Highlights of JLab Parity Violation Electron Scattering Results from the Past Year

Xiaochao Zheng (Univ. of Virginia)

July, 2012

What the photons can't tell us, Z⁰ can!
 PVDIS and Electroweak Neutral Couplings
 Outlook for the 12 GeV Program – SoLID, Moller...

What is the Nucleon Made of?

The simple quark model of hadrons

Gell-Mann (Nishijima) 1961-1964/1969

We Learned A Lot In the Past 40 Years!

Fit to data from DIS, Drell-Yan, Collider etc.

High Energy Virtual Photons Told Us A Lot, but They Are Not Perfect:

- Virtual photon cross sections can't tell quarks from anti-quarks – sensitive to q+q
 , never q-q
- They don't "see" neutral particles such as the neutron !
- We need a "second opinion", perhaps from $-i\frac{g_Z}{2}\gamma^{\mu}[g_V^e g_A^e\gamma^5]$ a less talkative friend - the Z⁰.

Signature of Weak Interaction (Z^o Exchange) – Parity Violation Asymmetry Between L- and R-handed Electrons

In the Standard Model,

weak interaction current =
V(vector) minus A(axial-vector)

Parity violation is from the cross products V x A:

$$C_{1q} \equiv 2 g_A^e g_V^q$$
$$C_{2q} \equiv 2 g_V^e g_A^q$$

Parity Violation in DIS

 $(Z_0 \text{ sees the quarks})$

Parity Violation - Signature of Weak Interaction And Z^o Exchange

In the Standard Model,

weak interaction current =
V(vector) minus A(axial-vector)

- fermions
 $g_A^f = I_3$ $g_V^f = I_3 2Q\sin^2\theta_W$
 $\mathbf{v}_e, \mathbf{v}_{\mu}$ $\frac{1}{2}$ $\frac{1}{2}$
 e_{-}, μ_{-} $-\frac{1}{2}$ $-\frac{1}{2} + 2\sin^2\theta_W$

 u, c $\frac{1}{2}$ $\frac{1}{2} \frac{4}{3}\sin^2\theta_W$

 d, s $-\frac{1}{2}$ $-\frac{1}{2} + \frac{2}{3}\sin^2\theta_W$
- Parity violation is from the cross products V x A:

Weak Vector and Axial Charges of Quarks

all are 1 σ limit

Qweak in Hall C (2010-May 2012): ${}^{1}H + \vec{e} \rightarrow e' + p$ factor of 5 improvement in Q^{P}_{W} =-2(2C_{1u}+C_{1d}), New Physics scale from 0.9 to 2 TeV

Parity Violation in Deep Inelastic Scattering

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2} \pi \alpha} [a(x) + Y(y)b(x)]$$

$$x \equiv x_{Bjorken} \qquad y \equiv 1 - E'/E$$

$$q_i^+(x) \equiv q_i(x) + \bar{q}_i(x)$$

$$q_i^-(x) \equiv q_i^V(x) \equiv q_i(x) - \bar{q}_i(x)$$

$$a(x) = \frac{1}{2} g_{A}^{e} \frac{F_{1}^{yZ}}{F_{1}^{y}} = \frac{1}{2} \frac{\sum_{i} C_{1i} Q_{i} f_{i}^{+}(x)}{\sum_{i} Q_{i}^{2} f_{i}^{+}(x)} \qquad b(x) = g_{V}^{e} \frac{F_{3}^{yZ}}{F_{1}^{y}} = \frac{1}{2} \frac{\sum_{i} C_{2i} Q_{i} f_{i}^{-}(x)}{\sum_{i} Q_{i}^{2} f_{i}^{+}(x)}$$
For an isoscalar target
(²H), structure functions
largely simplifies:
$$a(x) = \frac{3}{10} (2C_{1u} - C_{1d}) \left(1 + \frac{0.6 s^{+}}{u^{+} + d^{+}} \right) \qquad b(x) = \frac{3}{10} (2C_{2u} - C_{2d}) \left(\frac{u_{V}^{*} + d_{V}}{u^{+} + d^{+}} \right)$$
PVDIS: Only way to measure C_{2q}
at high x

PVDIS at 6 GeV (JLab E08-011)

