JLab Hall C 12 GeV Upgrade

The Fourth Workshop on Hadron Physics in China and Opportunities in US, July 16-20, 2012 Stephen A. Wood Hall C

Outline

- Hall C equipment overview
- Hall C 12 GeV physics program
- Structure functions
- Semi-inclusive reactions/SIDIS
- Exclusive reactions
- Nuclear effects
- Future directions
- Hall C startup plans

Hall C after 12 GeV Upgrade

- Beam Energy: $2-11 \mathrm{GeV} / \mathrm{c}$
- Super High Momentum Spectrometer (SHMS)
- Horizontal Bender, 3 Quads, Dipole
- $\mathrm{P} \rightarrow 11 \mathrm{GeV} / \mathrm{c}$
- dP/P $0.5-1.0 \times 10^{-3}$
- Acceptance: $4 \mathrm{msr}, 30 \%$
- $5.5^{\circ}<\theta<40^{\circ}$
- Good $\mathrm{e}^{-} / \pi^{-} \mathrm{e}^{+} / \pi^{+} / \mathrm{K}^{+} /$p PID
- High Momentum Spectrometer (HMS)
- $\mathrm{P} \rightarrow 7.5 \mathrm{GeV} / \mathrm{c}$
- dP/P 0.5-1.0×10-3
- Acceptance: $6.5 \mathrm{msr}, 18 \%$
- $10.5^{\circ}<\theta<90^{\circ}$
- Good $\mathrm{e}^{-} / \pi^{-} \mathrm{e}^{+} / \pi^{+} / \mathrm{K}^{+} / \mathrm{p}$ PID
- Minimum opening angle: 17°
- Well shielded detector huts
- Ideal facility for:
- Rosenbluth (L/T) separations
- Exclusive reactions
- Low cross sections (neutrino level)

SHMS Detectors

Main SHMS steel structure pieces at JLab

SHMS dipole yoke steel

Structure Functions

E12-10-002 Precision F_{2} structure function at high x

Extend proton and deuteron F_{2} structure function precision measurements to larger x and Q^{2} by measuring $p\left(e, e^{\prime}\right)$ and $d\left(e, e^{\prime}\right)$ cross sections in the resonance region and beyond up to $\mathrm{Q}^{2} \sim 17 \mathrm{GeV}^{2}$ and $\mathrm{x} \sim 0.99$

Need precision ($\sim 3 \%$) data on proton and deuteron F_{2} at large x to:

- Constrain Parton Distribution Functions at large x
- Distinguish different mechanisms of spin-flavor symmetry breaking (d / u at large x) with precision $\mathrm{F}_{2}{ }^{\mathrm{n}} / \mathrm{F}_{2}{ }^{\mathrm{d}}$ (combining with BONUS/Hall B (E12-06-113) F2n/F2d)
- Extend studies of local quarkhadron duality in proton and neutron F2

E12-06-121
 Neutron $\mathrm{g}_{2}{ }^{\mathrm{n}}, \mathrm{d}_{2}{ }^{\mathrm{n}}$
 ${ }^{3} \overrightarrow{\mathrm{He}} e\left(\vec{e}, e^{\prime}\right)$

$$
\Delta \sigma_{\|}=\sigma^{\downarrow \uparrow}-\sigma^{\uparrow \Uparrow} \quad \Delta \sigma_{\perp}=\sigma^{\downarrow \Rightarrow}-\sigma^{\uparrow \Rightarrow}
$$

$$
d_{2}^{n}=\int_{0}^{1} x^{2}\left(2 g_{1}^{n}+3 g_{2}^{n}\right) d x
$$

Measure inclusive $\mathrm{n}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$ spin asymmetries for $\|$ and \perp target spin using ${ }^{3} \mathrm{He}$ target.

Projected Errors

Thomas Jefi

Jefferson Lab

Neutron Spin Asymmetry $\mathrm{A}_{1 \mathrm{~N}}$ in Valence Quark region

$$
A_{1}=\frac{A_{\|}}{D(1+\eta \xi)}-\frac{A_{\perp} \eta}{d(1+\eta \xi)}
$$

- Combine with A_{1} proton from CLAS12
- Extract the polarized PDF for up and down quarks

E12-06-110

Measure inclusive $\vec{n}\left(e, e^{\prime}\right)$ spin asymmetries for $\|$ and \perp target spin using ${ }^{3} \mathrm{He}$ target.

