JLab Hall C 12 GeV Upgrade

The Fourth Workshop on Hadron Physics in China and Opportunities in US, July 16-20, 2012 Stephen A. Wood Hall C

Outline

- Hall C equipment overview
- Hall C 12 GeV physics program
 - Structure functions
 - Semi-inclusive reactions/SIDIS
 - Exclusive reactions
 - Nuclear effects
- Future directions
 - Hall C startup plans

Hall C after 12 GeV Upgrade

- Beam Energy: 2 11 GeV/c
- Super High Momentum Spectrometer (SHMS)
 - Horizontal Bender, 3 Quads, Dipole
 - $P \rightarrow 11 \text{ GeV/c}$
 - dP/P 0.5 1.0x10⁻³
 - Acceptance: 4msr, 30%
 - $5.5^{\circ} < \theta < 40^{\circ}$
 - Good e⁻/π⁻ e⁺/π⁺/K⁺/p PID
- High Momentum Spectrometer (HMS)
 - P \rightarrow 7.5 GeV/c
 - dP/P 0.5 1.0x10⁻³
 - Acceptance: 6.5msr, 18%
 - $10.5^{\circ} < \theta < 90^{\circ}$
 - Good e⁻/π⁻ e⁺/π⁺/K⁺/p PID
- Minimum opening angle: 17°

- Well shielded detector huts
- Ideal facility for:
 - Rosenbluth (L/T) separations
 - Exclusive reactions
 - Low cross sections (neutrino level)

SHMS Detectors

Main SHMS steel structure pieces at JLab

SHMS dipole yoke steel

Ningbo Jansen Mechanical Corp.

Structure Functions

E12-10-002 Precision F₂ structure function at high x

- Extend proton and deuteron F_2 structure function precision measurements to larger x and Q² by measuring p(e,e') and d(e,e') cross sections in the resonance region and beyond up to Q² ~ 17 GeV² and x ~ 0.99
- Need precision (~3%) data on proton and deuteron F_2 at large x to:
 - Constrain Parton Distribution
 Functions at large x
 - Distinguish different mechanisms of spin-flavor symmetry breaking (d/u at large x) with precision
 F₂ⁿ/F₂^d (combining with
 BONUS/Hall B (E12-06-113)
 F2n/F2d)
 - Extend studies of local quarkhadron duality in proton and neutron F2

Jefferson Lab

Neutron Spin Asymmetry A_{1N} in Valence Quark region

Jefferson Lab

Thomas

E12-06-110

Measure inclusive $\overrightarrow{n}(e,e')$ spin asymmetries for $| \ |$ and \perp target spin using ³He target.

Semi-inclusive DIS

Semi-Inclusive Meson Production

• (e,e') DIS probes sums of quarks and anti-quarks. $\sum e_q^2(q(x) + \overline{q}(x))$

- At high energies the SIDIS process factorizes into a hard virtual photon-quark interaction and a subsequent quark hadronization, cross section can be decomposed as a products of quark distribution functions and fragmentation functions
- Factorization \rightarrow Independence of the hard-scattering on z and hadronization/fragmentation on quark momentum x

$$\frac{1}{\sigma_{(e,e')}} \frac{d\sigma}{dz} (ep \to hX) = \frac{\sum_{q} e_q^2 f_q(x) D_q^h(z)}{\sum_{q} e_q^2(x) f_q(x)} \qquad \begin{array}{l} z = E_m / \nu \\ f_q(x) : \text{ parton distribution function} \\ D_q^h(z) : \text{ fragmentation function} \end{array}$$

Semi-Inclusive DIS

- SIDIS: Major part of JLab 12 GeV program.
- Hall C focus: Precision Cross sections L/T Separated P_t dependence (TMD)
- 6 GeV experiment showed: Duality in (e,e'π[±]) Factorization at low Q²

$$\frac{1}{\sigma_{(e,e')}} \frac{d\sigma}{dz} (ep \to hX) = \frac{\sum_{q} e_q^2 f_q(x) D_q^h(z)}{\sum_{q} e_q^2(x) f_q(x)} \qquad f_q(x) \qquad z = E_m / v$$

