

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab i2 GeV and the EIC

Stan Brodsky, SLAC

Now-singlet 10^{-2} Reggeon
Exchange 4th China-US Workshop

Novel QCD Opportunities at JLab 12 GeV and the EIC

Kuti-Weisskopf behavior

Reggeon
 Exchange

Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$
Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$

Criticaltest: Tagged Drell-Yan

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Shadowing and Antishadowing of DIS Structure Functions

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC
S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

Modifies
 NuTeV extraction of

$\sin ^{2} \theta_{W}$
Test in flavor-tagged lepton-nucleus collisions

Schmidt, Yang; sjb

Nuclear Antishadowing not universal!

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

odderon has never been observed!

Odderon-Pomeron Interference leads to $\mathcal{D}^{+} \mathcal{D}^{-}$and $\mathcal{B}^{+} \mathcal{B}^{-}$ charge and angular asymmetry

Merino, Rathsman, sjb
Odderon at amplitude level

Strong enhancement at heavy-quark pair threshold from QCD Sakharov-Schwinger-Sommerfeld effect

Hoang, Kuhn, sjb

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

$J=0$ Fixed Pole Contribution to DVCS

- J=o fixed pole -- direct test of QCD locality -- from seagull or instantaneous contribution to Feynman propagator

Szczepaniak, Llanes-Estrada,
Close, Gunion, sjb

Real amplitude, independent of Q^{2} at fixed t

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities
at JLab i2 GeV and the EIC

Deeply Virtual Compton Scattering
$\gamma^{*} p \rightarrow \gamma p$

> Seagull interaction (instantaneous quark exchange or Z-graph) $s \gg-t, Q^{2} \gg \Lambda_{Q C D}^{2}$ Hard Reggeon

Domain

$$
T\left(\gamma^{*}(q) p \rightarrow \gamma(k)+p\right) \sim \epsilon \cdot \epsilon^{\prime} \sum_{R} s_{R}^{\alpha}(t) \beta_{R}(t)
$$

$\alpha_{R}(t) \rightarrow 0 \quad$ Reflects elementary coupling of two photons to quarks

$$
\beta_{R}(t) \sim \frac{1}{t^{2}} \quad \frac{d \sigma}{d t} \sim \frac{1}{s^{2}} \frac{1}{t^{4}} \sim \frac{1}{s^{6}} \text { at fixed } \frac{Q^{2}}{s}, \frac{t}{s}
$$

Regge domain

$$
T\left(\gamma^{*} p \rightarrow \pi^{+} n\right) \sim \epsilon \cdot p_{i} \sum_{R} s_{R}^{\alpha}(t) \beta_{R}(t) \quad s \gg-t, Q^{2}
$$

$\frac{d \sigma}{d t}\left(\gamma^{*} p \rightarrow \gamma p\right) \rightarrow \frac{1}{s^{2}} \beta_{R}^{2}(t) \sim \frac{1}{s^{2} t^{4}} \sim \frac{1}{s^{6}}$ at fixed $\frac{t}{s}, \frac{Q^{2}}{s}$
Fundamental test of QCD electron-nucleus reactions

Use JLab 4 GeV Intense Electron Beam

- Production, spectroscopy of True Muonium $\left[\mu^{+} \mu^{-}\right]$
- Production of Relativistic Muonium $\left[\mu^{+} e^{-}\right]$
- Test All-Orders Bethe-Maximon Formula for Pair Production
- Lepton Charge Asymmetry
- Test Landau-Pomeranchuk-Migdal (LPM) Effect

4th China-US Workshop July i6, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Stan Brodsky, SLAC

- Production of True Muonium $\left[\mu^{+} \mu^{-}\right]$

$$
e Z \rightarrow e Z\left[\mu^{+} \mu^{-}\right]_{n S} \quad q_{\min } \simeq \frac{M_{\mu^{+} \mu^{-}}^{2}}{\nu} \sim 10 \mathrm{MeV}
$$

- Produces all Rydberg Levels
- Analytic connection to continuum production -- enhanced by SSS at threshold
- Gap extends in cm multiplied by Lorentz boost
- Excite/De-excite levels with external fields, lasers