- Ran in Oct-Dec 2009, 100uA, 90% pol beam, 20-cm LD2 target
- ♦ Q²=1.1 and 1.9 GeV².
- Scaler-based fast counting DAQ (\$100k) specifically built to accommodate the 500kHz DIS rate with 10⁴ pion rejection
- Postdoc: Ramesh Subedi
- Graduate Students: Xiaoyan Deng (UVa), Huaibo Ding (China), Kai Pan (MIT), Diancheng Wang (UVa),

Beam Polarization (Compton/Moller)

Moller: 88.47% +/- 2.0% (syst, rel) (6.0GeV) 90.4% +/- 1.7% (syst, rel) (4.8GeV) Compton: 89.45% +/- 1.92% (syst, rel)

Quality of Asymmetry Measurement

(blinded pair-wise asymmetry):

DAQ Deadtime Correction from Timing Simulation

@100uA	RES #3	RES #4	RES #5	RES #7	DIS #1	DIS #2
Narrow	1.48%	2.22%	2.06%	0.73%	1.45%	0.89%
Wide	1.68%	2.62%	2.36%	0.80%	1.64%	0.93%

Timing simulation checked with FADC, TDC, pulser... Uncertainty: take 30% relative

Correction Due to Pion Contamination (work of K. Pan and D. Wang)

Pion asymmetry is observed to be non-zero:

	Left Kine#1	Left Kine#2	Right Kine#2
Aπ narrow (ppm)	-48.01(7.54)	-14.00(14.89)	-9.51(4.22)
electron fraction	0.56 (0.16)	0.04(0.04)	0.011(0.001)
$A\pi$ corrected	-30.85(12.84)	-8.91(16.31)	-8.04(4.27)
(ppm)			

Pion correction uncertainty is the combination of:

$$\frac{\Delta A_e}{A_e} = \Delta f \left(+ \int f \frac{\Delta A_{\pi}}{A_e} \right)$$

 Kine#1
 Kine#2

 Correction to Ae
 1.00019(0.00014)
 1.00024(0.00003)

Corrections for Resonance Background

Implemented in MC: ionization loss, internal+ext. brem

Measured resonance PV asymmetries (10-15% stat.) to constrain inputs of two resonance PV models: Delta agree at 2σ, 2nd and 3rd resonances agree within 1σ.

Corrections to A DIS: ~(2±2)% (1.1 GeV²); (2±0.4)% (1.9 GeV²)

Corrections and Uncertainties, Kine #1

blinding fac	<mark>tor = -12.00665ppm</mark>	Correction	Uncertainty
	Raw (Dithering) A _d (ppm)	-66.43	2.68
Run	$\Delta P_{b}/P_{b}$	13.4%	2.0%
-by-F	Deadtime correction	1.49%	0.44%
Run	PID efficiency	0.048%	0.008%
	Radiative Correction	2.1%	2.0%
	Q^2	N/A	0.725%
	Transverse Asymmetry	N/A	0.55%
Glo	Target Endcap	0.017%	0.003%
bal	False Asymmetry	N/A	0.16%
	Pair Production	0.025%	0.005%
	Pion Dilution	0.019%	0.014%
	Statistical (ppm)	3.	15
	Systematics	3.0	11%

Corrections and Uncertainties, Left Kine #2

blinc	ling fac	tor = -12.00665ppm	Correction	Uncertainty
		Raw (Dithering) A _d (ppm)	-128.48	10.43
	Run	$\Delta P_{b}/P_{b}$	12.0%	1.33%
	-by-F	Deadtime correction	0.84%	0.25%
	Run	PID efficiency	0.091%	0.013%
		Radiative Correction	1.9%	0.43%
		Q^2	N/A	0.575%
		Transverse Asymmetry	N/A	0.56%
	Glol	Target Endcap	0.023%	0.005%
	oal	False Asymmetry	N/A	0.1%
		Pair Production	0.52%	0.052%
		Pion Dilution	0.025%	0.004%
		Statistical (ppm)	12	.08
		Systematics	1.6	4%