 $z = E_{\pi}/\nu$

E00-108: Verifying factorization, p/d(e,e' π^{\pm})

$$\sigma \sim \Sigma e_q^2 q(\mathbf{x}) D_q^{\pi}(\mathbf{z})$$

- Good agreement between data and simple quarkparton model for z< 0.65 (assuming factorization, CTEQ5M pdfs, Binnweiss fragmentation)
- Excess in the data at z > 0.7 reflects the Δ resonance in unobserved fragments

$$W'^{2} = m_{p}^{2} + Q^{2} \cdot \left(\frac{1}{x} - 1\right)(1 - z)$$
$$\rightarrow W'^{2} \equiv M_{x}^{2} \sim (1 - z)$$

P_t dependence of SIDIS

Assume the quark and fragmentation functions widths are Gaussian in k_t and p_t and $\langle P_t^2 \rangle = \langle z^2 k_t^2 \rangle + \langle p_t^2 \rangle$

Allow separate widths for u and d quarks, and separate widths for D⁺ and D⁻

 $\sigma_{\text{SIDIS}} \sim \sigma_{\text{DIS}} (dN/dz) b exp(-bP_t^2)$

$$b_{u}^{\pm} = (z^{2}\mu_{u}^{2} + \mu_{\pm}^{2})^{-1}$$
 and $b_{d}^{\pm} = (z^{2}\mu_{d}^{2} + \mu_{\pm}^{2})^{-1}$

Final transverse momentum of pion P_t arises from convolving the struck quark transverse momentum k_t with transverse momentum generated during fragmentation process p_t

Quarks & Fragmentation Function Transverse Momentum

Jefferson Lab

b → b_{q}^{\pm} (b_{u}^{\pm} & b_{d}^{\pm}), and b_{q}^{\pm} = ($z^{2}\mu_{q}^{2} + \mu_{\pm}^{2}$)⁻¹

 $\sigma_{p}^{\pi+} = C[4c_{1} \cdot exp(-b_{u}^{+}P_{t}^{2}) + (d/u)(D^{-}/D^{+})c_{2} \cdot exp(-b_{d}^{-}P_{t}^{2})]$ $\sigma_{p}^{\pi-} = C[4(D^{-}/D^{+})c_{3} \cdot exp(-b_{u}^{-}P_{t}^{2}) + (d/u)c_{4} \cdot exp(-b_{d}^{+}P_{t}^{2})]$ $\sigma_{n}^{\pi+} = C[4(d/u)c_{4} \cdot exp(-b_{d}^{+}P_{t}^{2}) + (D^{-}/D^{+})c_{3} \cdot exp(-b_{u}^{-}P_{t}^{2})]$ $\sigma_{n}^{\pi-} = C[4(d/u)(D^{-}/D^{+})c_{2} \cdot exp(-b_{d}^{-}P_{t}^{2}) + c_{1} \cdot exp(-b_{u}^{+}P_{t}^{2})]$

Fit values:

- D⁻/D⁺ = 0.43±0.01; d/u = 0.39±0.03
- $\mu_u^2 = 0.07 \pm 0.03 \text{ GeV}^2$ $\mu_d^2 = -0.01 \pm 0.05 \text{ GeV}^2$
- $\mu_{+}^{2} = 0.18 \pm 0.02 \text{ GeV}^{2}$ $\mu_{-}^{2} = 0.14 \pm 0.02 \text{ GeV}^{2}$

Fit results for agree with HERMES D⁻/D⁺ (0.42), and LO GRV d/u ratio with (0.40)

Fit tends to larger k_t width for u quarks than for d ($\mu_d^2 \sim 0$)

Fragmentation width μ_{+} and μ_{-} are similar (as predicted by Anselmino)

E12-09-017 TMD of SIDIS at 12 GeV

Map transverse momentum dependence of (e,e' π) over range:

 $0.2 < x < 0.5, 2 < Q^2 < 5 \text{ GeV}^2$, $0.3 < z < 0.5 \text{ and } P_t < 0.5 \text{ GeV}$

Combine with CLAS12 data to constrain transverse widths of u/d quarks and fragmentation functions

Obtain some statistics on transverse momentum dependence of (e,e'K)

E12-09-017 TMD of SIDIS at 12 GeV

Map transverse momentum dependence of (e,e' π) over range:

 $0.2 < x < 0.5, 1.8 < Q^2 < 5 \text{ GeV}^2, 0.3 < z < 0.5 \text{ and } P_t < 0.5 \text{ GeV}.$

Broad kinematic range will lessen assumptions in fitting P_T distributions.