Semi-inclusive DIS

Semi-Inclusive Meson Production

- (e, é) DIS probes sums of quarks and anti-quarks. $\sum e_{q}^{2}(q(x)+\bar{q}(x))$
- By tagging DIS with mesons, gain sensitivity to quark flavours.
- At high energies the SIDIS process factorizes into a hard virtual photon-quark interaction and a subsequent quark hadronization, cross section can be decomposed as a products of quark distribution functions and fragmentation functions
- Factorization \rightarrow Independence of the hard-scattering on z and hadronization/fragmentation on quark momentum x

$$
\frac{1}{\sigma_{\left(, e^{\prime}\right)}} \frac{d \sigma}{d z}(e p \rightarrow h X)=\frac{\sum_{q} e_{q}^{2} f_{q}(x) D_{q}^{h}(z)}{\sum_{q} e_{q}^{2}(x) f_{q}(x)} \quad \begin{aligned}
& z=E_{m} / v \\
& f_{q}(x): \text { parton distribution function } \\
& D_{q}^{h}(z): \text { fragmentation function }
\end{aligned}
$$

Semi-Inclusive DIS

SIDIS: Major part of JLab 12 GeV program.

Hall C focus:
Precision Cross sections
L/T Separated
P_{t} dependence (TMD)
6 GeV experiment showed:

Duality in (e, e' $\pi^{ \pm}$)
Factorization at low Q^{2}

$$
\frac{1}{\sigma_{\left(e, e^{\prime}\right)}} \frac{d \sigma}{d z}(e p \rightarrow h X)=\frac{\sum_{q} e_{q}^{2} f_{q}(x) D_{q}^{h}(z)}{\sum_{q} e_{q}^{2}(x) f_{q}(x)} \begin{aligned}
& f_{q}(x) \\
& D_{q}^{h}(z)
\end{aligned} \quad z=E_{m} / v
$$

E00-108: Verifying factorization, $\mathrm{p} / \mathrm{d}\left(\mathrm{e}, \mathrm{e}^{\prime} \pi^{ \pm}\right)$

Z-Dependence of cross section

$$
\begin{array}{r}
\sigma \sim \Sigma e_{q}{ }^{2} q(\underset{\sim}{x}) D_{q}{ }^{\pi}\left(\frac{z}{4}\right) \\
\text { factorization }
\end{array}
$$

- Good agreement between data and simple quarkparton model for \mathbf{Z} < 0.65 (assuming factorization, CTEQ5M pdfs, Binnweiss fragmentation)
- Excess in the data at $z>0.7$ reflects the Δ resonance in unobserved fragments
- $\mathbf{M}_{\mathbf{x}}{ }^{2}$ directly related to \mathbf{z} :

$$
\begin{aligned}
W^{\prime 2} & =m_{p}^{2}+Q^{2} \cdot\left(1 / x^{-1}\right)(1-z) \\
& \left.\rightarrow W^{\prime 2} \equiv M_{x}^{2} \dashv 1-z\right)
\end{aligned}
$$

Phys. Rev. C 85, 015202 (2012)

P_{t} dependence of SIDIS

Assume the quark and fragmentation functions widths are Gaussian in k_{t} and p_{t} and $\left\langle p_{t}^{2}\right\rangle=\left\langle z^{2} k_{t}^{2}\right\rangle+\left\langle p_{t}^{2}\right\rangle$
Allow separate widths for u and d quarks, and separate widths for D^{+}and D^{-}
$\sigma_{\text {SIDIS }} \sim \sigma_{\text {DIS }}(d N / d z) b \exp \left(-b P_{t}^{2}\right)$
$b^{ \pm}{ }_{u}=\left(z^{2} \mu_{u}{ }^{2}+\mu_{ \pm}{ }^{2}\right)^{-1}$ and $b_{d}^{ \pm}=\left(z^{2} \mu_{d}{ }^{2}+\mu_{ \pm}^{2}\right)^{-1}$
Final transverse momentum of pion P_{t} arises from convolving the struck quark transverse momentum k_{t} with transverse momentum generated during fragmentation process p_{t}

