Highlights of JLab Parity Violation Electron Scattering Results from the Past Year

Xiaochao Zheng (Univ. of Virginia)
July, 2012

- What the photons can't tell us, Z^{0} can!
-PVDIS and Electroweak Neutral Couplings
-Outlook for the 12 GeV Program - SoLID, Moller...

Jefferson Lab

What is the Nucleon Made of?

The simple quark model of hadrons

Gell-Mann (Nishijima) 1961-1964/1969

We Learned A Lot In the Past 40 Years!

*Fit to data from DIS, Drell-Yan, Collider etc.

High Energy Virtual Photons Told Us A Lot, but They Are Not Perfect:
\rightarrow Virtual photon cross sections can't tell quarks from anti-quarks - sensitive to $q+\bar{q}$, never $q-\bar{q}$!
*They don't "see" neutral particles such as the neutron!

We need a "second opinion", perhaps from $-i \frac{g_{Z}}{2} \gamma^{\mu}\left[g_{V}^{e}-g_{A}^{e} \gamma^{5}\right]$ a less talkative friend - the Z^{0}.

[^0]

Signature of Weak Interaction (Z^{0} Exchange) - Parity Violation Asymmetry Between L- and R-handed Electrons

- In the Standard Model, weak interaction current = V (vector) minus A (axial-vector)
- Parity violation is from the cross products $V \times \mathrm{A}$:

$$
\begin{aligned}
& C_{1 \mathrm{q}} \equiv 2 g_{A}^{e} g_{V}^{q} \\
& C_{2 \mathrm{q}} \equiv 2 g_{V}^{e} g_{A}^{q}
\end{aligned}
$$

fermions	$g_{A}^{f}=I_{3}$	$g_{V}^{f}=I_{3}-2 Q \sin ^{2} \theta_{W}$
$\nu_{\mathrm{e}}, \nu_{\mu}$	$\frac{1}{2}$	$\frac{1}{2}$
$e-, \mu-$	$-\frac{1}{2}$	$-\frac{1}{2}+2 \sin ^{2} \theta_{W}$
u, c	$\frac{1}{2}$	$\frac{1}{2}-\frac{4}{3} \sin ^{2} \theta_{W}$
d, s	$-\frac{1}{2}$	$-\frac{1}{2}+\frac{2}{3} \sin ^{2} \theta_{W}$

X. Zheng, July 2012

Parity Violation in DIS

(Z_{0} sees the quarks)

Parity Violation - Signature of Weak Interaction

 And Z^{0} Exchange- In the Standard Model, weak interaction current = V (vector) minus A (axial-vector)
- Parity violation is from the cross products $V \times \mathrm{A}$:

$$
\begin{aligned}
& C_{1 \mathrm{qq}} \equiv 2 g_{A}^{e} g_{V}^{q} \\
& C_{2 \mathrm{q}} \equiv 2 g_{V}^{e} g_{A}^{q}
\end{aligned}
$$

Both have potential in new physics search

fermions	$g_{A}^{f}=I_{3}$	$g_{\nu}^{f}=I_{3}-2 Q \sin ^{2} \theta_{W}$
$v_{e} v_{\mu}$	$\frac{1}{2}$	$\frac{1}{2}$
$e-\mu-$	$-\frac{1}{2}$	$-\frac{1}{2}+2 \sin ^{2} \theta_{W}$
u, c	$\frac{1}{2}$	$\frac{1}{2}-\frac{4}{3} \sin ^{2} \theta_{W}$
d, s	$-\frac{1}{2}$	$-\frac{1}{2}+\frac{2}{3} \sin ^{2} \theta_{W}$

Weak Vector and Axial Charges of Quarks

all are 1σ limit with recent PVES data and Qweak (projected) SAMPLE without JLab data

Qweak in Hall C (2010-May 2012): ${ }^{1} \mathrm{H}+\vec{e} \rightarrow e^{\prime}+p$ factor of 5 improvement in $Q_{w}^{p}=-2\left(2 C_{1 u}+C_{1 d}\right)$, New Physics scale from 0.9 to 2 TeV
X. Zheng, July 2012

