From nucleon structure to nuclear structure and compact astrophysical objects: part 2 (QCD and hadron physics)

KITPC, Beijing July 2-20, 2012

Light-by-light scattering sum rules

Marc Vanderhaeghen
Johannes Gułenberg University Mainz

Outline

- Introduction and motivation: $(\mathrm{g}-2)_{\mu}$
- VY sum rules: general derivation
- VY sum rules in perturbative quantum field theory
- YV sum rules for meson production
- Conclusions

```
V. Pascalutsa, M. Vdh : Phys. Rev. Lett. 105, 201603 (2010)
V. Pascalutsa, V. Pauk, M. Vdh : Phys. Rev. D 85, 116001 (2012)
V. Pauk, V. Pascalutsa, M. Vdh : publication (perturbative QFT) in preparation
```


magnetic moment of muon: $(g-2)_{\mu}$

\Rightarrow magnetic moment $\vec{m}=\mu_{B} g \vec{S}$
μ_{B} : Bohr magneton
g: gyromagnetic factor ~ 2
\Rightarrow anomalous part:
$a_{\mu}=(\mathrm{g}-2)_{\mu} / 2=\alpha_{e m} / 2 \pi+\ldots=0.00116 \ldots$

$$
\boldsymbol{a}_{\mu}{ }^{\exp }-\boldsymbol{a}_{\mu}^{\mathrm{th}}=(28.7 \pm 8.0) \times 10^{-10}
$$

3.6σ deviation from SM value !
\Rightarrow recent $O\left(\alpha_{\text {em }}{ }^{5}\right)$ QED calculation

$$
\boldsymbol{a}_{\mu}{ }^{\exp }-\boldsymbol{a}_{\mu}^{\mathrm{th}}=(24.9 \pm 8.7) \times 10^{-10}
$$

sensitive test of the standard model (SM) and of physics beyond SM

CRC 1044

strong contributions to $(g-2)_{\mu}$

contributions from strong interactions NOT calculable within perturbative QCD
hadronic vacuum polarization

$$
a_{\mu}{ }^{\text {had, } V P}=(692.3 \pm 4.2) \times 10^{-10}
$$

hadronic vacuum polarization determined by cross section measurements of $e^{+} e^{-} \rightarrow$ hadrons
hadronic light-by-light scattering

$$
a_{\mu}{ }^{\text {had, LbL }}=(11.6 \pm 4.0) \times 10^{-10}
$$

Jegerlehner, Nyffeler (2009)
measurements of meson transition form factors required as input to reduce uncertainty

$(\mathrm{g}-2)_{\mu}$: theory vs experiment

$(28.7 \pm 8.0) \cdot 10^{-10}(3.6 \sigma)$ Error(s) or New Physics? \rightarrow Clarify situation!

New FNAL ($\mathrm{g}-2)_{\mu}$ measurement (2015):
Factor 4 improvement in experimental error
\rightarrow Improve $a_{\mu}^{\text {had ! }}$

$(\mathrm{g}-2)_{\mu}$: hadronic vacuum polarization

Optical theorem and analyticity allow to relate HVP contribution to $(g-2)_{\mu}$ with $\sigma_{\text {had }}=\sigma\left(e^{+} e^{-} \rightarrow\right.$ hadrons $)$

$a_{\mu}{ }^{\text {had }}$

$\delta a_{\mu}{ }^{\text {had }}$

Ohad : energy range up to 3 GeV essential!

measure Ohad via ISR at BES-III

Approach for measuring hadronic cross section at modern particle factories with fixed c.m.s. energy $\sqrt{ }$ s: Initial State Radiation (ISR)

ISR method allows access to mass range $M_{\text {hadr }}<3 \mathrm{GeV}$ at BES-III
\rightarrow Continue ISR success story in CRC1044

hadronic light-by-light scattering

\Rightarrow strong dependence of hadronic LbL estimate on hadronic models !