Quarks \& Fragmentation Function Transverse Momentum

Fit results for agree with HERMES D-/D+ (0.42), and LO GRV d/u ratio with (0.40)
Fit tends to larger k_{t} width for u quarks than for $d\left(\mu_{d}{ }^{2} \sim 0\right)$
Fragmentation width μ_{+}and μ_{-}are similar (as predicted by Anselmino)

E12-09-017 TMD of SIDIS at 12 GeV

Map transverse momentum dependence of (e,e' π) over range:

$$
0.2<x<0.5,2<Q^{2}<5 \mathrm{GeV}^{2}, 0.3<z<0.5 \text { and } \mathrm{P}_{\mathrm{t}}<0.5 \mathrm{GeV}
$$

Combine with CLAS12 data to constrain transverse widths of u/d quarks and fragmentation functions
Obtain some statistics on transverse momentum dependence of (e,e'K)

E12-09-017 TMD of SIDIS at 12 GeV

Map transverse momentum dependence of ($\mathrm{e}, \mathrm{e}^{\prime} \pi$) over range:

$$
0.2<x<0.5,1.8<Q^{2}<5 \mathrm{GeV}^{2}, 0.3<z<0.5 \text { and } \mathrm{P}_{\mathrm{t}}<0.5 \mathrm{GeV} .
$$

Broad kinematic range will lessen assumptions in fitting P_{T} distributions.
Combine with CLAS12 data to constrain transverse widths of u / d quarks and fragmentation functions.
Obtain some statistics on transverse momentum dependence of (e, $e^{\prime} \mathrm{K}^{+}$).

E12-06-104 SIDIS R $=\sigma_{L} / \sigma_{T}$

Cornell data of 70's

R increasing as $z \rightarrow$?

Little known about R in SIDIS.
For $z<1$, expect $R \sim 1 / Q^{2}$. But for $z=1$ (deep exclusive) expect $R \sim Q^{2}$

E12-06-104 plans z scans at $Q^{2}=2.0$ ($\mathrm{x}=0.2$) and $4.0 \mathrm{GeV}^{2}(\mathrm{x}=0.4)$

Will cover range $\mathrm{Q}^{2}=1.5-5.0 \mathrm{GeV}^{2}$, with data for both H and D at $\mathrm{Q}^{2}=2$ GeV^{2}

Scan P_{T} up to $\sim 1 \mathrm{GeV}$
Also $\mathrm{R}_{\text {SIDIS }}{ }^{K^{+}}$and $\mathrm{R}_{\text {SIDIS }}{ }^{K}$

E12-09-002 Charge Symmetry Violation Test with SIDIS

Charge Symmetry:

$$
m_{p} \sim m_{n}
$$

Energy levels mirror nuclei
p vs n scattering lengths
Charge Symmetry is assumed in parton distribution functions:

$$
u^{p}(x)=d^{n}(x)
$$

If Charge Symmetry, then $d\left(e, e^{\prime} \pi^{+}\right) / d\left(e, e^{\prime} \pi^{-}\right)$depends on fragmentation functions not PDFs

Precision $\mathrm{N} \pi^{+} / \mathrm{N} \pi^{-}$ratio gives $C(x)=\delta d(x)-\delta u(x)$ where:

$$
\delta u(x)=u^{p}(x)-d^{n}(x), \delta d(x)=d^{p}(x)-u^{n}(x)
$$

Experiment E12-09-002:
Measure $d\left(e, e^{\prime} \pi^{-}\right) / d\left(e, e^{\prime} \pi^{+}\right)$to 1% over range of kinematics
$p\left(e, e^{\prime} \pi^{+}\right), p\left(e, e^{\prime} \pi^{-}\right)$for further factorization tests
Requires careful control of $\pi^{+} \pi^{-}$detection efficiency, radiative corrections