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab ${ }_{2} 2 \mathbf{G e V}$ and the EIC

Production of True Muonium $\left[\mu^{+} \mu^{-}\right]$

PHYSICAL REVIEW LETTERS

Production of the Smallest QED Atom: True Muonium ($\boldsymbol{\mu}^{+} \boldsymbol{\mu}^{\boldsymbol{-}}$)
Stanley J. Brodsky*
SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA

Richard F. Lebed ${ }^{\dagger}$

Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, USA (Received 22 April 2009; published 26 May 2009)

Rydberg Levels and Decays
 $n=\infty(E=0)$

Production of bound triplet mu+ mu- system in collisions of electrons with atoms.

N. Arteaga-Romero, C. Carimalo, (Paris U.. VI-VII), V.G. Serbo, (Paris U.. VI-VII \& Novosibirsk State U.) . Jan 2000. 10pp.

Published in Phys.Rev. A62:032501, 2000.
e-Print: hep-ph/0001278

Goals

- Test QCD to maximum precision
- High precision determination of $\alpha_{s}\left(Q^{2}\right)$ at all scales
- Relate observable to observable --no scheme or scale ambiguity
- Eliminate renormalization scale ambiguity in a scheme-independent manner
- Relate renormalization schemes without ambiguity
- Maximize sensitivity to new physics at the colliders

Novel QCD Opportunities at JLab 12 GeV

$$
A^{t \bar{t}}\left(\Delta y_{i}\right)=\frac{N\left(\Delta y_{i}\right)-N\left(-\Delta y_{i}\right)}{N\left(\Delta y_{i}\right)+N\left(-\Delta y_{i}\right)}
$$

Fermilab-Pub-10-525-E
Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production

CDF Collaboration

Need to set multiple renormalization scales -Lensing, DGLAP, ERBL Evolution ...

Principle of Maximum Conformality

PMC/BLM
No renormalization scale ambiguity
Result is independent of Renormalization scheme and initial scale

Apply to Evolution kernels, hard subprocesses

Eliminates unnecessary systematic uncertainty

Xing-Gang Wu
Leonardo di Giustino, SyB

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Stan Brodsky, SLAC

Conventional PQCD approach

Xing-Gang Wu
 Leonardo di Giustino, SfB

$t \bar{t}$ asymmetry predicted by pQCD NNLO within
1σ of CDF/D0 measurements using PMC/BLM scale setting
Eliminating the Renormalization Scale Ambiguity for Top-Pair Production Using the Principle of Maximum Conformality

Second Born Corrections to Wide-Angle High-Energy Electron Pair Production and Bremsstrahlung*
J. Gillespie and sjb PR i73 Ioli (i968)

(f)

${ }^{4}$ J. G. Asbury, W. K. Bertram, U. Becker, P. Joos, M. Rohde, A. J. S. Smith, S. Friedlander, C. L. Jordan, and S. C. C. Ting, Phys. Rev. 161, 1344 (1967), and references therein.

Ting: DESY 1967

$$
\mathcal{R} \equiv \frac{d \sigma_{\text {int }}}{d \sigma_{\text {Born }}}=\frac{1}{4} Z_{\alpha \pi}|\mathbf{Q}|
$$

$$
\times\left[\frac{\left(E_{2}-E_{1}\right) Q^{2}+2 E_{2} k \cdot p_{2}-2 E_{1} k \cdot p_{1}}{E_{1} E_{2} Q^{2}+\left(k \cdot p_{1}\right)\left(k \cdot p_{2}\right)}\right]+O(Z \alpha)^{3}
$$

(spin zero, point nucleus).

Odderon-Pomeron Interference leads to $\mathcal{D}^{+} \mathcal{D}^{-}$and $\mathcal{B}^{+} \mathcal{B}^{-}$ charge and angular asymmetry

Merino, Rathsman, sjb
Odderon at amplitude level

Strong enhancement at heavy-quark pair threshold from QCD Sakharov-Schwinger-Sommerfeld effect

Hoang, Kuhn, sjb

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Strangeness Asymmetry

The strange and anti-strange distributions of the proton need not be $s\left(x, Q^{2}\right) \neq$ $\bar{s}\left(x, Q^{2}\right)$; this asymmetry reflects fundamental nonperturbative aspects of the proton's structure.