Parity Violation in Deep Inelastic Scattering

$$
A_{P V}=\frac{G_{F} Q^{2}}{\sqrt{2} \pi \alpha}[a(x)+Y(y) b(x)]
$$

$$
\begin{aligned}
& x \equiv x_{\text {Bjorken }} \quad y \equiv 1-E^{\prime} / E \\
& q_{i}^{+}(x) \equiv q_{i}(x)+\bar{q}_{i}(x) \\
& q_{i}^{-}(x)=q_{i}^{V}(x) \equiv q_{i}(x)-\bar{q}_{i}(x)
\end{aligned}
$$

$$
a(x)=\frac{1}{2} g_{A}^{e} \frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma}}=\frac{1}{2} \frac{\sum_{i} C_{1 \mathrm{i}} Q_{i} f_{i}^{+}(x)}{\sum_{i} Q_{i}^{2} f_{i}^{+}(x)}
$$

$$
b(x)=g_{V}^{e} \frac{F_{3}^{\gamma Z}}{F_{1}^{\gamma}}=\frac{1}{2} \frac{\sum_{i} C_{2 \mathrm{i}} Q_{i} f_{i}^{-}(x)}{\sum_{i} Q_{i}^{2} f_{i}^{+}(x)}
$$

For an isoscalar target
$\left({ }^{2} \mathrm{H}\right)$, structure functions largely simplifies:

$$
a(x)=\frac{3}{10}\left(2 C_{1 \mathrm{u}}-C_{1 \mathrm{~d}}\right)\left(1+\frac{\dot{0}: 6 . s^{+}}{\left.u^{+}+\dot{d} \cdot\right)_{0}^{+}}\right)_{0}
$$

PVDIS: Only way to measure C_{29}

at high x
X. Zheng, July 2012

PVDIS at 6 GeV (JLab E08-011)

\rightarrow Ran in Oct-Dec 2009, 100uA, 90\% pol beam, 20-cm LD2 target

- $Q^{2}=1.1$ and $1.9 \mathrm{GeV}^{2}$.
- Scaler-based fast counting DAQ (\$100k) specifically built to accommodate the 500 kHz DIS rate with 10^{4} pion rejection
- Postdoc: Ramesh Subedi
- Graduate Students: Xiaoyan Deng (UVa), Huaibo Ding (China), Kai Pan (MIT), Diancheng Wang (UVa),

Beam Polarization (Compton/Moller)

Moller: 88.47% +/- 2.0\% (syst, rel) (6.0GeV)

$$
90.4 \%+/-1.7 \% \text { (syst, rel) }(4.8 \mathrm{GeV})
$$

Compton: $89.45 \%+/-1.92 \%$ (syst, rel)

Quality of Asymmetry Measurement

(blinded pair-wise asymmetry):

DAQ Deadtime Correction from Timing Simulation

Left Arm Deadtime(DIS\#1) vs I

@100uA	RES \#3	RES \#4	RES \#5	RES \#7	DIS \#1	DIS \#2
Narrow	1.48%	2.22%	2.06%	0.73%	1.45%	0.89%
Wide	1.68%	2.62%	2.36%	0.80%	1.64%	0.93%

Timing simulation checked with FADC, TDC, pulser... Uncertainty: take 30\% relative

Correction Due to Pion Contamination

 (work of K. Pan and D. Wang) Pion asymmetry is observed to be non-zero:| | Left Kine\#1 | Left Kine\#2 | Right Kine\#2 |
| :--- | :--- | :--- | :--- |
| A narrow (ppm) | $-48.01(7.54)$ | $-14.00(14.89)$ | $-9.51(4.22)$ |
| electron fraction | $0.56(0.16)$ | $0.04(0.04)$ | $0.011(0.001)$ |
| A corrected | $-30.85(12.84)$ | $-8.91(16.31)$ | $-8.04(4.27)$ |
| (ppm) | | | |

Pion correction uncertainty is the combination of:

$$
\frac{\Delta A_{e}}{A_{e}}=\Delta f \oplus f \frac{\Delta A_{\pi}}{A_{e}}
$$

	Kine\#1	Kine\#2
Correction to Ae	$1.00019(0.00014)$	$1.00024(0.00003)$

Corrections for Resonance Background

Monte Carlo Simulation

- Implemented in MC: ionization loss, internal+ext. brem
- Measured resonance PV asymmetries (10-15\% stat.) to constrain inputs of two resonance PV models: Delta agree at $2 \sigma, 2^{\text {nd }}$ and $3^{\text {rd }}$ resonances agree within 1σ.
\rightarrow Corrections to A DIS: ~(2 $\pm 2) \%\left(1.1 \mathrm{GeV}^{2}\right) ;(2 \pm 0.4) \%\left(1.9 \mathrm{GeV}^{2}\right)$
X. Zheng, July 2012