$$
\boldsymbol{a}_{\mu}^{\text {had, LbL }}=(11.6 \pm 4.0) \times 10^{-10} \quad \text { Jegerlehner, Nyffeler (2009) }
$$

measurement of meson transition form factors validate hadronic models / most relevant range at low Q^{2}

CRC 1044

$\gamma \gamma$ physics: quark structure of mesons

$\gamma^{*} \gamma^{*}$ sum rules:

general derivation

$\gamma^{*} \gamma^{*} \rightarrow \gamma^{*} \gamma^{*}$ forward scattering

helicity amplitudes:

$$
M_{\lambda_{1}^{\prime} \lambda_{2}^{\prime}, \lambda_{1} \lambda_{2}}\left(\nu, Q_{1}^{2}, Q_{2}^{2}\right) \quad \lambda=0, \pm 1
$$

discrete symmetries:
$P: \quad M_{\lambda_{1}^{\prime} \lambda_{2}^{\prime}, \lambda_{1} \lambda_{2}}=M_{-\lambda_{1}^{\prime}-\lambda_{2}^{\prime},-\lambda_{1}-\lambda_{2}}$
$T: \quad M_{\lambda_{1}^{\prime} \lambda_{2}^{\prime}, \lambda_{1} \lambda_{2}}=M_{\lambda_{1} \lambda_{2}, \lambda_{1}^{\prime} \lambda_{2}^{\prime}}$

8 independent amplitudes:
$M_{++,++}, M_{+-,+-}, M_{++,--}$, T
$M_{00,00}, M_{+0,+0}, M_{0+, 0+}, M_{++, 00}, M_{0+,-0} \mathrm{~T}$ and L

$\gamma^{*} \gamma$
 $\rightarrow \gamma^{*} \gamma$ forward scattering

Unitarity (optical theorem):

 link to $\gamma^{*} \gamma^{*} \rightarrow X$ cross sections$$
W_{\lambda_{1}^{\prime} \lambda_{2}^{\prime}, \lambda_{1} \lambda_{2}} \equiv \operatorname{Im} M_{\lambda_{1}^{\prime} \lambda_{2}^{\prime}, \lambda_{1} \lambda_{2}}
$$

$$
W_{\lambda_{1}^{\prime} \lambda_{2}^{\prime}, \lambda_{1} \lambda_{2}}=\frac{1}{2} \int d \Gamma_{\mathrm{X}}(2 \pi)^{4} \delta^{4}\left(q_{1}+q_{2}-p_{\mathrm{X}}\right) \mathcal{M}_{\lambda_{1} \lambda_{2}}\left(q_{1}, q_{2} ; p_{\mathrm{X}}\right) \mathcal{M}_{\lambda_{1}^{\prime} \lambda_{2}^{\prime}}^{*}\left(q_{1}, q_{2} ; p_{\mathrm{X}}\right)
$$

\downarrow
can be expressed in terms of $\gamma^{*} \gamma^{*} \rightarrow X$ cross sections, which can be measured
virtual photon flux:

$$
X \equiv \nu^{2}-Q_{1}^{2} Q_{2}^{2}
$$

$$
W_{++,++}+W_{+-,+-} \equiv 2 \sqrt{X}\left(\sigma_{0}+\sigma_{2}\right)=2 \sqrt{X}\left(\sigma_{\|}+\sigma_{\perp}\right) \equiv 4 \sqrt{X} \sigma_{T T},
$$

$$
W_{++,++}-W_{+-,+-} \equiv 2 \sqrt{X}\left(\sigma_{0}-\sigma_{2}\right) \equiv 4 \sqrt{X} \tau_{T T}^{a}
$$

$$
W_{++,--} \equiv 2 \sqrt{X}\left(\sigma_{\|}-\sigma_{\perp}\right) \equiv 2 \sqrt{X} \tau_{T T},
$$

$$
W_{00,00} \equiv 2 \sqrt{X} \sigma_{L L}
$$

$$
W_{+0,+0} \equiv 2 \sqrt{X} \sigma_{T L}
$$

$$
W_{0+, 0+} \equiv 2 \sqrt{X} \sigma_{L T},
$$

$$
W_{++, 00}+W_{0+,-0} \equiv 4 \sqrt{X} \tau_{T L}
$$

$$
W_{++, 00}-W_{0+,-0} \equiv 4 \sqrt{X} \tau_{T L}^{a} .
$$

$e e \rightarrow$ eeX cross sections

$$
e\left(p_{1}\right)+e\left(p_{2}\right) \rightarrow e\left(p_{1}^{\prime}\right)+e\left(p_{2}^{\prime}\right)+X \quad s=\left(p_{1}+p_{2}\right)^{2}
$$