Meson-Baryon fluctuations produce asymmetry

Compare $D(s \bar{c})$ and $D(\bar{s} c)$
in proton fragmentation region at the EIC

Relate Observables to Each other

- Eliminate intermediate scheme
- No scale ambiguity
- Transitive!
- Commensurate Scale Relations
- Conformal Template
- Example: Generalized Crewther Relation

$$
\begin{gathered}
R_{e^{+} e^{-}}\left(Q^{2}\right) \equiv 3 \sum_{\text {flavors }} e_{q}^{2}\left[1+\frac{\alpha_{R}(Q)}{\pi}\right) \\
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{1}{3}\left|\frac{g_{A}}{g_{V}}\right|\left[1-\frac{\alpha_{g_{1}}(Q)}{\pi}\right]
\end{gathered}
$$

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab i2 GeV and the EIC

$$
\begin{aligned}
\frac{\alpha_{R}(Q)}{\pi}= & \frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}+\left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^{2}\left[\left(\frac{41}{8}-\frac{11}{3} \zeta_{3}\right) C_{A}-\frac{1}{8} C_{F}+\left(-\frac{11}{12}+\frac{2}{3} \zeta_{3}\right) f\right] \\
& +\left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^{3}\left\{\left(\frac{90445}{2592}-\frac{2737}{108} \zeta_{3}-\frac{55}{18} \zeta_{5}-\frac{121}{432} \pi^{2}\right) C_{A}^{2}+\left(-\frac{127}{48}-\frac{143}{12} \zeta_{3}+\frac{55}{3} \zeta_{5}\right) C_{A} C_{F}-\frac{23}{32} C_{F}^{2}\right. \\
& +\left[\left(-\frac{970}{81}+\frac{224}{27} \zeta_{3}+\frac{5}{9} \zeta_{5}+\frac{11}{108} \pi^{2}\right) C_{A}+\left(-\frac{29}{96}+\frac{19}{6} \zeta_{3}-\frac{10}{3} \zeta_{5}\right) C_{F}\right] f \\
& \left.+\left(\frac{151}{162}-\frac{19}{27} \zeta_{3}-\frac{1}{108} \pi^{2}\right) f^{2}+\left(\frac{11}{144}-\frac{1}{6} \zeta_{3}\right) \frac{d^{a b c} d^{a b c}}{C_{F} d(R)} \frac{\left(\sum_{f} Q_{f}\right)^{2}}{\sum_{f} Q_{f}^{2}}\right\} \\
\frac{\alpha_{g_{1}}(Q)}{\pi}= & \frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}+\left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^{2}\left[\frac{23}{12} C_{A}-\frac{7}{8} C_{F}-\frac{1}{3} f\right] \\
& +\left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^{3}\left\{\left(\frac{5437}{648}-\frac{55}{18} \zeta_{5}\right) C_{A}^{2}+\left(-\frac{1241}{432}+\frac{11}{9} \zeta_{3}\right) C_{A} C_{F}+\frac{1}{32} C_{F}^{2}\right. \\
& \left.+\left[\left(-\frac{3535}{1296}-\frac{1}{2} \zeta_{3}+\frac{5}{9} \zeta_{5}\right) C_{A}+\left(\frac{133}{864}+\frac{5}{18} \zeta_{3}\right) C_{F}\right] f+\frac{115}{648} f^{2}\right\}
\end{aligned}
$$

Eliminate MSbar,

 Find Amazing Simplification4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Generalized Crewther Relation

$$
\begin{gathered}
{\left[1+\frac{\alpha_{R}\left(s^{*}\right)}{\pi}\right]\left[1-\frac{\alpha_{g_{1}}\left(q^{2}\right)}{\pi}\right]=1} \\
\sqrt{s^{*}} \simeq 0.52 Q
\end{gathered}
$$

Conformal relation true to all orders in perturbation theory
No radiative corrections to axial anomaly
Nonconformal terms set relative scales (BLM)
Analytic matching at quark thresholds
No renormalization scale ambiguity!