E12-09-002 Charge Symmetry Violation Test with SIDIS

Measure $d\left(e, e^{\prime} \pi^{-}\right)$and $d\left(e, e^{\prime} \pi^{+}\right)$yields $Y^{\pi-}$ and $Y^{\pi+}$

$$
R_{\text {meas }}^{D}(x, y)=\frac{4 Y^{\pi^{-}}-Y^{\pi^{+}}}{Y^{\pi^{+}}-Y^{\pi^{-}}}
$$

$$
D(z)\left(\frac{5}{2}+R_{\text {meas }}^{D}\right)+\operatorname{CSV}(x)=B(x, z)
$$

$D(z)$ from favored/unfavored fragmentation function ratios.
$B(x, y)$ calculated from sea quark PDFs

$$
\begin{aligned}
& \operatorname{CSV}(x)=\frac{-4(\delta d-\delta u)}{3\left(u_{v}-d_{v}\right)} \\
& \delta d=d^{p}(x)-u^{n}(x) \\
& \delta u=u^{p}(x)-d^{n}(x)
\end{aligned}
$$

Measure $\mathrm{R}(\mathrm{x}, \mathrm{z})$ over a grid in x and z to extract $\mathrm{D}(\mathrm{z})$ and $\operatorname{CSV}(\mathrm{x})$.

Exclusive Reactions

E12-11-009 Neutron Electric Form Factor

Proposal kinematics, PAC suggested two points at $Q^{2}=6.9$ and near $Q^{2}=3.5$

$\mathrm{Q}^{2}(\mathrm{GeV} / \mathrm{c})^{2}$	4.0	5.2	6.9
$\mathrm{E}_{0}(\mathrm{GeV})$	4.4	6.6	11.0
$\theta_{\mathrm{e}}(\mathrm{deg})$	36.3	26.3	16.8

E12-06-101 Pion Form Factor

Measure exclusive $\mathrm{p}\left(\mathrm{e}, \mathrm{e}^{\prime} \pi^{+}\right) \mathrm{n}$ as a function of t and small $\theta_{\pi व}$
$2 \pi \frac{d^{2} \sigma}{d t d \phi}=\epsilon \frac{d \sigma_{\mathrm{L}}}{d t}+\frac{d \sigma_{\mathrm{T}}}{d t}+\sqrt{2 \epsilon(\epsilon+1)} \frac{d \sigma_{\mathrm{LT}}}{d t} \cos \phi+\epsilon \frac{d \sigma_{\mathrm{TT}}}{d t} \cos 2 \phi$.

Jefferson Lab

E12-07-105 Scaling of exclusive (e, $\mathrm{e}^{\prime} \pi$) cross sections

- At sufficiently high $\mathrm{Q}^{2}\left(>10 \mathrm{GeV}^{2}\right)$, meson electroproduction should factorize into hard (quark-knockout) and soft (nucleon GPD and meson formation).
- To leading order σ_{L}, should scale as $1 / Q^{6}$ and σ_{T} as $1 / Q^{8}$. (At fixed x and t).
- 12 GeV experiment (E12-07-105) will extend range of scaling tests and test dominance of $\sigma_{\mathrm{L}} .\left(\mathrm{Q}^{2} \rightarrow 9 \mathrm{GeV}^{2}\right)$

6 GeV Hall C Data

Horn et al., Phys. Rev. C. 78, 058201 (2008)

E12-09-011 L-T separated $\left(e, e^{\prime} \mathrm{K}\right)$ at $5-11 \mathrm{GeV}$

E12-09-011: T. Horn (CUA), G. Huber (U of Regina), P. Markowitz (FIU)

Projected errors on scaling and form factor.
Study kaon production mechanism and feasibility of Kaon form factor extraction up to $\mathrm{Q}^{2}=3 \mathrm{GeV}^{2}$

Nuclei

E12-06-107 Pion/Proton Transparency at 12 GeV

$\mathrm{A}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right)$ at 12 GeV (projected results)

$\mathrm{A}\left(\mathrm{e}, \mathrm{e}^{\prime} \pi^{+}\right)$at 12 GeV (projected results)