$e^{-}-Q_{1}^{2} h^{2} / \sim$
x inclusive

$$
\begin{array}{lcc}
\text { virtual } & q_{1} \equiv p_{1}-p_{1}^{\prime}, & q_{2} \equiv p_{2}-p_{2}^{\prime} \\
\text { photons } & Q_{1}^{2} \equiv-q_{1}^{2}, & Q_{2}^{2} \equiv-q_{2}^{2}
\end{array}
$$

$$
\begin{aligned}
d \sigma & =\frac{\alpha^{2}}{16 \pi^{4} Q_{1}^{2} Q_{2}^{2}} \frac{2 \sqrt{X}}{s\left(1-4 m^{2} / s\right)} \cdot \frac{d^{3} \vec{p}_{1}^{\prime}}{E_{1}^{\prime}} \cdot \frac{d^{3} \vec{p}_{2}^{\prime}}{E_{2}^{\prime}} \\
\times & \left\{4 \rho_{1}^{++} \rho_{2}^{++} \sigma_{T T}+\rho_{1}^{00} \rho_{2}^{00} \sigma_{L L}+2 \rho_{1}^{++} \rho_{2}^{00} \sigma_{T L}+2 \rho_{1}^{00} \rho_{2}^{++} \sigma_{L T}\right. \\
& +2\left(\rho_{1}^{++}-1\right)\left(\rho_{2}^{++}-1\right)(\cos 2 \tilde{\phi}) \tau_{T T}+8\left[\frac{\left(\rho_{1}^{00}+1\right)\left(\rho_{2}^{00}+1\right)}{\left(\rho_{1}^{++}-1\right)\left(\rho_{2}^{++}-1\right)}\right]^{1 / 2}(\cos \tilde{\phi}) \tau_{T L} \\
& \left.\left.+h_{1} h_{2} 4\left[\left(\rho_{1}^{00}+1\right)\left(\rho_{2}^{00}+1\right)\right]^{1 / 2} \tau_{T T}^{a}+h_{1} h_{2}\right) 8\left[\left(\rho_{1}^{++}-1\right)\left(\rho_{2}^{++}-1\right)\right]^{1 / 2}(\cos \tilde{\phi}) \tau_{T L}^{a}\right\}
\end{aligned}
$$

lepton beam polarization
$\rho_{1}^{++}, \rho_{2}^{++}, \rho_{1}^{00}, \rho_{2}^{00}$: kinematical coefficients
$\tilde{\phi}$: angle between both lepton planes in $\gamma^{*} \gamma^{*}$ c.m. frame

$e e \rightarrow e e X$ cross sections

extraction of $\cos (2 \varphi)$ moment

$$
\tau_{T T}=\sigma_{\|}-\sigma_{\perp}
$$

possible at BES-III

- has never been extracted at an $e^{+} e^{-}$collider
- through SR: measures forward LbL scattering coefficient $c_{1}-c_{2}$

simulations for ly running at BES-III (10 fb-1)

$\gamma^{*} \gamma^{*} \rightarrow \gamma^{*} \gamma^{*}$ forward scattering

Causality, photon crossing symmetry ($V \rightarrow-\mathrm{V}$)