Corrections and Uncertainties, Kine \#1

blinding factor $=-12.00665 \mathrm{ppm}$		Correction	Uncertainty
$\begin{aligned} & \text { D } \\ & \stackrel{0}{1} \\ & \frac{1}{0} \\ & \vdots \\ & \vdots \\ & \stackrel{D}{5} \end{aligned}$	Raw (Dithering) A_{d} (ppm)	-66.43	2.68
	$\Delta P_{b} / P_{b}$	13.4\%	2.0\%
	Deadtime correction	1.49\%	0.44\%
	PID efficiency	0.048\%	0.008\%
$\begin{aligned} & \underline{O} \\ & \underline{O} \\ & \underline{N} \end{aligned}$	Radiative Correction	2.1\%	2.0\%
	Q ${ }^{2}$	N/A	0.725\%
	Transverse Asymmetry	N/A	0.55\%
	Target Endcap	0.017\%	0.003\%
	False Asymmetry	N/A	0.16\%
	Pair Production	0.025\%	0.005\%
	Pion Dilution	0.019\%	0.014\%
	Statistical (ppm)	3.15	
	Systematics	3.01\%	

X. Zheng, July 2012

Corrections and Uncertainties, Left Kine \#2

blinding factor $=-12.00665 \mathrm{ppm}$		Correction	Uncertainty
	Raw (Dithering) A_{d} (ppm)	-128.48	10.43
	$\Delta P_{b} / P_{b}$	12.0\%	1.33\%
	Deadtime correction	0.84\%	0.25\%
	PID efficiency	0.091\%	0.013\%
$\begin{aligned} & \underline{0} 0 \\ & \underline{\underline{O}} \\ & \underline{\underline{0}} \end{aligned}$	Radiative Correction	1.9\%	0.43\%
	Q^{2}	N/A	0.575\%
	Transverse Asymmetry	N/A	0.56\%
	Target Endcap	0.023\%	0.005\%
	False Asymmetry	N/A	0.1\%
	Pair Production	0.52\%	0.052\%
	Pion Dilution	0.025\%	0.004\%
	Statistical (ppm)	12.08	
	Systematics	1.64\%	

X. Zheng, July 2012

Corrections and Uncertainties, Right Kine \#2

blinding factor $=-12.00665 \mathrm{ppm}$		Correction	Uncertainty
	Raw (Dithering) $A_{d}($ ppm $)$	-128.56	6.58
	$\Delta P_{b} / P_{b}$	12.7\%	1.6\%\%
	Deadtime correction	0.86\%	0.25\%
	PID efficiency	0.161\%	0.018\%
$\begin{aligned} & \underline{\varrho} 9 \\ & \underline{\underline{O}} \\ & \underline{\underline{0}} \end{aligned}$	Radiative Correction	1.9\%	0.43\%
	Q^{2}	N/A	0.640\%
	Transverse Asymmetry	N/A	0.56\%
	Target Endcap	0.023\%	0.005\%
	False Asymmetry	N/A	0.03\%
	Pair Production	0.48\%	0.048\%
	Pion Dilution	0.024\%	0.002\%
	Statistical (ppm)	7.67	
	Systematics	1.96\%	

X. Zheng, July 2012

Preliminary Asymmetries Compared with Calculation

 $x_{\mathrm{bj}}=0.241, \mathrm{Q}^{2}=1.085 \mathrm{GeV}^{2}: ~ A d=-92.27 \pm 3.15$ (stat.) ± 2.77 (syst) ppm $x_{b j}=0.295, Q^{2}=1.901 \mathrm{GeV}^{2}: A d=-163.60 \pm 6.48$ (stat.) ± 3.05 (syst) ppmStill missing: $\gamma-Z$ box corrections (1% for E158)

$Q^{2}=1.901$	$x=0.295$				
$F_{2}, F_{2}{ }^{\gamma Z}, F_{3}^{\gamma Z}$	"static (quark model) limit"	CTEQ/ JLab (NLO)	$\begin{aligned} & \text { MSTW2008 } \\ & \text { LO+QPM } \end{aligned}$	MSTW2008 NLO+QPM	MSTW2008 NNLO+QPM
A(C_{1} term)	-145.65	-147.74	-146.58	-147.09	-147.05
$A\left(C_{2}\right.$ term)	-14.59	-13.62	-13.12	-13.41	-13.50