Combine with CLAS12 data to constrain transverse widths of u/d quarks and fragmentation functions.

Obtain some statistics on transverse momentum dependence of (e,e'K⁺).

E12-06-104 SIDIS $R = \sigma_L / \sigma_T$

Cornell data of 70's

Little known about R in SIDIS.

For z<1, expect R ~ $1/Q^2$. But for z=1 (deep exclusive) expect R ~ Q^2

E12-06-104 plans z scans at $Q^2 = 2.0$ (x = 0.2) and 4.0 GeV² (x = 0.4)

Will cover range $Q^2 = 1.5 - 5.0 \text{ GeV}^2$, with data for both H and D at $Q^2 = 2$ GeV²

Scan P_T up to ~ 1 GeV

Also
$$\mathsf{R}_{\mathsf{SIDIS}}^{\mathsf{K}^+}$$
 and $\mathsf{R}_{\mathsf{SIDIS}}^{\mathsf{K}^-}$

E12-09-002 Charge Symmetry Violation Test with SIDIS

Charge Symmetry:

 $m_p \sim m_n$

Energy levels mirror nuclei

p vs n scattering lengths

Charge Symmetry is assumed in parton distribution functions:

 $U^p(x) = d^n(x)$

If Charge Symmetry, then $d(e,e'\pi^+)/d(e,e'\pi^-)$ depends on fragmentation functions not PDFs

Precision $N\pi^+/N\pi^-$ ratio gives $C(x) = \delta d(x) - \delta u(x)$ where:

 $\delta u(x) = u^p(x) - d^n(x), \ \delta d(x) = d^p(x) - u^n(x)$

Experiment E12-09-002:

Measure $d(e,e'\pi)/d(e,e'\pi)$ to 1% over range of kinematics

 $p(e,e'\pi^+)$, $p(e,e'\pi^-)$ for further factorization tests

Requires careful control of π^+ π^- detection efficiency, radiative corrections

E12-09-002 Charge Symmetry Violation Test with SIDIS

Measure d(e,e' π -) and d(e,e' π +) yields Y^{π -} and Y^{π +}

$$R_{meas}^{D}(x, y) = \frac{4Y^{\pi^{-}} - Y^{\pi^{+}}}{Y^{\pi^{+}} - Y^{\pi^{-}}}$$
Measure R(x,z) over a grid in x and z to extract D(z) and CSV(x).

$$D(z)(\frac{5}{2} + R_{meas}^{D}) + CSV(x) = B(x, z)$$
D(z) from favored/unfavored fragmentation function ratios.
B(x,y) calculated from sea quark PDFs

$$CSV(x) = \frac{-4(\delta d - \delta u)}{3(u_{v} - d_{v})}$$

$$\delta d = d^{p}(x) - u^{n}(x)$$

$$\delta u = u^{p}(x) - d^{n}(x)$$

$$D(z) = \frac{-4(\delta d - \delta u)}{3(u_{v} - d_{v})}$$

$$\delta d = d^{p}(x) - u^{n}(x)$$

$$\delta u = u^{p}(x) - d^{n}(x)$$

Formalism of Londergan, Pang and Thomas PRD54, 3154 (1996)

Exclusive Reactions

E12-11-009 Neutron Electric Form Factor

E12-06-101 Pion Form Factor

E12-07-105 Scaling of exclusive (e,e' π) cross sections

- At sufficiently high Q² (> 10 GeV²), meson electroproduction should factorize into hard (quark-knockout) and soft (nucleon GPD and meson formation).
- To leading order σ_L , should scale as $1/Q^6$ and σ_T as $1/Q^8$. (At fixed x and t).
- 12 GeV experiment (E12-07-105) will extend range of scaling tests and test dominance of σ_L . (Q² \rightarrow 9 GeV²)

6 GeV Hall C Data

Horn et al., Phys. Rev. C. 78, 058201 (2008)

E12-09-011 L-T separated (e,e'K) at 5-11 GeV

E12-09-011: T. Horn (CUA), G. Huber (U of Regina), P. Markowitz (FIU)