\Rightarrow dispersion relations

$$
\begin{aligned}
f_{\text {even }}(\nu) & =\frac{2}{\pi} \int_{\nu_{0}}^{\infty} d \nu^{\prime} \frac{\nu^{\prime}}{\nu^{\prime 2}-\nu^{2}-i 0^{+}} \operatorname{Im} f_{\text {even }}\left(\nu^{\prime}\right) \\
f_{\text {odd }}(\nu) & =\frac{2 \nu}{\pi} \int_{\nu_{0}}^{\infty} d \nu^{\prime} \frac{1}{\nu^{\prime 2}-\nu^{2}-i 0^{+}} \operatorname{Im} f_{\text {odd }}\left(\nu^{\prime}\right)
\end{aligned}
$$

\Rightarrow high-energy behavior: may require some subtractions
\Rightarrow Low-energy expansion: for real parts at $V=0$

- $\mathcal{L}^{(8)}=c_{1}\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+c_{2}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2} \quad$ Euler, Heisenberg (1936)
c_{1} and C_{2} describe low-energy (at order v^{2}) LbL scattering
- at next order: 6 new constants enter Pauk, Pascalutsa, vah (2012)

sum rules for $\gamma^{*} \gamma^{*}$ scattering

3 super-convergence relations

helicity difference sum rule
 sum rules involving longitudinal photons

$$
0=\int_{s_{0}}^{\infty} d s\left[\frac{\tau_{T L}}{Q_{1} Q_{2}}\right]_{Q_{2}^{2}=0}
$$

$$
0=\int_{s_{0}}^{\infty} d s \frac{1}{\left(s+Q_{1}^{2}\right)^{2}}\left[\sigma_{\|}+\sigma_{L T}+\frac{\left(s+Q_{1}^{2}\right)}{Q_{1} Q_{2}} \tau_{T L}^{a}\right]_{Q_{2}^{2}=0}
$$

SRs involving LbL low-energy coefficients

$$
0=\int_{s_{0}}^{\infty} d s \frac{1}{\left(s+Q_{1}^{2}\right)}\left[\sigma_{0}-\sigma_{2}\right]_{Q_{2}^{2}=0}
$$

for $Q^{2}=0$
cfr. GDH SR
Gerasimov, Moulin (1975)

Brodsky, Schmidt (1995)

$$
c_{1} \pm c_{2}=\frac{1}{8 \pi} \int_{s_{0}}^{\infty} d s \frac{\left[\sigma_{\|} \pm \sigma_{\perp}\right](s)}{s^{2}}
$$

$Y^{*} Y^{*}$ sum rules in perturbative quantum field theory

sum rules in scalar QED: tree level

$=\int_{0}^{\sim}$

$$
\begin{gathered}
{\left[\sigma_{0}-\sigma_{2}\right]_{Q_{2}^{2}=0}=\alpha^{2} 4 \pi \frac{s}{\left(s+Q_{1}^{2}\right)^{2}}\left\{-\sqrt{1-\frac{4 m^{2}}{s}}\left(1-\frac{Q_{1}^{2}}{s}\right)+\frac{8 m^{2}}{s} \ln \left(\frac{\sqrt{s}}{2 m}\left[1+\sqrt{1-\frac{4 m^{2}}{s}}\right]\right)\right\}} \\
\text { v. Pascalutsa, M. vdh (2010) }
\end{gathered}
$$

sum rules in scalar QED: tree level

$$
0=\int_{s_{0}}^{\infty} d s\left[\frac{\tau_{T L}}{Q_{1} Q_{2}}\right]_{Q_{2}^{2}=0}
$$

$$
0=\int_{s_{0}}^{\infty} d s \frac{1}{\left(s+Q_{1}^{2}\right)^{2}}\left[\sigma_{\|}+\sigma_{L T}+\frac{\left(s+Q_{1}^{2}\right)}{Q_{1} Q_{2}} \tau_{T L}^{a}\right]_{Q_{2}^{2}=0}
$$