E12-06-107

EMC Effect in Light Nuclei

New measurement of the EMC effect in light nuclei in Hall C
\rightarrow Both A and ρ dependent fits fail
\rightarrow Be structure suggests "local density" picture Cluster structure dominated by $2 \mathrm{a}+n$ Ave. density low, but all protons in a-like clusters

12 GeV E12-10-008 (A. Daniel et.al) will measure in DIS region (higher Q^{2}), add broader range of nuclei and cover $x=0.1-1.0$.
 Jeffer'son Lab

E12-11-107 Backward nucleon detector - EMC effect

$\mathrm{d}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{N}_{\text {backward }}\right)$
Detect spectator proton or neutron to tag in medium structure function on offshell nucleon.

Possible GEMs for vertex reconstfuction

Future Facilities

Proposed neutrals (e.g. π^{0} / γ) detector facility in Hall C

- Desire to augment spectrometers with capability for precision measurements with neutral final states. (L/T separations)
$p\left(e, e^{\prime} \pi^{0}\right)$ exclusive and semi-inclusive
L/T separated cross sections
(PR12-11-111)
p(e,e' γ) DVCS (separation of twist-2 and twist-3 contributions)
- Remove SHMS HB magnet, install 0.3 Tm sweeping magnet (copy features of HB to minimize stray field on beam)
- Add $25 \mathrm{msr} \pi^{0} / \gamma$ detector using $1116 \mathrm{PbWO}_{4}$ blocks (with temperature-controlled frame) (PbWO_{4} from Shanghai Institute of Ceramics)
- Dedicated beam pipe with large critical angle + shielding

Hypernuclear Spectroscopy

See talks by L. Tang and
C. Chen on past and possible future hypernuclear
spectroscopy program in Hall C
${ }^{28} \mathrm{Si}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{K}^{+}\right)^{28}{ }_{\Lambda} \mathrm{Al}$ (Hall C E01-011)

Trigger I: HKS(K) \& Enge(π) for Decay Pion Spectroscopy Experiment Trigger II: HKS(K) \& HES(e') for Mass Spectroscopy Experiment

UNH/Xemed Target Loop Concept

- Compress polarized ${ }^{3} \mathrm{He}$ and deliver to aluminum target cell
- Non-ferrous diaphragm compressor achieves 3000 psi (~200 bar)
- Returns through a pressure-reducing orifice

External polarizer

20 Bar
Non-ferrous diaphragm compressor

200 Bar

Recirculates at 25 SLPM Optical

9 cm aluminum target cell Cooled with $\mathrm{LN} \mathrm{N}_{2}$ to 77 K Thickness of $0.5 \mathrm{~g} / \mathrm{cm}^{2}$

Hall C 12 GeV Startup

Approved 12 GeV Hall C proposals 1

Title	Days	Grade
Measurement of the Charged Pion Form Factor to High Q ${ }^{2}$ (E12-06-101) Spokespersons: G.M. Huber (huberg@uregina.ca), D. Gaskell	52	A
Measurement of the Ratio $R=\sigma_{\mathrm{L}} / \sigma_{\mathrm{T}}$ in Semi-Inclusive DIS (E12-06-104) Spokespersons: R. Ent, (ent@jlab.org) ,H. Mkrtchyan	40	A-
Inclusive Scattering from Nuclei at $x>1$ in the quasielastic and deeply inelastic regimes. (E12-06-105) Spokespersons: J. Arrington (johna@anl.gov), D. Day	32	A-
The Search for Color Transparency at 12 GeV (E12-06-107) Spokespersons: D. Dutta (ddutta@jlab.org), R. Ent	26	$B+$
Measurement of Neutron Spin Asymmetry $\mathrm{A}_{1 \text { n }}$ in the Valence Quark Region Using an 11 GeV Beam and a Polarized ${ }^{3} \mathrm{He}$ Target in Hall C (E12-06-110) Spokespersons: J.-P. Chen, X. Zheng (xiaochao@jlab.org), Z. E. Meziani, G. D. Cates	36	A
Neutron g_{2} and d_{2} at High Q2 in Hall C (E12-06-121) Spokespersons: B. Sawatzky (brads@jlab.org) , W. Korsch , Z.-E. Meziani, T. Averett	29	A-
Scaling Study of the L-T Separated Pion Electroproduction Cross Section at 11 GeV (E12-07-105) Spokespersons:: T. Horn (hornt@jlab.org), G .Huber	36	A-
Charge Symmetry Violating Quark Distributions via Precise Measurement of pi+/pi- Ratios in Semi inclusive Deep Inelastic Scattering (E12-09-002) Spokespersons:K. Hafidi (kawtar@anl.gov),D. Gaskell, D. Dutta	22	A-

