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Introduction

Deep into low-x region of Protons

H1 and ZEUS Combined PDF Fit
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Partons in the low-x region is dominated by gluons.
Gluon splitting functions have 1/x singularities. PENNSTATE
Resummation of the o In 1.

The dynamics becomes non-linear at high gluon density.



Introduction

Phase diagram in QCD

Consider the evolution inside a hadron:
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@ Low Q7 and low x region = saturation region.
@ Use BFKL equation and BK equation instead of DGLAP equation.

@ BK equation is the non-linear small-x evolution equation which describes
the saturation physics.
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Introduction

Collinear Factorization vs k| Factorization

Collinear Factorization

k1 Factorization(Spin physics and saturation physics)
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@ The incoming partons carry no k in the Collinear Factorization.

@ In general, there is intrinsic k . It can be negligible for partons in protons, but should be taken into
account for the case of nucleus target with large number of nucleons (A — 00).

@ /| Factorization: High energy evolution with k; fixed.
@ Initial and final state interactions yield different gauge links. (Process dependent) @

@ In collinear factorization, gauge links all disappear in the light cone gauge, and PDFs are universal.
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Introduction

k; dependent parton distributions

The unintegrated quark distribution

flks) = [ eSS S P O0)L 0 £ (e €)]P)

as compared to the integrated quark distribution

5 = [T P00 L€ w0, )

The dependence of £ in the definition.

Gauge invariant definition.

Light-cone gauge together with proper boundary condition = parton density
interpretation.

The gauge links come from the resummation of multiple gluon interactions.

Gauge links may vary among different processes.
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Introduction

Dilute-Dense factorizations

The effective Dilute-Dense factorization

Nucleus < C\ ': :
Proton Quarks c

@ —

Proton  Neutron

@ Protons and virtual photons are dilute probes of the dense gluons inside target hadrons.
o For pA (dilute-dense system) collisions, there is an effective k; factorization.
A il )
= X, XA, G — -
d?P d*q 1 dyidy, A T X
e For dijet processes in pp, AA collisions, there is no &, factorization[Collins, Qiu,
08],[Rogers, Mulders; 10].
o At forward rapidity y, x, o< €’ is large, while x4 o< ™ is small. PENNSTATE
o Ideal opportunity to search gluon saturation.
@ Systematic framework to test saturation physics predictions.



Introduction

Why is the di-jet production process special?

Initial state interactions and/or final state interactions
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@ In Drell-Yan process, there are only initial state interactions.
—+oo i —oo
/ dkf ———A" (k) = / d¢mAT(¢)
— 00 7kg — l€ 0
Eikonal approximation —> gauge links.
o In DIS, there are only final state interactions.
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Eikonal approximation — gauge links. PENNSTATE

@ However, there are both initial state interactions and final state interactions in
the di-jet process for all the active partons.
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A Tale of Two Gluon Distributions

In small-x physics, two gluon distributions are widely used:[Kharzeev, Kovchegov, Tuchin; 03]
1. Weizsacker Williams gluon distribution ([KM, 98] and MV model):
S. N -1
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II. Color Dipole gluon distributions:
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Remarks:

@ The WW gluon distribution simply counts the number of gluons.

@ The Color Dipole gluon distribution often appears in calculations.
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@ Does this mean that gluon distributions are non-universal? Answer: Yes and No! @
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A Tale of Two Gluon Distributions

[E. Dominguez, C. Marquet, BX and F. Yuan, 11]
1. Weizsacker Williams gluon distribution
S, NZ—1

G = =
x 2oy N
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IL. Color Dipole gluon distributions:
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A tae of two gluon distibutions.
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A Tale of Two Gluon Distributions

A Tale of Two Gluon Distributions

In terms of operators (known from TMD factorization), we find these two gluon distributions
can be defined as follows: [F. Dominguez, C. Marquet, BX and F. Yuan, 11]
I. Weizsacker Williams gluon distribution:

o d§dgL pptem—ik) ¢ i o [t i [+]
w6 =2 [ St SETHPIFT (T U T o).
II. Color Dipole gluon distributions:
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Remarks:
@ The WW gluon distribution is the conventional gluon distributions. In light-cone gauge, it
is the gluon density. (Only final state interactions.)
@ The dipole gluon distribution has no such interpretation. (Initial and final state PENNSIATE
interactions.)
@ Both definitions are gauge invariant.
o Same after integrating over g .
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A Tale of Two Gluon Distributions

In terms of operators, we find these two gluon distributions can be defined as follows: [F.
Dominguez, C. Marquet, BX and F. Yuan, 11]
I. Weizsacker Williams gluon distribution:

m _ dE™dEL wpte——ik, ¢ i e [+t i [+]
xG = 2/ Q)P e LSLT(PIFT(E, ) UTTET(0)UT | P).
IL. Color Dipole gluon distributions:

d¢—d ixPt e —ik, - ife— - J
“G® :2/(2’5@%6 Pre™ —iky giTr<P|F+ (¢ 7@_)“[ It gt (0)u[+]|P>.