Nuclei

E12-06-107 Pion/Proton Transparency at 12 GeV

A(e,e'p) at 12 GeV (projected results)

A(e,e'π⁺) at 12 GeV (projected results)

E12-06-107

EMC Effect in Light Nuclei

E12-11-107 Backward nucleon detector – EMC effect

Future Facilities

Proposed neutrals (e.g. π^0/γ) detector facility in Hall C

• Desire to augment spectrometers with capability for precision measurements with neutral final states. (L/T separations)

p(e,e'π⁰) exclusive and semi-inclusive L/T separated cross sections (PR12-11-111)

p(e,e'γ) DVCS (separation of twist-2 and twist-3 contributions)

• Remove SHMS HB magnet, install 0.3 Tm sweeping magnet (copy features of HB to minimize stray field on beam)

• Add 25 msr π^0/γ detector using 1116 PbWO₄ blocks (with temperature-controlled frame) (PbWO₄ from Shanghai Institute of Ceramics)

Dedicated beam pipe with large critical angle
+ shielding

Beam direction

Hypernuclear Spectroscopy

Trigger I: HKS(K) & Enge(π) for Decay Pion Spectroscopy Experiment Trigger II: HKS(K) & HES(e') for Mass Spectroscopy Experiment

UNH/Xemed Target Loop Concept

- Compress polarized ³He and deliver to aluminum target cell
- Non-ferrous diaphragm compressor achieves 3000 psi (~200 bar)
- Returns through a pressure-reducing orifice

Hall C 12 GeV Startup

Approved 12 GeV Hall C proposals 1

Title	Days	Grade
Measurement of the Charged Pion Form Factor to High Q ² (E12-06-101) Spokespersons: G.M. Huber (huberg@uregina.ca), D. Gaskell	52	А
Measurement of the Ratio R = σ_L/σ_T in Semi-Inclusive DIS (E12-06-104) Spokespersons: R. Ent, (ent@jlab.org), H. Mkrtchyan	40	A-
Inclusive Scattering from Nuclei at x > 1 in the quasielastic and deeply inelastic regimes. (E12- 06-105) Spokespersons: J. Arrington (johna@anl.gov), D. Day	32	A-
The Search for Color Transparency at 12 GeV (E12-06-107) Spokespersons: D. Dutta (ddutta@jlab.org), R. Ent	26	B+
Measurement of Neutron Spin Asymmetry A _{1n} in the Valence Quark Region Using an 11 GeV Beam and a Polarized ³ He Target in Hall C (E12-06-110) <i>Spokespersons: JP. Chen, X.</i> <i>Zheng (xiaochao@jlab.org), Z. E. Meziani, G. D. Cates</i>	36	A
Neutron g ₂ and d ₂ at High Q ² in Hall C (E12-06-121) Spokespersons: B. Sawatzky (brads@jlab.org), W. Korsch, ZE. Meziani, T. Averett	29	A-
Scaling Study of the L-T Separated Pion Electroproduction Cross Section at 11 GeV (E12-07-105) <i>Spokespersons:. T. Horn (hornt@jlab.org) , G .Huber</i>	36	A-
Charge Symmetry Violating Quark Distributions via Precise Measurement of pi+/pi- Ratios in Semi inclusive Deep Inelastic Scattering (E12-09-002) <i>Spokespersons:K. Hafidi</i> (kawtar@anl.gov),D. Gaskell, D. Dutta	22	A-