V. Pauk, V. Pascalutsa, M. Vdh (2012)

sum rules in spinor QED: tree level

$$
0=\int_{s_{0}}^{\infty} d s \frac{1}{\left(s+Q_{1}^{2}\right)}\left[\sigma_{0}-\sigma_{2}\right] Q_{2}^{2}=0
$$

$$
\left[\sigma_{0}-\sigma_{2}\right]_{Q_{2}^{2}=0}=\alpha^{2} 8 \pi \frac{s}{\left(s+Q_{1}^{2}\right)^{2}}\left\{\sqrt{1-\frac{4 m^{2}}{s}}\left(3-\frac{Q_{1}^{2}}{s}\right)-2\left(1-\frac{Q_{1}^{2}}{s}\right) \ln \left(\frac{\sqrt{s}}{2 m}\left[1+\sqrt{1-\frac{4 m^{2}}{s}}\right]\right)\right\}
$$

sum rules in ϕ^{4} theory: loop level

$\mathcal{L}_{I}=-\frac{\lambda}{4}\left(\phi^{\dagger} \phi\right)^{2}$ interaction

helicity difference sum rule at order λ

$$
0=\int_{4 m^{2}}^{\infty} d s \frac{1}{\left(s+Q^{2}\right)^{2}} \underbrace{\left(\beta Q^{2}+4 m^{2} \operatorname{arctanh} \beta\right)}_{\text {tree level }} \underbrace{\operatorname{Re} F^{T}\left(\nu, Q^{2}, 0\right)}_{1-\text { loop }}
$$

$$
F^{T}\left(s, Q^{2}, 0\right)=\frac{1}{(2 \pi)^{2}} \frac{1}{\left(s+Q^{2}\right)^{3}}\left(s+Q^{2}+4 m^{2} \operatorname{arctanh}^{2} \frac{1}{\beta}+2 \mathrm{Q}^{2} \operatorname{arctanh} \frac{1}{\beta}-\mathrm{m}^{2} \ln ^{2} \frac{\gamma+1}{\gamma-1}-\mathrm{Q}^{2} \gamma \ln \frac{\gamma+1}{\gamma-1}\right) \sqrt{1-\frac{4 m^{2}}{s}}
$$

sum rules in perturbative QFT : summary

sum rules for $\gamma^{*} \gamma^{*}$ forward scattering:

- verified at tree level for scalar QED, spinor QED / QCD
- verfied at one-loop level in Φ^{4} theory
- verified at one-loop level in spinor QED with NJL-type interaction (scalar and pseudo-scalar 4-fermion interaction)

$$
\mathcal{L}_{I}=\frac{G_{S}}{2}(\bar{\psi} \psi)^{2}+\frac{G_{P}}{2}\left(\bar{\psi} i \gamma_{5} \psi\right)^{2}
$$

- resummation proof to all orders given within Φ^{4} theory

```
V. Pauk et al.
```


$\gamma^{*} \gamma^{*}$ sum rules for
 meson production

meson production in VY collisions

- two-photon state: produced meson M has $C=+1$
- for production by 2 real photons $\gamma \gamma \rightarrow M$:
$J=1$ is forbidden (Landau-Yang theorem)
predominantly $\mathrm{J}=0: \mathrm{O}^{-+}$(pseudo-scalar) and O^{++}(scalar)

$$
\text { or } J=2: 2^{++} \text {(tensor) }
$$

meson production in VY collisions: $I=0,2$
$\gamma \gamma \rightarrow \pi^{+} \pi^{-} \quad \gamma \gamma \rightarrow \pi^{0} \pi^{0}$

amplitude analysis: $f_{2}(1270)$ produced predominantly in helicity- 2 state M. Pennington et al. (2008)
$\mathrm{VY} \rightarrow \pi \pi$ production accesses $I=0$ and $I=2$ states

meson production in $Y Y$ collisions: $I=0$

sum rules

 evaluated in $I=0$ state
meson production in $Y Y$ collisions: $I=1$

$$
\gamma \gamma \rightarrow \pi^{0} \eta
$$

amplitude analysis
S. Uehara et al. (2009)