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Define "Reduced" Form Factor

Elastic electron-deuteron scattering

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

QCD Prediction for Deuteron Form

Factor

$$
F_{d}\left(Q^{2}\right)=\left[\frac{\alpha_{s}\left(Q^{2}\right)}{Q^{2}}\right]^{5} \sum_{m, n} d_{m n}\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{-\gamma_{n}^{d}-\gamma_{m}^{d}}\left[1+\boldsymbol{O}\left(\alpha_{s}\left(Q^{2}\right), \frac{m}{Q}\right)\right]
$$

Define "Reduced" Form Factor

$$
f_{d}\left(Q^{2}\right) \equiv \frac{F_{d}\left(Q^{2}\right)}{F_{N}^{2}\left(Q^{2} / 4\right)} .
$$

Same large momentum transfer behavior as pion form factor

$f_{d}\left(Q^{2}\right) \sim \frac{\alpha_{s}\left(Q^{2}\right)}{Q^{2}}\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{-(2 / 5) c_{F} / B}$

FIG. 2. (a) Comparison of the asymptotic QCD prediction $f_{d}\left(Q^{2}\right) \propto\left(1 / Q^{2}\right)\left[\ln \left(Q^{2} / \Lambda^{2}\right)\right]^{-1-(2 / 5) C_{F} / B}$ with final data of Ref. 10 for the reduced deuteron form factor, where $F_{N}\left(Q^{2}\right)=\left[1+Q^{2} /\left(0.71 \mathrm{GeV}^{2}\right)\right]^{-2}$. The normalization is fixed at the $Q^{2}=4 \mathrm{GeV}^{2}$ data point. (b) Comparison of the prediction $\left[1+\left(Q^{2} / m_{0}^{2}\right)\right] f_{d}\left(Q^{2}\right) \propto\left[\ln \left(Q^{2} /\right.\right.$ $\left.\Lambda^{2}\right)^{-1-(2 / 5)} C_{F} / \beta$ with the above data. The value $m_{0}{ }^{2}$ $=0.28 \mathrm{GeV}^{2}$ is used (Ref. 8).

- 15% Hidden Color in the Deuteron

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Deuteron Photodisintegration

Deuteron Light-Front Wavefunction

Fixed $\tau=t+z / c$

$$
P^{+}=P^{0}+P^{z}
$$

Two color-singlet combinations of three $\left.3_{C}\right|^{\sum_{i}^{n}} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}$

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Stan Brodsky, SLAC

Hidden Color in QCD

Study the Deuteron as a QCD Object

- Deuteron six-quark wavefunction
- 5 color-singlet combinations of 6 color-triplets -only one state is $\mid n \mathrm{p}$ >
- Components evolve towards equality at short distances
- Hidden color states dominate deuteron form factor and photodisintegration at high momentum transfer
- Predict

$$
\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{-}\right) \simeq \frac{d \sigma}{d t}(\gamma d \rightarrow p n) \text { at high } Q^{2}
$$

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Evolution of 5 color-singlet Fock states

$\Psi_{n}^{\mathbf{d}}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$

$$
\begin{aligned}
\sum_{i}^{n} \vec{k}_{\perp i} & =\overrightarrow{0}_{\perp} \\
\sum_{i}^{n} x_{i} & =1
\end{aligned}
$$

$$
\Phi_{n}\left(x_{i}, Q\right)=\int^{k_{\perp i}^{2}<Q^{2}} \Pi^{\prime} d^{2} k_{\perp j} \psi_{n}\left(x_{i}, \vec{k}_{\perp j}\right)
$$

5×5 Matrix Evolution Equation for deuteron distríbution amplitude

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities
at JLab 12 GeV and the EIC

Hidden Color of Deuteron

Deuteron six-quark state has five color - singlet configurations, only one of which is $n-p$.