Corrections and Uncertainties, Right Kine #2

blinc	ling fac	<mark>tor = -12.00665ppm</mark>	Correction	Uncertainty
		Raw (Dithering) A _d (ppm)	-128.56	6.58
	Run	$\Delta P_{b}/P_{b}$	12.7%	1.69%
	-by-F	Deadtime correction	0.86%	0.25%
	Run	PID efficiency	0.161%	0.018%
		Radiative Correction	1.9%	0.43%
	Glo	Q^2	N/A	0.640%
		Transverse Asymmetry	N/A	0.56%
		Target Endcap	0.023%	0.005%
	bal	False Asymmetry	N/A	0.03%
		Pair Production	0.48%	0.048%
		Pion Dilution	0.024%	0.002%
		Statistical (ppm)	7.0	67
		Systematics	1.9	6%

Preliminary Asymmetries Compared with Calculation

x_{bj}=0.241, Q²=1.085 GeV²: Ad=-92.27 ±3.15 (stat.) ± 2.77 (syst) ppm x_{bj}=0.295, Q²=1.901 GeV²: Ad=-163.60 ± 6.48 (stat.) ± 3.05 (syst) ppm

Still missing: y-Z box corrections (1% for E158 $\overline{A_{PV}} = \frac{G_F Q^2}{\sqrt{2\pi \alpha}} [a(x) + Y(y)b(x)]$ Q²=1.085 x=0.241 $|F_2^{\gamma}, F_2^{\gamma Z}, F_3^{\gamma Z}|$ "static (quark |CTEQ/ MSTW2008 **MSTW2008 MSTW2008** NNLO+QPM model) limit" JLab (NLO) LO+QPM NLO+QPM $A(C_1 \text{ term})$ -83.15 NA -83.69 -84.32 -84.35 $A(C_2 \text{ term})$ -5.58 NA -4.60 -4.74 -4.78

Q ² =1.901	x=0.295				
$F_{2}^{\gamma}, F_{2}^{\gamma Z}, F_{3}^{\gamma Z}$	"static (quark model) limit"	CTEQ/ JLab (NLO)	MSTW2008 LO+QPM	MSTW2008 NLO+QPM	MSTW2008 NNLO+QPM
$A(C_1 \text{ term})$	-145.65	-147.74	-146.58	-147.09	-147.05
$A(C_2 \text{ term})$	-14.59	-13.62	-13.12	-13.41	-13.50

Current Extraction Method

- Use MSTW2008 NLO, 3-flavor PDF to construct F_2^{γ} and $F_{1,3}^{\gamma Z}$ in the quark-parton model. Different methods differ by no more than 0.5% in the a_1 term and 2% in the a_3 term.
- Use $C_{1,2}$ from J. Erler: evaluated at measured Q², preliminary γ -Z box correction included.
- run $\alpha(EM)$ to measured Q² to account for vacuum pol.
- HT correction to a_3 is estimated but not applied.
- Corrections not done: γ-γ box (denominator), interference between Z and γ-γ box (numerator). This correction is about 1% for E158. Using 1% for PVDIS for now.
- Subtract the calculated a₁ term from the measured asymmetry, and compare the rest with the calculate a₃ term.

Preliminary C_{2q} from Q²=1.9 GeV² Point

Coherent PVDIS Program with SoLID @ 11 GeV

X. Zheng, July 2012

SoLID Physics topics:

- PVDIS deuteron (180 days) C₂, sin²θ_w, CSV, diquarks,
- PVDIS proton (90 days) d/u
- PV with ³He (LOI)
- SIDIS transversity, TMD, A1(?): ³He (125 days), NH₃ (Cond.)

Møller Parity-Violating Experiment: New Physics Reach (a large installation experiment with 11 GeV beam energy)

Expected precision comparable to the two most precise measurements from colliders, but at lower energy.

No other experiment with comparable precision in the forseeable future!

Summary and Perspectives

Preliminary Results:

- • C_{2q} seems to agree with the SM, and non-zero by 3 sigma;
- higher order radiative corrections still need to be applied.
- "New construction" experiments at JLab 12 GeV:
- PVDIS @ 11 GeV (SoLID)
- Moller @ 11 GeV

Thanks to our postdocs and graduate students for their hard work.
 And our theorists friends for useful discussions.