Current Extraction Method

- Use MSTW2008 NLO, 3-flavor PDF to construct $F_{2^{\gamma}}$ and $F_{1,3}{ }^{\gamma Z}$ in the quark-parton model. Different methods differ by no more than 0.5% in the a_{1} term and 2% in the a_{3} term.
- Use $C_{1,2}$ from J. Erler: evaluated at measured Q^{2}, preliminary γ-Z box correction included.
- run $\alpha(E M)$ to measured Q^{2} to account for vacuum pol.
- HT correction to a_{3} is estimated but not applied.
- Corrections not done: γ - γ box (denominator), interference between Z and γ - γ box (numerator). This correction is about 1% for E158. Using 1% for PVDIS for now.
- Subtract the calculated a_{1} term from the measured asymmetry, and compare the rest with the calculate a_{3} term.
X. Zheng, July 2012

Preliminary $C_{2 q}$ from $Q^{2}=1.9 \mathrm{GeV}^{2}$ Point

Preliminary $C_{2 q}-\beta_{H T}$ Correlation from
$Q^{2}=1.1$ and $1.9 \mathrm{GeV}^{2}$ Combined
$2 C_{2 \mathrm{u}}-C_{2 \mathrm{~d}}$

$$
A_{P V}=A_{P V}^{E W}\left(1+\frac{\beta_{H T}}{(1-x)^{3} Q^{2}}\right)
$$

Prescott (using This Experiment
$\left.S M C_{1}\right)$
-0.2

- No obvious Q^{2} dependence (HT) at the 6 GeV precision.
- If using $1.1 \mathrm{GeV}^{2}$ point to extract $C_{2} \rightarrow 10 \%$ better.
X. Zheng, July 2012

Coherent PVDIS Program with SoLID @ 11 GeV

X. Zheng, July 2012

SolID Physics topics:

- PVDIS deuteron (180 days) $C_{2}, \sin ^{2} \theta_{w}$, CSV, diquarks,
- PVDIS proton (90 days) - d/u
- PV with ${ }^{3} \mathrm{He}$ (LOI)
- SIDIS - transversity, TMD, A1(?): ${ }^{3} \mathrm{He}$ (125 days), NH_{3} (Cond.)

Moller Parity-Violating Experiment: New Physics Reach (a large installation experiment with 11 GeV beam energy)

New Contact Interactions

- Expected precision comparable to the two most precise measurements from colliders, but at lower energy.
- No other
experiment with comparable precision in the forseeable future!

Summary and Perspectives

Preliminary Results:

- $C_{2 q}$ seems to agree with the SM, and non-zero by 3 sigma;
- higher order radiative corrections still need to be applied.
"New construction" experiments at JLab 12 GeV :
- PVDIS @ 11 GeV (SoLID)
- Moller @ 11 GeV
\rightarrow Thanks to our postdocs and graduate students for their hard work.
\rightarrow And our theorists friends for useful discussions.

Run-by-Run PID Analysis

Pion Contamination (Left kine\#1)

Pion Contamination (Left kine\#2)

Pion Contamination (Right kine\#2)

Scaler-Based Counting DAQ with online (hardware) PID

\rightarrow DIS region, pions contaminate, can't use integrating DAQ.

- High event rate ($\sim 500 \mathrm{KHz}$), exceeds Hall A regular DAQ's Limit (4 kHz)

FADCs (partial)
fastbus TDCs (all)
$A D C$ spectrum from regular $D A Q$,

X. Zheng, July 2012

Scaler-Based Counting DAQ with online (hardware) PID

\rightarrow DIS region, pions contaminate, can't use integrating DAQ.
\rightarrow High event rate ($\sim 500 \mathrm{KHz}$), exceeds Hall A regular DAQ's Limit (4 kHz)

(forming 6 or 8 groups)
fastbus TDCs (all)

ADC spectrum from regular DAQ,
with PVDIS electron trigger
2000
$1000-40$
1000
X. Zheng, July 2012

Compton Analyzing Power(work of D. Wang)

\rightarrow Shielding, alignment.....
\rightarrow Thickness of the lead shielding
\rightarrow Radius of the hole of the collimator