Approved 12 GeV Hall C proposals 2

Title	Days	Grade
Studies of the L-T separated kaon electroproduction cross sections from $5-11 \mathrm{GeV}$ (E12-09-011) Spokespersons:T. Horn (hornt@jlab.org), G .Huber, P. Markowitz	40	B+
Transverse Momentum Dependence of Semi-Inclusive Pion Production (E12-09-017) Spokespersons:R. Ent (ent@jlab.org), H. Mkrtchyan,P. Bosted	32	A-
Precision measurements of the F_{2} structure function at large x in the resonance region and beyond (E12-10-002) Spokespersons:S.P. Malace (simona@jlab.org) , I.M. Niculescu, C. Keppel	13	$B+$
Deuteron Electro-Disintegration at Very High Missing Momenta (E12-10-003) Spokespersons: W. Boeglin (boeglin@fiu.edu), M. Jones	21	B^{+}
Detailed studies of the nuclear dependence of F_{2} in light nuclei (E12-10-008) Spokespersons: A. Daniel, J. Arrington, D. Gaskell (gaskelld@jlab.org)	23	A-
Proton Recoil Polarization in the ${ }^{4} \mathrm{He}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right)^{3} \mathrm{H},{ }^{2} \mathrm{H}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right) \mathrm{n}$, and ${ }^{1} \mathrm{H}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right)$ Reactions (E)12-11-102) Spokespersons: E. Brash , R. Ransome, G. M. Huber, S. Strauch (strauch@jlab.org)	37	$B+$
In Medium Nucleon Structure Functions, SRC, and the EMC effect (PR-12-11-107) Spokespersons:O. Hen, L.B. Weinstein (weinstei@jlab.org), S. Gilad	40	B+
The Neutron Electric Form Factor at Q^{2} up to $7(\mathrm{GeV} / \mathrm{c})^{2}$ from the Reaction ${ }^{2} \mathrm{H}(\mathrm{e}, \mathrm{e} n)^{1} \mathrm{H}$ via Recoil Polarimetry (E12-11-009) Spokespersons:B. D. Anderson J. Arrington (johna@anl.gov) ,S. Kowalski, R. Madey, B. Plaster, A.Yu. Semenov	50	$B+$

Timeline for Hall C Upgrade

- May $2012 \mathrm{Q}_{\text {weak }}$ ended and removal ($\mathrm{Q}_{\text {weak }}+\mathrm{SOS}$) started
- Fall 2012 SHMS installation begins

Magnet	Delivery Date
Q1	Dec 2013
Dipole	Dec 2013
Q2,Q3	May, Oct 2014
3° Horizontal Bender	Dec 2013

- Late 2013-14 Detector installation
- 2015 SHMS commissioning

Commissioning Experiments in Hall C

Early running plans - Year 1

2015: ~25 PAC days - Commissioning "Experiment"
9 days of E12-06-107 search for color transparency
A(e,e'p) only - "easy" coincidence measurement
E12-10-002 $\mathrm{F}_{2}{ }^{\mathrm{p}, \mathrm{d}}$ structure functions at large x
Momentum scans help understand acceptance
2 days E12-10-108 EMC Effect
Integrate light nuclei with F_{2} run,
Point target helps acceptance studies.