Scaler-Based Counting DAQ with online (hardware) PID

- DIS region, pions contaminate, can't use integrating DAQ.
- High event rate (~500KHz), exceeds Hall A regular DAQ's Limit (4kHz)

Scaler-Based Counting DAQ with online (hardware) PID

- DIS region, pions contaminate, can't use integrating DAQ.
- High event rate (~500KHz), exceeds Hall A regular DAQ's Limit (4kHz)

Compton Analyzing Power(work of D. Wang)

- The experimental setup:
 Shielding, alignment.....
- →Thickness of the lead shielding
- Radius of the hole of the collimator
- Detector resolution, smearing
- Pileup Effect
- PMT nonlinearity

X. Zheng, July 2012

Blue: Lead Red: GSO

Black: Steel

Vacuum End Cap(steel): 0.05cm Lead shielding thickness: 0.3 cm Collimator: inner radius 0.5cm outer radius 4.0 cm, length 5.0 cm CH2: radius 5.0 cm, length 10.2 cm GSO: radius 3.0 cm, length 15.0 cm

Compton Analyzing Power (work of D. Wang)

Blue: data Red, black: simulation

0.3cm: <Ath> = 0.04883 0.4cm: <Ath> = 0.04970

So Δ <Ath> = ±1.75% (relative)

DAQ Deadtime Correction

(work of D. Wang)

Deadtime correction to asymmetry: $A_{\text{measured}} = A_{\text{phys}} (1 - \text{deadtime loss})$

Deadtime Decomposition:

- Group Deadtime: proportional to group rate; narrow/wide.
- Veto Deadtime: T1/GC rate; the same for all groups.
- Final OR.
- Overall Deadtime: Veto DT + Group DT + Final OR DT

DAQ Timing Simulation (HATS)

(work of D. Wang)

Inputs:

1) Signal amplitude and shape (from data)

- 2) Rates and position-dependence (from data)
- 3) DAQ electronic diagram, model spec., cable delays.....

Right arm preshower PMTs:

All Other Leadglass PMTs:

How Do We Know It Works?

(work of D. Wang)

Deadtime Decomposition:

Group DT: measured by "tagger" data

- Veto DT: Using FADC data as input/proof;
- OR (final) DT: no direct data, but can estimate in theory reliably.

PID Performance - Single Run

(work of K. Pan)

Affects measured asymmetry (Q^2) if it varies over the acceptance or if there are "holes"

<u>We extract detector efficiencies from VDC-on runs, which</u> <u>were taken daily</u>

Hall A Monte Carlo

(work of D. Wang)

EM Radiative Corrections

(work of D. Wang)

Two theory calculations for Apv in the resonance:

- Lee/Sato: Delta(1232) only
 - Current: D=n+p
 - On-going: with wavefunctions for separate publication
- M. Gorshteyn (Indiana)
 - whole resonance
 - isospin rotation p -> n

Toy Model:

$A^{RES} = A^{DIS \ formula} \frac{\sigma^{RES}}{\sigma^{DIS \ formula}}$

	Elastic	QE	Model	DIS	Тоу	<asym></asym>	Data
						HAMC (ppm)	(ppm)
Lee&Tao	79.2	-45.5	-88.5	0	-49.7	-82.61	
	(0.14%)	(11.9%)	(86.5%)		(1.5%)		-66.258
Misha	79.2	-45.5	-88.1	0	0	-83.13	±7.768
	(0.14%)	(11.2%)	(88.7%)				

Resonance #4,5,7 / Lee&Tao (work of D. Wang)

	Elastic	Quasi	Delta	DIS	Тоу	<asym></asym>	Data (ppm)
						HAMC (ppm)	
Res #4	53.9	-25.4	-75.9	0	-65.0	-65.0	-73.4 ± 6.9
	(0.03%)	(1.5%)	(5.26%)		(93.2%)		
Res #5	42.8	-18.0	-55.3	0	-59.9	-59.1	-60.9 ± 5.15
	(0.02%)	(1.5%)	(1.6%)		(96.8%)		
Res #7	81.4	-44.1	-98.5	-108.8	-122.4	-117.1	-118.8 ± 16.9
	(0.04%)	(0.89%)	(0.99%)	(31.3%)	(66.8%)		

Resonance #4,5,7 (Misha)

(work of D. Wang)