- Detector resolution, smearing
- Pileup Effect
- PMT nonlinearity
X. Zheng, July 2012

Compton Analyzing Power (work of D. Wang)

X. Zheng, July 2012

Blue: data
Red, black: simulation
$0.3 \mathrm{~cm}:<A t h>=0.04883$
$0.4 \mathrm{~cm}:<$ th> $=0.04970$

So $\Delta<$ Ath $>= \pm 1.75 \%$ (relative)

DAQ Deadtime Correction

Deadtime correction to asymmetry:

Deadtime Decomposition:

$$
A_{\text {measured }}=A_{\text {phys }}(1-\text { deadtime loss })
$$

- Group Deadtime: proportional to group rate; narrow/wide.
- Veto Deadtime: T1/GC rate; the same for all groups.
- Final OR.
- Overall Deadtime: Veto DT + Group DT + Final OR DT

[^1]
DAQ Timing Simulation (HATS)

Inputs:

1) Signal amplitude and shape (from data)
2) Rates and position-dependence (from data)
3) DAQ electronic diagram, model spec., cable delays... ...

Right arm preshower PMTs:

All Other Leadglass PMTs:

How Do We Know It Works?

Deadtime Decomposition:

- Group DT: measured by "tagger" data

- Veto DT: Using FADC data as input/proof;
- OR (final) DT: no direct data, but can estimate in theory reliably.
X. Zheng, July 2012

PID Performance - Single Run (work of K. Pan)

Electron Detection Efficiency

Pion Rejection Factor

Affects measured asymmetry (Q^{2}) if it varies over the acceptance or if there are "holes"

We extract detector efficiencies from VDC-on runs, which were taken daily

Transverse Asymmetry Background

- Transverse Asymmetry:

Correction to Ad:

 $\theta_{t r}$ very small, $\mathrm{S}_{\mathrm{V}}<2 \%, \mathrm{~S}_{\mathrm{H}}<20 \%$

Systematic Error due to Transverse Asymmetry:
0.55\% (Kine \#1)
0.56\% (Kine \#2)

Hall A Monte Carlo

(work of D. Wang)

Basic checks of HAMC:

EM Radiative Corrections

Two theory calculations for Apv in the resonance:

- Lee/Sato: Delta(1232) only
- Current: D=n+p
* On-going: with wavefunctions - for separate publication
- M. Gorshteyn (Indiana)
* whole resonance
*isospin rotation p \rightarrow n
Latest Hall C RES fit
- Toy Model:

$$
A^{R E S}=A^{D I S} \text { formula } \frac{\sigma^{R E S}}{\sigma^{\text {DIS formula }}}
$$

Res \#3 - Delta (1232) (work of D. Wang)

Resonance \#4,5,7 / Lee\&Tao
(work of D. Wang)

	Elastic	Quasi	Delta	DIS	Toy	〈Asym〉 HAMC (ppm)	Data (ppm)
Res \#4	53.9 (0.03%)	-25.4	-75.9	0	-65.0	-65.0	-73.4 ± 6.9
Res \#5	42.8	(5.26%)		(93.2%)			
Res \#7	(0.02%)	-18.0	-55.3	0	-59.9	-59.1	-60.9 ± 5.15
	(0.04%)	-44.1	(0.89%)	-98.5	-108.8	(96.8%)	-122.4
$(0.91 .3 \%)$	(66.8%)	-117.1	-118.8 ± 16.9				

Resonance \#4,5,7 (Misha)