3 days of E12-10-003 d(e,e'p)
If time available
Push to lower cross sections

Early running plan - Years 2+

2016:
E12-09-017 P_{t} dependence of basic SIDIS cross sections
Push particle ID capabilities of SHMS
E12-09-002 Precise $\pi^{+} \pi^{-}$ratios in SIDIS - Charge Symmetry
Detector efficiencies
E12-09-011 L/T separated $p\left(e, e^{\prime} K^{+}\right)$factorization test
Easiest L/T separation

2017:
E12-06-121 $\quad \mathrm{g}_{2}{ }^{\mathrm{n}}$ measurements at fixed Q^{2}
First polarized ${ }^{3} \mathrm{He}$ target experiment in Hall C
Likely follow by E12-06-110 high $\times \mathrm{A}_{1}{ }^{\text {n }}$

2018?: First Large Installation: Neutron Form Factor?

Hall C 12 GeV Era Summary

- Hall C will have two well shielded magnetic spectrometers able to exploit full beam energy, measure low cross sections with precision, LT separations
- Approved program of structure functions, SIDIS, exclusive reactions and nuclear effects (EMC, $X>1$, Transparency)
- Initial run plan in place
- Additions to base equipment:
- Neutron and proton polarimeters
- Backward nucleon detector
- Possible future facilities
- π^{0} / γ detector
- Hypernuclear program
- High luminosity ${ }^{3} \mathrm{He}$ target

Backup slides

Meson Duality Experiment - E00-108

- Coincidence measurement HMS + SOS

- z-dependence ($z=0.3-1.0$) at $x=0.3, Q^{2}=2.3$
- x-dependence $(x=0.25-0.6)$ at $z=0.55$
- $\theta_{\pi}\left(0^{\circ}-8^{\circ}\right)$ at fixed $z=0.55$ and $x=0.3$ (P_{t} scan)

$$
\begin{aligned}
& \mathrm{e}+\mathrm{p} \longrightarrow \mathrm{e}^{\prime}+\pi^{ \pm}+\mathrm{X} \\
& \mathrm{e}+\mathrm{D} \longrightarrow \mathrm{e}^{\prime}+\pi^{ \pm}+\mathrm{X}
\end{aligned}
$$

- 4 cm LH2 and LD2 targets
e^{-}- Al (dummy) to estimate cryo target wall background
- Beam energy 5.5 GeV
- Beam current 20-70 $\mu \mathrm{A}$

Semi-inclusive $\pi^{ \pm}$electroproduction to the region $M_{x}{ }^{2}>1.5 \mathrm{GeV}$

D^{-} / D^{+}from Deuteron π^{+}to π^{-}ratio

- Near-independence from x, as expected
- Results agree with HERIMES \& EMC

$$
\begin{aligned}
& \qquad \begin{array}{c}
\sigma_{d}^{\pi^{+}} \propto\left(4 D^{+}+D^{-}\right)(u+d) \\
\sigma_{d}^{\pi^{-}}
\end{array}\left(4 D^{-}+D^{+}\right)(u+d) \\
& \frac{\sigma_{d}^{\pi^{+}}}{\sigma_{d}^{\pi^{-}}}=\frac{4 D^{+}+D^{-}}{4 D^{-}+D^{+}} \\
& \text {D-/D+}=(4-\mathrm{r}) /(4 \mathrm{r}-1) \\
& \text { where } \mathrm{r}=\sigma_{\mathrm{d}}\left(\pi^{+}\right) / \sigma_{\mathrm{d}}\left(\pi^{-}\right) \\
& \quad \mathbf{z}=\mathrm{E}_{\mathbf{\pi}} / \mathrm{v}
\end{aligned}
$$

Closed (open) symbols
reflect data after (before)
events from coherent ρ
subtracted.