Approved 12 GeV Hall C proposals 2

Title	Days	Grade
Studies of the L-T separated kaon electroproduction cross sections from 5-11 GeV (E12-09-011) Spokespersons: T. Horn (hornt@jlab.org), G.Huber, P. Markowitz	40	B+
Transverse Momentum Dependence of Semi-Inclusive Pion Production (E12-09-017) Spokespersons:R. Ent (ent@jlab.org), H. Mkrtchyan,P. Bosted	32	A-
Precision measurements of the F ₂ structure function at large x in the resonance region and beyond (E12-10-002) Spokespersons:S.P. Malace (simona@jlab.org), I.M. Niculescu, C. Keppel	13	B+
Deuteron Electro-Disintegration at Very High Missing Momenta (E12-10-003) Spokespersons: W. Boeglin (boeglin@fiu.edu), M. Jones	21	B+
Detailed studies of the nuclear dependence of F ₂ in light nuclei (E12-10-008) Spokespersons: A. Daniel, J. Arrington, D. Gaskell (gaskelld@jlab.org)	23	A-
Proton Recoil Polarization in the ⁴ He(e,e'p) ³ H, ² H(e,e'p)n, and ¹ H(e,e'p) Reactions (E)12-11-102) Spokespersons: E. Brash, R. Ransome, G. M. Huber, S. Strauch (strauch@jlab.org)	37	B+
In Medium Nucleon Structure Functions, SRC, and the EMC effect (PR-12-11-107) Spokespersons: O. Hen, L.B. Weinstein (weinstei@jlab.org), S. Gilad	40	B+
The Neutron Electric Form Factor at Q ² up to 7 (GeV/c) ² from the Reaction ² H(e, e n) ¹ H via Recoil Polarimetry (E12-11-009) <i>Spokespersons:B. D. Anderson J. Arrington (johna @anl.gov)</i> , <i>S. Kowalski, R. Madey, B. Plaster, A.Yu. Semenov</i>	50	B+

Timeline for Hall C Upgrade

- May 2012 Q_{weak} ended and removal (Q_{weak} +SOS) started
- Fall 2012 SHMS installation begins

Magnet	Delivery Date
Q1	Dec 2013
Dipole	Dec 2013
Q2,Q3	May, Oct 2014
3º Horizontal Bender	Dec 2013

- Late 2013-14 Detector installation
- 2015 SHMS commissioning

Commissioning Experiments in Hall C

Early running plans – Year 1

2015: ~25 PAC days – Commissioning "Experiment"

9 days of E12-06-107 search for color transparency

A(e,e'p) only – "easy" coincidence measurement

E12-10-002 $F_2^{p,d}$ structure functions at large x

Momentum scans help understand acceptance

2 days E12-10-108 EMC Effect

Integrate light nuclei with F_2 run,

Point target helps acceptance studies.

3 days of E12-10-003 d(e,e'p)

If time available

Push to lower cross sections

Early running plan – Years 2+

2016:

E12-09-017 P_t dependence of basic SIDIS cross sections

Push particle ID capabilities of SHMS

- E12-09-002 Precise $\pi^+\pi^-$ ratios in SIDIS Charge Symmetry Detector efficiencies
- E12-09-011 L/T separated p(e,e'K⁺) factorization test Easiest L/T separation

2017:

E12-06-121 g₂ⁿ measurements at fixed Q² First polarized ³He target experiment in Hall C Likely follow by E12-06-110 high x A₁ⁿ

2018?: First Large Installation: Neutron Form Factor?

Hall C 12 GeV Era Summary

- Hall C will have two well shielded magnetic spectrometers able to exploit full beam energy, measure low cross sections with precision, LT separations
- Approved program of structure functions, SIDIS, exclusive reactions and nuclear effects (EMC, X>1, Transparency)
- Initial run plan in place
- Additions to base equipment:
 - Neutron and proton polarimeters
 - Backward nucleon detector
- Possible future facilities
 - π^0/γ detector
 - Hypernuclear program
 - High luminosity ³He target

Backup slides

Meson Duality Experiment - E00-108

e⁻

• Coincidence measurement HMS + SOS

- z-dependence (z=0.3-1.0) at x=0.3, Q²=2.3
- x-dependence (x=0.25-0.6) at z=0.55
- θ_{π} (0°-8°) at fixed z=0.55 and x=0.3 (P_t scan)

 $\begin{array}{ccc} \mathbf{e} + \mathbf{p} & \longrightarrow & \mathbf{e}' + \pi^{\pm} + \mathbf{X} \\ \mathbf{e} + \mathbf{D} & \longrightarrow & \mathbf{e}' + \pi^{\pm} + \mathbf{X} \end{array}$

- 4 cm LH2 and LD2 targets
- Al (dummy) to estimate cryo target wall background
 - Beam energy 5.5 GeV
 - Beam current 20-70 µA

Semi-inclusive π^{\pm} electroproduction to the region $M_x^2 > 1.5$ GeV

D⁻/D⁺ from Deuteron π^+ to π^- ratio

 $\sigma_{d}^{\pi^{+}} \propto (4D^{+} + D^{-})(u + d)$ $\sigma_{d}^{\pi^{-}} \propto (4D^{-} + D^{+})(u + d)$ $\frac{\sigma_{d}^{\pi^{+}}}{\sigma_{d}^{\pi^{-}}} = \frac{4D^{+} + D^{-}}{4D^{-} + D^{+}}$ D'/D+ = (4 - r) / (4r - 1) where r = $\sigma_{d}(\pi^{+})/\sigma_{d}(\pi^{-})$ z=E_{\pi}/v

- Near-independence from x, as expected
- Results agree with HERMES & EMC

Closed (open) symbols reflect data after (before) events from coherent ρ subtracted.