RES\#4			RES\#5			RES\#7	
Q^{2} 1			$\begin{gathered} Q^{2} \\ 1 \\ 1 \end{gathered}$			$\begin{array}{r} Q^{2} \\ 2 \\ 1 \\ 1 \end{array}$	
0.20 .4	1.0	1.6 W	$0.20 .4$	1.0	1.6	W 0.5	1.01 .52 .0
	Elastic	Quasi	Table	DIS	Toy	<Asym> HAMC (ppm)	Data (ppm)
Res \#4	$\begin{gathered} 53.9 \\ (0.03 \%) \end{gathered}$	$\begin{aligned} & -27.1 \\ & (1.8 \%) \end{aligned}$	$\begin{gathered} -69.5 \\ (94.0 \%) \end{gathered}$	0	$\begin{aligned} & -57.7 \\ & (4.2 \% \end{aligned}$	-68.2	-73.4 ± 6.9
Res \#5	$\begin{gathered} 42.8 \\ (0.02 \%) \end{gathered}$	$\begin{gathered} -18.2 \\ (1.6 \%) \end{gathered}$	$\begin{gathered} -62.4 \\ (91.9 \%) \end{gathered}$	0	$\begin{aligned} & -65.6 \\ & (6.5 \%) \end{aligned}$	-61.9	-60.9 ± 5.15
Res \#7	$\begin{gathered} 81.4 \\ (0.04 \%) \end{gathered}$	$\begin{gathered} -44.2 \\ (0.9 \%) \end{gathered}$	$\begin{aligned} & -127.6 \\ & (62.1 \%) \end{aligned}$	$\begin{aligned} & -108.8 \\ & (31.3 \%) \end{aligned}$	$\begin{aligned} & -125.9 \\ & (5.7 \%) \end{aligned}$	-120.8	-118.8 ± 16.9

DIS Radiative Corrections (work of D. Wang)

Lee,Tao

	Elastic	QE	Delta	Dis	Toy	<Asym> HAMC	A_<Q2>	Correction Factor
Dis \#1	$\begin{gathered} 56.0 \\ (0.03 \%) \end{gathered}$	$\text { - } 1.36 .5)$	$\begin{gathered} -70.7 \\ (1.2 \%) \end{gathered}$	$\begin{gathered} -86.1 \\ (74.4 \%) \end{gathered}$	$\begin{gathered} -93.3 \\ (23.2 \%) \end{gathered}$	$\begin{gathered} -86.8 \\ (\mathrm{ppm}) \end{gathered}$	$\begin{aligned} & -88.6 \\ & (\mathrm{ppm}) \end{aligned}$	1.021
Dis \#2	$\begin{gathered} 79.7 \\ (0.03 \%) \end{gathered}$	$\begin{gathered} -45.8 \\ (0.95 \% \\ \hline \end{gathered}$	$-\frac{-1077}{(0.83 \%)}$	$\begin{aligned} & -159.3 \\ & \hline(95.5 \%) \end{aligned}$	$\begin{gathered} -118.1 \\ (2.7 \%) \end{gathered}$	$\begin{aligned} & -156.6 \\ & (\mathrm{ppm}) \end{aligned}$	$\begin{aligned} & -159.6 \\ & (\mathrm{ppm}) \end{aligned}$	1.019
Misha	Elastic	QE	Table	Dis	Toy	<Asym> HAMC	A_<Q2>	Correction Factor
Dis \#1	$\begin{gathered} 56.0 \\ (0.03 \%) \end{gathered}$	$\left\|\begin{array}{\|c\|c\|} -26.5 \\ (1.3 \%) \end{array}\right\|$	$\left(\begin{array}{c} -97.4 \\ (19.1 \%) \end{array}\right.$	$\begin{gathered} -86.1 \\ (74.4 \%) \end{gathered}$	$\begin{aligned} & -92.7 \\ & (5.3 \%) \end{aligned}$	$\begin{gathered} -87.8 \\ (\mathrm{ppm}) \end{gathered}$	$\begin{aligned} & -88.6 \\ & (\mathrm{ppm}) \end{aligned}$	1.009
Dis \#2	$\begin{gathered} 79.7 \\ (0.03 \%) \end{gathered}$	$\begin{aligned} & -45.56 \\ & (0.95 \%) \end{aligned}$	$\begin{aligned} & -117.7 \\ & (3.4 \%) \end{aligned}$	$\begin{gathered} -159.3 \\ (95.5 \%) \\ (9) \end{gathered}$	$\begin{aligned} & -147.8 \\ & (0.1 \%) \\ & (0) \end{aligned}$	$\begin{gathered} -156.7 \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} -159.6 \\ (\mathrm{ppm}) \end{gathered}$	1.019

Uncertainty is estimated using
$\Sigma f_{i} \times(\text { uncertainty of the model })_{i}$
$\max ($ error of the data, discrepancy between data and model)