Asymptotic Solution has Expansion

$$
\psi_{[6]\{33\}}=\left(\frac{1}{9}\right)^{1 / 2} \psi_{N N}+\left(\frac{4}{45}\right)^{1 / 2} \psi_{\Delta \Delta}+\left(\frac{4}{5}\right)^{1 / 2} \psi_{C C}
$$

Look for strong transition to Delta-Delta

4th China-US Workshop July 16, 2012

Test of Hidden Color in Deuteron Photodisintegration

$$
R=\frac{\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{--}\right)}{\frac{d \sigma}{d t}(\gamma d \rightarrow p n)}
$$

Ratio predicted to approach 2:5

Ratio should grow with transverse momentum as the hidden color component of the deuteron grows in strength.

Possible contribution from pion charge exchange at small t.

4th China-US Workshop
July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Stan Brodsky, SLAC

Remarkable Features of

Hadron Structure

- Valence quark helicity represents less than half of the proton's spin and momentum
- Non-zero quark orbital angular momentum!
- Asymmetric sea: $\bar{u}(x) \neq \bar{d}(x)$ relation to meson cloud
- Non-symmetric strange and antistrange sea $\bar{s}(x) \neq s(x)$
- Intrinsic charm and bottom at high x

$$
\Delta s(x) \neq \Delta \bar{s}(x)
$$

- Hidden-Color Fock states of the Deuteron

4th China-US Workshop July 16, 2012

Properties of Hard Exclusive Reactions

- Dimensional Counting Rules at fixed CM angle
- Hadron Helicity Conservation
- Color Transparency
- Hidden color
- s >>-t >> $\Lambda_{Q C D}$: Reggeons have negative-integer intercepts at large $-t$
- J=o Fixed pole in DVCS
- Quark interchange
- Renormalization group invariance
- No renormalization scale ambiguity
- Exclusive inclusive connection with spectator counting rules
- Diffractive reactions from pomeron, Reggeon, odderon

4th China-US Workshop Novel QCD Opportunities July 16, 2012
at JLab i2 GeV and the EIC
Stan Brodsky, SLAC

Nover xuv ou Jlow $1 \angle$ gev and the EIC

- Intrinsic Heavy Quarks
- Charm at Threshold: exotic states, nuclear-bound quarkonium, anomalous polarization effects
- Exclusive and Inclusive Sivers Effect: Breakdown of pQCD Leading-Twist Factorization
- Non-universal antishadowing
- Hidden Color
- J=0 fixed pole

Illuminate New QCD Physics

4th China-US Workshop July 16, 2012

JLab 12 GeV: An Exotic Charm Factory!

- Charm quarks at high x-- allows charm states to be produced with minimal energy
- Charm produced at low velocities in the target -- the target rapidity domain $x_{F} \sim-1$
- Charm at threshold -- maximal domain for producing exotic states containing charm quarks
- Attractive QCD Van der Waals interaction --"nuclear-bound quarkonium"
- Dramatic Spin Correlations in the threshold Domain
- Strong SSS Threshold Enhancement

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab i2 GeV and the EIC

- Although we know the QCD Lagrangian, we have only begun to understand its remarkable properties and features.
- Novel QCD Phenomena: hidden color, color transparency, strangeness asymmetry, intrinsic charm, anomalous heavy quark phenomena, anomalous spin effects, single-spin asymmetries, odderon, diffractive deep inelastic scattering, rescattering, shadowing, non-universal antishadowing ...

> Truth is stranger than fiction, but it is because Fiction is obliged to stick to possibilities. -Mark Twain

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab 12 GeV and the EIC

Novel QCU Pnenomena atJLaw I 2 gev

and the EIC

- Intrinsic Heavy Quarks
- Charm at Threshold
- Novel Heavy Quark Resonances at Threshold
- Nuclear-Bound Quarkonium
- Exclusive and Inclusive Sivers Effect.
- Breakdown of pQCD Leading-Twist Factorization
- Non-universal antishadowing

- Hidden Color
- J=0 Fixed pole in DVCS

> Illuminate New Hadronic Physics

4th China-US Workshop July 16, 2012

Novel QCD Opportunities at JLab ${ }^{2} 2 \mathrm{GeV}$ and the EIC

Stan Brodsky, SLAC