$a_{2}(1320)$ produced predominantly in helicity-2 state

meson production in $Y \gamma$ collisions: $I=1$

sum rules

 evaluated in $I=1$ state $0^{-+}$$0^{++}$
2^{++}

$$
0=\int_{s_{0}}^{\infty} d s \frac{\left[\sigma_{2}-\sigma_{0}\right](s)}{s}
$$

	m_{M} $[\mathrm{MeV}]$	$\Gamma_{\gamma \gamma}$ $[\mathrm{keV}]$	$\int \frac{d s}{s}\left(\sigma_{2}-\sigma_{0}\right)$ $[\mathrm{nb}]$	c_{1} $\left[10^{-4} \mathrm{GeV}^{-4}\right]$	c_{2} $\left[10^{-4} \mathrm{GeV}^{-4}\right]$
π^{0}	134.9766 ± 0.0006	$(7.8 \pm 0.5) \times 10^{-3}$	-195 ± 13	0	10.94 ± 0.70
$a_{0}(980)$	980 ± 20	0.3 ± 0.1	-20 ± 8	0.021 ± 0.007	0
$a_{2}(1320)$	1318.3 ± 0.6	1.00 ± 0.06	134 ± 8	0.039 ± 0.002	0.039 ± 0.002
$a_{2}(1700)$	1732 ± 16	0.30 ± 0.05	18 ± 3	0.003 ± 0.001	0.003 ± 0.001
Sum			-63 ± 17	0.06 ± 0.01	10.98 ± 0.70

- helicity difference SR: $a_{2}(1320)$ compensates π^{0} contribution to 70%
- dominant contribution to LbL scattering coefficient c_{2} comes from π^{0}

charmonium states

charmonium spectrum

above $D \bar{D}$ threshold:

- plethora of new states
- nature ? molecules tetra-quarks, hybrids, ... BABAR, BELLE, BES-III, PANDA
narrow states:
- well understood $c \bar{c}$ states
- only 2 remain to be observed

S. Godfrey, H. Mahlke, J.L. Rosner,
E. Eichten (2008)

$c \bar{c}$ meson production in γY collisions

sum rules evaluated for $c \bar{c}$ states

$$
0=\int_{s_{0}}^{\infty} d s \frac{\left[\sigma_{2}-\sigma_{0}\right](s)}{s}
$$

$\begin{aligned} & \mathrm{O}^{-+} \\ & \mathrm{O}^{++} \\ & 2^{++} \end{aligned}$		$\begin{gathered} m_{M} \\ {[\mathrm{MeV}]} \end{gathered}$	$\begin{gathered} \Gamma_{\gamma \gamma} \\ {[\mathrm{keV}]} \end{gathered}$	$\begin{gathered} \int \frac{d s}{s}\left(\sigma_{2}-\sigma_{0}\right) \\ {[\mathrm{nb}]} \end{gathered}$	$\begin{gathered} c_{1} \\ {\left[10^{-7} \mathrm{GeV}^{-4}\right]} \end{gathered}$	$\begin{gathered} c_{2} \\ {\left[10^{-7} \mathrm{GeV}^{-4}\right]} \end{gathered}$
	$\eta_{c}(1 S)$	2980.3 ± 1.2	6.7 ± 0.9	-15.6 ± 2.1	0	1.79 ± 0.24
	$\chi_{c 0}(1 P)$	3414.75 ± 0.31	2.32 ± 0.13	-3.6 ± 0.2	0.31 ± 0.02	0
	$\chi_{c 2}(1 P)$	3556.2 ± 0.09	0.50 ± 0.06	3.4 ± 0.4	0.14 ± 0.02	0.14 ± 0.02
	Sum resonances			-15.8 ± 2.1	0.49 ± 0.03	1.97 ± 0.24
	duality estimate continuum $\left(\sqrt{s} \geq 2 m_{D}\right)$			15.1		
	resonances + continuum			-0.7 ± 2.1		

duality estimate for continuum contribution, above $D \bar{D}$ threshold

$$
\int_{s_{D}}^{\infty} d s \frac{1}{s}\left[\sigma_{2}-\sigma_{0}\right](\gamma \gamma \rightarrow X) \approx \int_{s_{D}}^{\infty} d s \frac{1}{s}\left[\sigma_{2}-\sigma_{0}\right](\gamma \gamma \rightarrow c \bar{c})
$$