Iteration of Radiative Corrections

- Correction depends on the value of $C_{2 q}$ used in DIS formula;
- We calculated rad. corr. for different $C_{2 q}$:
- No more than 2 iterations was necessary.
rad correction vs blinding factor Kine \#1

rad correction vs blinding factor Kine \#2

PVDIS Asymmetry in Full Generality

$$
\begin{aligned}
& A_{P V}=-\left(\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha}\right)\left[g_{A}^{e} Y_{1} \frac{F_{1}^{\gamma Z}}{F_{1}^{v}}+\frac{g_{V}^{e}}{2} Y_{3} \frac{F_{3}^{\gamma Z}}{F_{1}^{\gamma}}\right]=-\left(\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\right)\left[a_{1} Y_{1}+a_{3} Y_{3}\right] \quad \mathrm{g}_{\mathrm{A}, \mathrm{~V}} \text { follow PDG } \\
& C_{1 \mathrm{u}}=2 \mathrm{~g}_{A}^{e} g_{V}^{u}=-\frac{1}{2}+\frac{4}{3} \sin ^{2}\left(\theta_{W}\right) C_{1 \mathrm{~d}}=2 \mathrm{~g}_{A}^{e} g_{V}^{d}=+\frac{1}{2}-\frac{2}{3} \sin ^{2}\left(\theta_{W}\right) \\
& C_{2 \mathrm{u}}=2 \mathrm{~g}_{V}^{e} g_{A}^{u}=-\frac{1}{2}+2 \sin ^{2}\left(\theta_{W}\right) C_{2 \mathrm{~d}}=2 \mathrm{~g}_{V}^{e} g_{A}^{d}=+\frac{1}{2}-2 \sin ^{2}\left(\theta_{W}\right)
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}=2 \mathrm{~g}_{A}^{e} \frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma}}=2 \frac{\sum C_{1 q} Q_{q}[q(x)+\bar{q}(x)]}{\sum Q_{q}^{2}[q(x)+\bar{q}(x)]} \\
& a_{3}=2 \frac{g_{V}^{e}}{2} \frac{F_{3}^{\gamma Z}}{F_{1}^{\gamma}}=2 \frac{\sum C_{2 q} Q_{q}[q(x)-\bar{q}(x)]}{\sum Q_{q}^{2}[q(x)+\bar{q}(x)]}
\end{aligned}
$$

for deuteron:

$$
\sqrt{a_{1}=\frac{6\left[2 \mathrm{C}_{1 \mathrm{u}}\left(1+R_{c}\right)-C_{1 \mathrm{~d}}\left(1+R_{s}\right)\right]}{5+R_{s}+4 \mathrm{R}_{c}}} \begin{aligned}
& a_{3}=\frac{6\left[\left(2 \mathrm{C}_{2 \mathrm{u}}-C_{2 \mathrm{~d}}\right) R_{V}\right]}{5+R_{s}+4 \mathrm{R}_{c}}
\end{aligned}
$$

"no structure"
(PDG Eq.10.21)

$$
a_{1}=\frac{6}{5}\left[2 \mathrm{C}_{1 \mathrm{u}}-C_{1 \mathrm{~d}}\right] \quad a_{3}=\frac{6}{5}\left[\left(2 \mathrm{C}_{2 \mathrm{u}}-C_{2 \mathrm{~d}}\right)\right]
$$

X. Zheng, July 2012

Estimation of HT on the a_{3} term

We could use HT results on $F_{3}^{\gamma z}$ from neutrino data in 0710.0124(hep-ph) to correct the a_{3} term:
isoscalar target $\quad F_{2, T, 3}\left(x, Q^{2}\right)=F_{2, T, 3}^{\tau=2}\left(x, Q^{2}\right)+\frac{H_{2, T, 3}^{\tau=4}(x)}{Q^{2}}+\frac{H_{2, T, 3}^{\tau=6}(x)}{Q^{4}}+\ldots .$.

for any target

$$
F_{3}^{v}=2[d+s-\bar{u}-c]
$$

for deuteron

$$
F_{3}^{v}=2\left[u_{V}+d_{V}+2 \mathrm{~s}-2 \bar{c}\right]
$$

Coherent PVDIS Program with SoLID @ 11 GeV

figure from K. Kumar, Seattle 2009 EIC Workshop EW talks
X. Zheng, July 2012

Knowledge on $C_{1,2 q}$ with Projected JLab 12 GeV Results

PVDIS@11 GeV with SoLID: potential to improve C_{29} knowledge by another order of magnitude and better separation from hadronic effects.
X. Zheng, July 2012

[^0]: X. Zheng, July 2012

[^1]: X. Zheng, July 2012