- The resonant contribution at $\mathrm{z}>0.8$ cancel out! (Close \& Isgur)

Verifying factorization - Cross section ratios

For $\mathbf{z}<0.7$ ratios are independent of z as expected from quark-model

E12-10-008 EMC Effect in Light Nuclei

12 GeV experiment that will map out A-dependence in more detail
Very hard to explain large ${ }^{3} \mathrm{He}-{ }^{9} \mathrm{Be}$ difference in ρ-dependent fit Hard to explain large ${ }^{3} \mathrm{He}-{ }^{4} \mathrm{He}$ difference in mass-dependent fit

Modified fit does somewhat better, but worse for heavier nuclei
"Local density" works well, provides different predictions
Use ab initio GFMC calc. of 2-body correlation function to calculate average nucleon 'overlap'

E12-11-107 Experimental Method

Use factorization of the $\mathrm{d}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{N}_{\mathrm{S}}\right)$ cross section into the cross section $\left(\mathrm{F}_{2}\right)$ and the distorted momentum distribution.

Keeping the recoil kinematics fixed and measuring x-section ratios at 2 different x^{\prime}, the ratio is:

$$
\frac{d^{4}}{d x_{1}{ }^{\prime} d Q^{2} d \vec{p}_{S}} / \frac{d^{4}}{d x_{2}{ }^{\prime} d Q^{2} d \vec{p}_{S}}=\left(K_{1} / K_{2}\right)\left[F_{2}\left(x_{1}{ }^{\prime}, \quad{ }_{s}, p_{T}, Q_{1}^{2}\right) / F_{2}\left(x_{2}{ }^{\prime}, \quad{ }_{s}, p_{T}, Q_{1}^{2}\right)\right]
$$

For $\mathrm{x}_{1}{ }^{\prime} \approx 0.45-0.6$ and $\mathrm{x}_{2}{ }^{\prime} \approx 0.3$ we shall measure:
$F_{2}\left(x_{1}{ }^{\prime},{ }_{s}, p_{T}, Q_{1}^{2}\right) / F_{2}\left(x_{2}{ }^{\prime},{ }_{s}, p_{T}, Q_{1}{ }^{2}\right)=\left(\frac{d^{4}}{d x_{1}{ }^{\prime} d Q^{2} d \vec{p}_{s}} / K_{1}\right) /\left(\frac{d^{4}}{d x_{2} d Q^{2} d \vec{p}_{s}} / K_{2}\right)$
Integrating over $\theta_{p q}>107^{\circ}$ (small FSI), we'll compare the measured ratio $f\left(\alpha_{s}\right)$ to the BONUS results for free neutron, and to the free proton $S F$ in $d\left(e, e^{\prime} n_{s}\right)$

$$
\begin{aligned}
x^{\prime} & \left.\left.=\frac{Q^{2}}{2 p q}=\frac{Q^{2}}{2\left[\left(M_{d}\right.\right.} E_{S}\right)+\vec{p}_{s} \times \vec{q}\right] \\
& =\left(\begin{array}{ll}
E_{s} & p_{s}^{z}
\end{array}\right) / m_{s}
\end{aligned}
$$

x^{\prime} is x-Bjorken for the moving struck nucleon
\vec{p}_{s} maps to $\left({ }_{s}, p_{T}\right)$

E12-11-107 Experimental Method (cont.)

> Minimize experimental and 1 theoretical ncertainties by measuring cross-section ratios
$\begin{aligned} & \frac{{ }_{D I S}\left(x_{\text {high }}^{\prime}, Q_{1}^{2}, \vec{p}_{s}\right)}{{ }_{\text {DIS }}^{\prime}\left(x_{\text {low }}^{\prime}, Q_{2}^{2}, \vec{p}_{s}\right)} \times \frac{{ }_{\text {free }}^{\text {free }}\left(x_{\text {low }}, Q_{2}^{2}\right)}{\text { DIS }}\left(x_{\text {high }}, Q_{1}^{2}\right)\end{aligned} R_{F S I}=\frac{F_{2}^{\text {bound }}\left(x_{\text {high }}^{\prime}, Q_{1}^{2}, \vec{p}_{s}\right)}{F_{2}^{\text {free }}\left(x_{\text {high }}, Q_{1}^{2}\right)}$
FSI correction factor
$x_{\text {high }}^{\prime} \quad 0.45$
$0.25 x_{\text {low }}^{\prime} \quad 0.35$ No EMC is expected

$$
x_{B}=\frac{Q^{2}}{2 m_{N}}
$$