Questions:
@ Can we distinguish these two gluon distributions? ~ Yes, We Can.
o How to measure xG") directly?  DIS dijet.
e How to measure xG® directly?  Direct y+Jet in pA collisions.
For single-inclusive particle production in pA up to all order.
@ What happens in gluon+jet production in pA collisions?  It’s complicated!
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DIS dijet

[E. Dominguez, C. Marquet, BX and F. Yuan, 11]
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714,-11; i (Tr[@iU(v)] ut () [B/U(v’)} ut (v))xg =>Operator Def

o Eikonal approximation = Wilson Line approach [Kovner, Wiedemann, 01].
o In the dijet correlation limit, where u = x — b < v =zx+ (1 — 2)b

o 58U (0, by b x') = (TrUWUT () UB U (b)), # ST (x,6)ST (B, x')

@ Quadrupoles are generically different objects and only appear in dijet processes.
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DIS dijet

The dijet production in DIS.

ki ky
ky ko
G2 '}
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TMD factorization approach:

doTA— X

ps— =0 = DG (e, g1 ) Hopgsaa,

Y

Remarks:

@ Dijet in DIS is the only physical process which can measure Weizsacker Williams gluon
distributions.

° for the Weizsacker Williams gluon distributions of nuclei at small-x.
The cross section is directly related to the WW gluon distribution.

o EIC and LHeC will provide us perfect machines to study the strong PENNSTATE
gluon fields in nuclei. Important part in EIC and LHeC physics.
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Di-Hadron correlations in DIS

Di-pion correlations at EIC
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o EIC stage II energy 30 x 100GeV.
o Using: 0% = ¢(b)A*Q(x).
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@ Physical picture: Dense gluonic matter suppresses the away side peak.
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Di-Hadron correlations in DIS

The estimate of di-pion correlations at EIC
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@ J is normalized to unity in the dilute regime.

. . . PENNSTATE
@ Physical picture: The cross sections saturates at low-x.
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D1 e
~y+Jet in pA collisions
The direct photon + jet production in pA collisions. (Drell-Yan follows the same factorization.)
TMD factorization approach:
doPA=7a+X) ) )
T ars. ZXIQ(XIHU )ng( )(xquL)Hqgﬁw-
Remarks:

o Independent CGC calculation gives the identical result in the correlation limit.
@ Direct measurement of the Color Dipole gluon distribution.

C oy )
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DY correlations in pA collisions

[Stasto, BX, Zaslavsky, 12]
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M = 0.5,4GeV, Y = 2.5 at RHIC dAu. M = 4,8GeV, Y =4 at LHC pPb.

@ Partonic cross section vanishes at m = Dip at 7.
@ Prompt photon calculation [J. Jalilian-Marian, A. Rezaeian, 12]
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IR ECIOE IO Dijet (dihardrons) in pA

STAR measurement on di-hadron correlation in dA collisions
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@ There is no sign of suppression in the p + p and d + Au peripheral data.

o The suppression and broadening of the away side jet in d + Au central collisions is due to
the multiple interactions between partons and dense nuclear matter (CGC).

. . PENNSTATE
@ Probably the best evidence for saturation.
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Dijet processes in the large N, limit
The Fierz identity:

O

Graphical representation of dijet processes

8 — qq:
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The Octupole and the Sextupole are suppressed.
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Gluon+quark jets correlation

Including all the gg — ¢qg, g¢ — g¢ and gg — ¢g channels, a lengthy calculation gives
do.(pA%DijeH»X)

2
o 1) (1 2) (2
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with the various gluon distributions defined as

]:15&}) = XG(Z)(X q1), ]:c/a’ */XG(U F,
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where F = [ (2%2 iqyry NLC <TrU(VJ_)UT (0)>Xg
Remarks:
IHNSTAT
@ All the above gluon distributions can be written as combinations and convolutions of two fun %ﬂ%’a‘)*
gluon distributions.

@ This describes the dihadron correlation data measured at RHIC in forward. dAu collisions.



(D i)
Comparing to STAR and PHENIX data

Physics predicted by C. Marquet. Further calculated in[A. Stasto, BX, F. Yuan, 11] @Ad

For away side peak in both peripheral and central dAu collisions
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o Using: 0% = c(b)A'*Q2(x).
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@ Physical picture: Dense gluonic matter suppresses the away side peak.
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Conclusion

Conclusion:

DIS dijet provides direct information of the WW gluon distributions. Perfect for testing
saturation physics calculation, and ideal measurement for EIC and LHeC.

Modified Universality for Gluon Distributions:
Inclusive | Single Inc | DIS dijet | v +jet | g+jet
xGD X X N X Vv
GOF | Y x J |V

x = Do Not Appear. v/ = Apppear.

Two fundamental gluon distributions. Other gluon distributions are just different
combinations and convolutions of these two.

The small-x evolution of the WW gluon distribution, a different equation from
Balitsky-Kovchegov equation;[ Dominguez, Mueller, Munier, Xiao, 11]

Dihadron correlation calculation agrees with the RHIC STAR and PHENIX data.
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