HYPERNUCLEAR PHYSICS USING CEBAF BEAM

PAST AND FUTURE

Liguang Tang Hampton University/JLAB

4th Workshop on Hadron Physics In China and Opportunities with JLAB 12GeV July 16-20, 2012

INTRODUCTION – BARYONIC INTERACTIONS

Baryonic interaction (*B-B*) is an important part of nuclear force that builds the "world"

M~1.4 M

INTRODUCTION – $J^{P}=1/2^{+}$ BARYON FAMILY

INTRODUCTION – HYPERNUCLEAR PHYSICS

x To understand YN and YY interactions

- + Producing Y inside of the nucleus
- + Extract YN and YY interactions by studying the many body system

 ΛN and $\Lambda \Lambda$ are the most fundamental interactions. Since Λ decays only weakly ($\Lambda \rightarrow \pi N$ or $\Lambda N \rightarrow NN$) thus long lifetime, mass spectroscopy Λ -hypernuclei becomes possible analog to the nuclear mass spectroscopy

* To study short range interactions in baryonic interactions (OPE is absent in ΛN interaction)

- \star To better explore nuclear structure using Λ as a probe (not Pauli blocked by nucleons) and to explore new degree of freedom
 - Model the baryonic many body system
 - + Study the role and the single particle nature of Λ in various nuclear medium and density

THEORETICAL DESCRIPTION: 2B POTENTIAL

* Shell Model with 2-B AN Effective Potential $(p_N s_A)$ $V_{AN} = (V_0(r) + (V_{\sigma}(r) s_N \cdot s_A + (V_A(r) L_{NA} \cdot s_A + (V_N(r) L_{NA} \cdot s_N + (V_T(r) S_{12})))$ $V_{AN} = (V_0(r) + (V_{\sigma}(r) s_N \cdot s_A + (V_A(r) L_{NA} \cdot s_A + (V_N(r) L_{NA} \cdot s_N + (V_T(r) S_{12}))))$

5 Radial Integrals: Coefficients of operators

× Additional Contribution: Λ - Σ coupling

- + $\Lambda N \leftrightarrow \Sigma N$
- + Contribute to the repulsive core
- + Introduce an additional term: $\Lambda\Sigma$

× Observables:

- + Ground state single Λ binding energy
- + Excitation spectroscopy (levels and level spacing)
- + Production and production cross sections
- + Decays

BASIC PRODUCTION MECHANISMS

CERN → BNL → KEK & DA ØNE → J-PARC (Near Future) Disadvantage: Lack absolute energy calibration and resolution

(e. e'K) Reaction

CEBAF at JLAB

(MAMI-C Near Future)

Advantage: Absolute energy calibration & high resolution

Neutron rich hypernuclei

RELIABILITY OF EMULSION RESULTS USING (K⁻_{STOP}, π) REACTION

Important source of data but lack statistics and resolution

Reliability: Questionable

ACHIEVEMENT OF GAMMA SPECTROSCOPY 22 GAMMA TRANSITIONS WERE SO FAR OBSERVED

IMPORTANCE OF RESOLUTION AND MASS CALIBRATION **EXAMPLE:** ${}^{12}C(\pi^+, K^+){}^{12}_{\Lambda}C$ MASS SPECTRA WITH MESON BEAM

calibration (no free neutron target)

ELECTRO-PRODUCTION USING CEBAF BEAM

- × High quality primary beam allows high precision mass spectroscopy on Λ -hypernuclei
- \star Producing Λ and Σ^0 from proton simultaneously allows absolute mass calibration precise binding energy
- × Mirror and neutron rich hypernuclei comparing those from (π^+ ,K⁺) reaction
- Spectroscopy dominated by high spin-stretched spin-flip states
- × Results are important in determining $\Lambda \Sigma$, S_N and V_0 terms from Λ_s states and S_Λ term from states with Λ at higher orbits

HALL C TECHNIQUE IN 6GEV PROGRAM

- Zero degree e' tagging
- High e' single rate
- Low beam luminosity
- High accidental rate
- Low yield rate
- A first important milestone for hypernuclear physics with electroproduction

- New HKS spectrometer \rightarrow large $\Delta \Omega$
- ★ Tilted Enge spectrometer → Reduce e' single rate by a factor of 10⁻⁵
- High beam luminosity
- Accidental rate improves 4 times
- High yield rate
- First possible study beyond p shell

HALL C TECHNIQUE IN 6GEV PROGRAM

Common Splitter Magnet

- $\clubsuit \text{ New HES spectrometer} \rightarrow \text{larger } \Delta \Omega$
- Same Tilt Method
- High beam luminosity
- Further improves accidental rate
- Further improves resolution and accuracy
- High yield rate
- First possible study for A > 50

6GEV PROGRAM HIGHLIGHTS

6GEV PROGRAM HIGHLIGHTS- CONT.

6GEV PROGRAM TECHNIQUE SUMMARY

- × Hall A experiment (Pair of Septums + two HRS)
 - Advantage: Almost no accidental background and be able to study elementary process at low Q² at forward angle
 - Disadvantage: Low yield rate and cannot study heavier hypernuclei
- Hall C experiment (Common Splitter + HKS + HES/Enge)
 - Advantage: High yield rate and high precision in binding energy measurement
 - Disadvantage: High accidental background and solid targets only

Future program: Combination

EXPERIMENTAL LAYOUT IF IN HALL C

Trigger I: HKS(K) & Enge(π) for Decay Pion Spectroscopy Experiment Trigger II: HKS(K) & HES(e') for Mass Spectroscopy Experiment

Technical Features of Future Program

- High quality with low background
- × High precision on binding energy and high resolution
- × High yield rate which leads to wide range of physics:
 - + Elementary production at forward angle
 - + Detailed and precise level structure of light and medium heavy hypernuclei (shell models)
 - Precise shell structure of heavy hypernuclei (single particle nature and field theory)
- Key High efficiency and productivity:

one exp. \approx Four 6GeV experiments

- × New physics: Decay pion spectroscopy (Light Hypernuclei)
 - + Precise ground state B_{Λ}
 - + Determination of ground state J^p
 - + Search for neutron rich limit (high Isospin states $\rightarrow A\Sigma$)

DECAY PION SPECTROSCOPY TO STUDY Λ -HYPERNUCLEI

DECAY PION SPECTROSCOPY FOR LIGHT AND EXOTIC Λ -HYPERNUCLEI

Fragmentation Process

MAMI-C Short Test Run on Decay Pion Spectroscopy

Central Mom. : 133.5 MeV/c \rightarrow B_A(⁴_AH) : ~ -1.60 MeV Width : 97 keV/c FWHM Target straggling loss was not corrected Spec-C momentum calibration was not yet done

SUMMARY

- Hypernuclear Physics is an important part of nuclear physics
- Program with CEBAF beam is the only one that provides precise B_A and features as *Precision mass spectroscopy program* Future program will be highly productive