interplay between hidden charm mesons ($\bar{c} \bar{c}$ states)

and production of charmed mesons

meson production in $\gamma^{*} \gamma^{*}$ collisions

- one photon virtual $Q_{1}{ }^{2}$ second photon: real or quasi-real $Q_{2}{ }^{2} \approx 0$
- axial-vector mesons 1^{++}are also allowed if one of the photons is virtual $Y^{*} Y^{*} \rightarrow f_{1}(1285) / f_{1}(1420)$ measured $L 3$ coll.
equivalent 2γ decay width

$$
\tilde{\Gamma}_{\gamma \gamma}(\mathcal{A}) \equiv \lim _{Q_{1}^{2} \rightarrow 0} \frac{m_{A}^{2}}{Q_{1}^{2}} \frac{1}{2} \Gamma\left(\mathcal{A} \rightarrow \gamma_{L}^{*} \gamma_{T}\right)
$$

- information on meson transition fFs

meson production in $\gamma^{*} \gamma^{*}$ collisions

both photons real or quasi-real

$$
0=\int_{s_{0}}^{\infty} d s\left[\frac{\sigma_{\|}}{s^{2}}+\frac{1}{s} \frac{\tau_{T L}^{a}}{Q_{1} Q_{2}}\right]_{Q_{1}^{2}=Q_{2}^{2}=0}
$$

1^{++}

	m_{M} $[\mathrm{MeV}]$	$\Gamma_{\gamma \gamma}$ $[\mathrm{keV}]$	$\int \frac{d s}{s^{2}} \sigma_{\\|}(s)$ $\left[\mathrm{nb} / \mathrm{GeV}^{2}\right]$	$\int d s$ $\left[\mathrm{nb} / \mathrm{GeV}^{2}\right]$	$\left.\frac{\tau_{T L}^{a}}{Q_{1} Q_{2}}\right]_{Q_{i}^{2}=0}$ $\left[\mathrm{ne}^{2}\right.$ $\left[\mathrm{nb} / \mathrm{GeV}^{2}\right]$
$f_{1}(1285)$	1281.8 ± 0.6	3.5 ± 0.8	0	-93 ± 21	-93 ± 21
$f_{1}(1420)$	1426.4 ± 0.9	3.2 ± 0.9	0	-50 ± 14	-50 ± 14
$f_{0}(980)$	980 ± 10	0.29 ± 0.07	20 ± 5	0	20 ± 5
$f_{0}^{\prime}(1370)$	$1200-1500$	3.8 ± 1.5	48 ± 19	0	48 ± 19
$f_{2}(1270)$	1275.1 ± 1.2	3.03 ± 0.35	138 ± 16	$\gtrsim 0$	138 ± 16
$f_{2}^{\prime}(1525)$	1525 ± 5	0.081 ± 0.009	1.5 ± 0.2	$\gtrsim 0$	1.5 ± 0.2
$f_{2}(1565)$	1562 ± 13	0.70 ± 0.14	12 ± 2	$\gtrsim 0$	12 ± 2
Sum					76 ± 36

SR involving L phołons: $f_{1}(1285), f_{1}(1420)$ contributions compensated by $f_{2}(1270)$

meson production in $\gamma^{*} \gamma^{*}$ collisions

Q1 ${ }^{2}$

for 2^{++}: dominant fF for
helicity $\Lambda=\lambda_{1}-\lambda_{2}=2$
tensor fFs $T^{(2)}\left(Q_{1}{ }^{2}, 0\right)$ totally unknown