	RE	S#4			RES#5	5		RE	S#7		
Ċ	ર ²				Q ²			— Q² 2	-		
	1				1			1			
0	.2	0.4	1.0	1.6 W	0.2	4 1.0	1.6	W	0.5	1.0 1.5	2.0 W
			Elastic	Quasi	Table	DIS	Тоу	<as< td=""><td>ym></td><td>Data (p</td><td>opm)</td></as<>	ym>	Data (p	opm)
								HAMC	(ppm)		
	Re	es #4	53.9	-27.1	-69.5	0	-57.7	-68	3.2	-73.4 ±	6.9
			(0.03%)	(1.8%)	(94.0%)		(4.2%)				
	Re	es #5	42.8	-18.2	-62.4	0	-65.6	-63	1.9	-60.9 ±	5.15
			(0.02%)	(1.6%)	(91.9%)		(6.5%)				
	Re	es #7	81.4	-44.2	-127.6	-108.8	-125.9	-12	0.8	-118.8 ±	16.9
			(0.04%)	(0.9%)	(62.1%)	(31.3%)	(5.7%)				

DIS Radiative Corrections

(work of D. Wang)

Lee, lao								
	Elastic	QE	Delta	Dis	Тоу	<asym HAM(</asym 	> A_ <q2< th=""><th>, Correction Factor</th></q2<>	, Correction Factor
Dis #1	56.0 (0.03%)	-26.5 (1.3%)	-70.7 (1.2%)	-86.1 (74.4%)	-93.3) (23.2%	-86.8 5) (ppm)	-88.6 (ppm)	1.021
Dis #2	79.7 (0.03%)	-45.8 (0.95%)	- <u>107.7</u> (0.83%)	-159.3 (95.5%)	-118.1) (2.7%	-156.6) (ppm)	-159.6 (ppm)	1.019
Misha	Elastic	QE	Table	Dis	Тоу	<asym> HAMC</asym>	A_ <q2></q2>	Correction Factor
Dis #1	56.0 (0.03%)	-26.5 (1.3%)	-97.4 (19.1%)	-86.1 (74.4%)	-92.7 (5.3%)	-87.8 (ppm)	-88.6 (ppm)	1.009
Dis #2	79.7 (0.03%)	-45.8 (0.95%)	-117.7 (3.4%)	-159.3 (95.5%)	-147.8 (0.1%)	-156.7 (ppm)	-159.6 (ppm)	1.019

Uncertainty is estimated using

 $\Sigma f_i \times (uncertainty of the model)_i$

max(error of the data, discrepancy between data and model)

Iteration of Radiative Corrections

- Correction depends on the value of C_{2a} used in DIS formula;
- We calculated rad. corr. for different C_{2q}
- No more than 2 iterations was necessary.

PVDIS Asymmetry in Full Generality

$$A_{PV} = -\left(\frac{G_F Q^2}{2\sqrt{2}\pi\alpha}\right) \left[g_A^e Y_1 \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + \frac{g_V^e}{2} Y_3 \frac{F_3^{\gamma Z}}{F_1^{\gamma}}\right] = -\left(\frac{G_F Q^2}{4\sqrt{2}\pi\alpha}\right) \left[a_1 Y_1 + a_3 Y_3\right] \qquad g_{AV} \text{ follow PDG}$$

$$C_{1u} = 2g_A^e g_V^u = -\frac{1}{2} + \frac{4}{3} \sin^2(\theta_W) \quad C_{1d} = 2g_A^e g_V^d = +\frac{1}{2} - \frac{2}{3} \sin^2(\theta_W)$$
$$C_{2u} = 2g_V^e g_A^u = -\frac{1}{2} + 2\sin^2(\theta_W) \quad C_{2d} = 2g_V^e g_A^d = +\frac{1}{2} - 2\sin^2(\theta_W)$$

Estimation of HT on the a_3 term

We could use HT results on $F_{3}^{\gamma Z}$ from neutrino data in 0710.0124(hep-ph) to correct the a_{3} term:

Coherent PVDIS Program with SoLID @ 11 GeV

X. Zheng, July 2012

Knowledge on C_{1,29} with Projected JLab 12 GeV Results

PVDIS@11 GeV with SoLID: potential to improve C_{2q} knowledge by another order of magnitude and better separation from hadronic effects.