• The resonant contribution at z>0.8 cancel out ! (Close & Isgur)

Verifying factorization – Cross section ratios

For z<0.7 ratios are independent of z as expected from quark-model

E12-10-008 EMC Effect in Light Nuclei

12 GeV experiment that will map out A-dependence in more detail Very hard to explain large ³He – ⁹Be difference in ρ-dependent fit Hard to explain large ³He – ⁴He difference in mass-dependent fit

Modified fit does somewhat better, but worse for heavier nuclei

"Local density" works well, provides different predictions

Use ab initio GFMC calc. of 2-body correlation function to calculate average nucleon 'overlap'

Thomas Jefferson National Accelerator Facility

E12-11-107 Experimental Method

Use factorization of the $d(e,e'N_s)$ cross section into the cross section (F₂) and the distorted momentum distribution.

Keeping the recoil kinematics fixed and measuring x-section ratios at 2 different x', the ratio is:

 $\frac{d^4 S}{dx_1' dQ^2 d\vec{p}_S} \bigg/ \frac{d^4 S}{dx_2' dQ^2 d\vec{p}_S} = \big(K_1/K_2\big) \Big[F_2^*(x_1', \partial_S, p_T, Q_1^2) \big/ F_2^*(x_2', \partial_S, p_T, Q_1^2)\Big]$

For $x_1' \approx 0.45 - 0.6$ and $x_2' \approx 0.3$ we shall measure:

$$F_{2}^{*}(x_{1}', \partial_{s}, p_{T}, Q_{1}^{2}) / F_{2}^{*}(x_{2}', \partial_{s}, p_{T}, Q_{1}^{2}) = \left(\frac{d^{4}S}{dx_{1}' dQ^{2} d\vec{p}_{s}} / K_{1}\right) / \left(\frac{d^{4}S}{dx_{2}' dQ^{2} d\vec{p}_{s}} / K_{2}\right)$$

Integrating over $\theta_{pq} > 107^{\circ}$ (small FSI), we'll compare the measured ratio f(α_s) to the BONUS results for free neutron, and to the free proton SF in d(e,e'n_s)

$$x' = \frac{Q^2}{2p_m q^m} = \frac{Q^2}{2[(M_d - E_s)W + \vec{p}_s \times \vec{q}]}$$

 $\partial_{s} = (E_{s} - p_{s}^{z})/m_{s}$

x' is x-Bjorken for the moving struck nucleon

$$\vec{p}_s$$
 maps to (\mathcal{A}_s, p_T)

E12-11-107 Experimental Method (cont.)

Minimize experimental and theoretical ncertainties by measuring cross-section ratios

$$\frac{S_{DIS}(x_{high}^{'}, Q_{1}^{2}, \vec{p}_{s})}{S_{DIS}(x_{low}^{'}, Q_{2}^{2}, \vec{p}_{s})} \times \frac{S_{DIS}^{free}(x_{low}^{'}, Q_{2}^{2})}{S_{DIS}^{free}(x_{high}^{'}, Q_{1}^{2})} \times R_{FSI} = \frac{F_{2}^{bound}(x_{high}^{'}, Q_{1}^{2}, \vec{p}_{s})}{F_{2}^{free}(x_{high}^{'}, Q_{1}^{2})}$$

x' = x from a moving nucleon

x' = x from a moving nucleon x'_{high} ³ 0.45

FSI correction factor

0.25
$$x'_{low}$$
 x'_{low} 0.35 No EMC is expected

$$x'_{B} = \frac{Q^{2} (For d)}{2p_{m}q^{m}} = \frac{Q^{2}}{2[(M_{d} - E_{S})W + \vec{p}_{S} \times \vec{q}]}$$