- use helicity difference $S R$: assume $a_{2}(1320)$ compensated by π^{0}

$$
\frac{T_{a_{2}}^{(2)}\left(Q_{1}^{2}, 0\right)}{T_{a_{2}}^{(2)}(0,0)} \simeq \frac{1}{\left(1+Q_{1}^{2} / \Lambda_{\pi}^{2}\right)} \quad \text { using PS FF: } \quad \frac{F_{\mathcal{P} \gamma^{*} \gamma^{*}}\left(Q_{1}^{2}, 0\right)}{F_{\mathcal{P} \gamma^{*} \gamma^{*}}(0,0)}=\frac{1}{1+Q_{1}^{2} / \Lambda_{P}^{2}}
$$

- use helicity difference $S R$: assume $f_{2}(1270)$ compensated by η, η '

$$
\frac{T_{f_{2}}^{(2)}\left(Q_{1}^{2}, 0\right)}{T_{f_{2}}^{(2)}(0,0)} \simeq\left[\frac{c_{\eta}}{c_{\eta}+c_{\eta^{\prime}}} \frac{1}{\left(1+Q_{1}^{2} / \Lambda_{\eta}^{2}\right)^{2}}+\frac{c_{\eta^{\prime}}}{c_{\eta}+c_{\eta^{\prime}}} \frac{1}{\left(1+Q_{1}^{2} / \Lambda_{\eta^{\prime}}^{2}\right)^{2}}\right]^{1 / 2} \quad c_{P} \equiv \Gamma_{\gamma \gamma} / m_{P}^{3}
$$

- use $S R$ involving L photons: $f_{2}(1270)$ compensated by $f_{1}(1285), f_{1}(1420)$

$$
\frac{T_{f_{2}}^{(2)}\left(Q_{1}^{2}, 0\right)}{T_{f_{2}}^{(2)}(0,0)} \simeq\left(1+\frac{Q_{1}^{2}}{m_{f_{2}}^{2}}\right)^{1 / 2}\left[\frac{d_{f_{1}}}{d_{f_{1}}+d_{f_{1}^{\prime}}} \frac{1}{\left(1+Q_{1}^{2} / \Lambda_{f_{1}}^{2}\right)^{4}}+\frac{d_{f_{1}^{\prime}}}{d_{f_{1}}+d_{f_{1}^{\prime}}} \frac{1}{\left(1+Q_{1}^{2} / \Lambda_{f_{1}^{\prime}}^{2}\right)^{4}}\right]^{1 / 2} \quad d_{A} \equiv 3 \Gamma_{\gamma \gamma} / m_{A}^{5}
$$

meson production in $\gamma^{*} \gamma^{*}$ collisions

sum rules allow to make a prediction for the (yet unmeasured) helicity-2 fF of $f_{2}(1270)$

Conclusions

- 3 new super-convergence relations for $\gamma^{*} \gamma$ scattering, sum rules for LDL scattering coefficients
- sum rules verified in perturbative quantum field theory
- $\gamma^{*} Y$ sum rules for meson production: compensations between different mesons verified π^{0} and $a_{2}(1320)$, $\quad \eta, \eta^{\prime}$ and $f_{2}(1270), f_{2}(1565)$, $f_{2}(1270)$ and $f_{1}(1285), f_{1}(1420)$, hidden and open charm mesons
- for virtual photons: predictions for meson FFs, sum rule tests, constraints on models for Lb scattering to (g-2) μ

Backup

results from data: $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Czyz, Kühn, Rodrigo, ... (since 1999)

- Feasibility studies using Monte Carlo generator PHOKHARA
\rightarrow BES-III data sample of $10 \mathrm{fb}^{-1}$ provides similar statistics as BABAR (454 fb-1)
- Analysis on most relevant channel $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \boldsymbol{\pi}^{-}$started

$\eta-\eta$ ' mixing probes strange quark content of light pseudo-scalar mesons and gluon dynamics of QCD
η / η ' transition form factors encode information on different mixing scenarios

Spacelike ($q^{2}<0$): $e^{+} e^{-}$colliders

$\gamma^{*} \gamma \rightarrow \eta^{\prime}$

Timelike ($q^{2}>0$): meson decays

$$
\eta \rightarrow \gamma e^{+} e^{-}
$$

bands: uncertainties from different mixing scenarios

